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In [9] Thompson classified the finite (simple) groups H satisfying:
(N) Every p-local subgroup of H is solvable, for every prime p.

Later it turned out that his proof could be used as a pattern for the
classification of the finite simple groups in general. In the course of this
later classification Thompson’s result was generalized in [5], [6], and [7] to
finite (simple) groups H satisfying:

(N,) Every 2-local subgroup of H is solvable.

The proofs of both of the above results are subdivided as to whether the
invariant e(H) is small or large. Here e(H) denotes the rank of a largest
elementary abelian p-subgroup contained in a 2-local subgroup of H,
where p ranges over all odd primes. It is characteristic for those proofs
that the general approach used fails if e(H) is small.

In the last 10 years a new method in group theory—the amalgam
method—has been developed which seems to be well suited to deal with
groups (of characteristic 2 type) where e(H) is small. In contrast to other
methods in group theory it is a completely local method. That is, it focuses
on the structure of finite (local) subgroups of a group rather than the
structure of the group itself. In fact, usually neither simplicity nor finite-
ness of the group is required.
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This paper can be seen as an attempt to explore the reaches of the
amalgam method in general classification problems [with arbitrary e(H)]
and how global properties of the group in question (finiteness, simplicity,
etc.) can be used to facilitate the amalgam method. We thought that
N,-groups, i.e., finite groups satisfying (N, ), would be an interesting class
of groups for studying these aspects.

The following two theorems will be proven in this paper.

THEOREM 1. Let H be a finite group, S, € Syl,(H), and B =
Cs (Q(Z(J(S ). Suppose that

(i) every 2-local subgroup of H containing B is solvable and of charac-
teristic 2 type and

(ii) there exist (at least) two maximal 2-local subgroups of H contain-
ing S,.

Then H is type L(2), Sp,(2), G,(2)', *F,(2)", M,,, Q{(2), Q;(3), or QF(3).
In particular |S,| < 2*°. Moreover, if H is of type M,,, Q(2), Q5 (3), or
O3 (3), then there exists a 2-local subgroup of H which is not solvable.

In Theorem 1, “H is of type X" means that H contains a pair of
subgroups P; and P, such that O,((P,, P,)) =1and S, <P, N P,, and
the structure of P, and P, is like that of a pair of maximal 2-local
subgroups of X, where X < X, < Aut(X). The precise definition for “H
is of type X" is given in Section 8 [for X = L,(2), Sp,(2), G,(2)', OQ;(3),
?.nd Q#(3)], Section 9 [for X = Qf(2)], and Section 10 [for X = M,, and
F(2)'].

THEOREM 2. Suppose that H is an N,group of even order and S, €
Syl,(H). Then one of the following holds:
(@ His of type L4(2), Sp,(2), G,(2)', or ’F,(2)'.
(b) S, is a dihedral or semidihedral group.

(©) ISyl = 2° and there exists a maximal 2-local subgroup isomorphic to
C, X2, inH.

(d) H contains a strongly embedded subgroup.
(e) There exists a 2-local subgroup U of H such that O,(U) # 1.

Some remarks about the proof of Theorem 1. The amalgam method
works with a pair of subgroups P, and P, having the following property:

(1) Sy <P, NP, 0,P)+1,i=12 and O,((P,, P,) = 1.
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By a nice argument of Gomi [see (4.4)], such a pair of subgroups exists
with the additional property:

(2) §, is contained in a unique maximal subgroup of P, i = 1,2.

Property (2) yields a particularly transparent structure for P,/O,(P,); see
(3.3). A refinement of Gomi’s argument gives a pair of subgroups which,
apart from (1) and (2), satisfies [see (4.7)]:

(3) Either O(P,) is subnormal in C,(Q,(Z(S,) or Q,(Z(S,)) is
neither normal in P, nor in P,.

In the proof of (4.7) a pushing-up theorem for SL,(2) is used. This is a
special case of Baumann’s pushing-up theorem [1]. The subgroup B used
in hypothesis (i) of Theorem 1—the Baumann subgroup—uwas first used in
that paper. However, we decided to quote [8] rather than [1] [see (2.4) and
(2.5)] because the proof in [8] is short, elementary and, more important,
stays within the framework of this paper since its proof also uses the
amalgam method.

It should be pointed out that, apart from [8] and textbook material the
reader should be familiar with, the proof has been made self-contained.

The importance of (3) for the proof can only be appreciated by reading
the proofs of Sections 7-10, but some evidence can be given here.

If Q,(Z(S,) is neither normal in P, nor in P,, then the normal
subgroup Z; = {Q,(Z(S,)") is a noncentral GF(2) P-module with
Cs(Z;)) = O,(P), i = 1,2. Hence, the structure of P,/O,(P,) can be inves-
tigated by its action on Z,. That this, together with the amalgam method, is
a very effective procedure can be seen in (8.2), where this entire case is
treated.

If Q,(Z(S,)) is normal in P,, then P, acts trivially on Z,, and the action
gives no further information about P,/0,(P,). This lack of information
from the action is compensated by the subnormality of O2(P,) in
C,(Q(Z(Sy))). Indeed, it is mainly here where the global structure of H
facilitates the application of the amalgam method.

There is another aspect of the proof which should be mentioned. There
is no subdivision of the proof according to the size of e(H), but, of course,
a priori, there is no bound on e(P,), i = 1,2. The easiest way to see how
the proof treats larger values of e(P)) may be by referring to an example.

Let H = (E, X E,)Xt), where E;, = L,(2), Ei = E,, and t?> = 1. Then
H = L2\ C, and e(H) = 2 [larger values of e(H) can be produced by
substituting <¢) by a larger 2-group]. Let S, € Syl,(H), t € S,, and
T=8,NF*H), and let L,,L, <ET such that T=L, NL, and
OL)=A,, i=12 Then P, =L, t) and P, = (L,,t) are the only
maximal 2-local subgroups of H containing S,. They both are solvable and

satisfy (1)-(3).
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We now forget about the global structure of H and only use the
structure of P, and P,. More precisely, we only use the following proper-
ties:

() [QZ(Sy), 0*(L), 0*(LY)] = 1 for i = 1,2.
(% %) CZ(OZ(pl))(OZ(Ltl)) N CZ(OZ(PZ))(OZ(LtZ)) N Z(T) # 1.

Then (L', L) < C,(x) for suitable 1 # x € Z(T), and it is fairly easy to
see that C,(x) is not solvable [if we assume the global information, we get
that E, < C,(x)]. Hence, H is not an N,-group.

The crucial observation is that the Bauman subgroup B (of S,) is
contained in L, and L,; in fact B =T in our example. In general,
property () can be established if B < L, N L, and B is neither normal in
L, nor L,; see (3.10). This then allows one to use the above argument in
fairly general situations. Usually the element x can be found in

[94(Z(80)), 0%(Ly)] N [Q4(Z(S,)). 0% (L,)] N Z(T),

but often the argument also works if [Q,(Z(S,)), O*(L,)] = 1 for some i.

Most of the notation used in this paper is standard or will be defined in
the section where it occurs for the first time. Modules will be written
multiplicatively since they usually arise as normal subgroups or sections of
groups.

Let Y be a group and V' be a GF(2) Y-module. Then Y operates
quadratically on V if [/, Y, Y] = 1. An element ¢ of Y induces a transvec-
tionon V if [V/C,(¢)] = 2,and Y induces transvections on V if [, Y] # 1
and every element of Y\ C,(}) induces a transvection on V.

1.

In this section G is a finite solvable group of even order and V' is a finite
GF(2) G-module such that C,(V) = 0,(G) = 1.
We will use the following

Notation. S € Syl,(G), W= 0,(G), and m(Y) = [VI(IC,(Y)||Y)*
forY <S.
#(V,S) ={A < S|A is elementary abelian and m( A) < 1}.
J(V,8) =414 v(V,S)).
B = C4(Cy(J(V,S))).
E=J(V,8).
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Z(S) is the set of all subgroups A of § such that m(A4) < m(S),
C,([Cy(A), Ng(A)]D) = A, and C((C,,(A)) = A.

QW) is the set of all subgroups D in W such that |D| =3 and
[v, D] = 4.

The first lemma is well known and will be used in this paper without any
further reference.

(1.1) The following hold.:
@ wW=[wW,SICy(S).
() W=<Cyla)laecS*)ifsS is noncyclic and abelian.
© W=LCy(SHIIS/Syl = 2) if S is elementary abelian.
(d) S is elementary abelian if [V, S, S] = 1.

(1.2) Let G = WS. Suppose that S is quadratic on V and V = (C,(5)°).
Then

V= <C[/(S0) | |S/S0| = 2>
Proof. We have
G = CG(S)<[CW(SO)’S] 1S /8ol = 2>-

Let H be a fixed subgroup of index 2 in S, N = C,(H) and V, =
(C (S 11S/8,1 = 2). It suffices to show that [N, S] normalizes V.

Let S, be any subgroup of index 2 in S. Then the quadratic action of S
on V gives

[S,C(So), N] <Cyp(H) and [Cy(S,),N,S] <C,(H).

Hence the 3-subgroup lemma implies [N, S, C,,(S)] < C,,(H) < V.

(1.3) Let x be an involution of G and F = [W, x]. Suppose that F is a
p-group and |V /C,(x)| < 4. Then one of the following holds:

@ [V,Fll=4and F = C,.
() [V,Fll=2%1V/Cy(x)l =4, and F = C,, Cs, or C3 X Cs.

© [V,Fll=251Vv/C,(x)=41Z(F),x] =1, and F is extra special
of order 3°.

Proof. We proceed by induction on |F|[}V|. Then G = F{x) and V =
[V, F1; in particular C,(F) = 1. Note that [V/C,,(x)| = [V, x]I.

Assume first that there exists 1 #+ a € Z(F) such that a* =a~* and
[V,al = 2% Then [V,x] <[V,al, and F =[F,x] implies V =[V,al.
Hence, F is a subgroup of GL,(2) (= A4,), and (a) or (b) follows.
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Assume next that there exists 1 # a € Z(F) such that a* =a~ ! and
[V,all = 4. Note that C.(V/[V,al) = {a) since C,(V)=1. Set V=
V/[V,a]l and G = G/{a). By induction either F = {a) or F = C, and
F = Z(F) since |VV/Cy(x)| < 2. The first case gives (a). In the second case
there exists b € Z(F) such that b* = b~ ! and [V, b]| = 24, and the above
argument applies.

We may assume now that [Z(F), x] = 1. Let z € Z(F). If [V, x,z] = 1,
then [V, F, x] < C,,(2) and [V, x, F] < C},(2). Hence also

[F,x,V]=[F,V]=V<C,(2)

and z = 1. This shows that [V, x]l = 4, Z(F) = C,, and V' = [V, Z(F)]. In
particular, I can be regarded as a GF(4) G-module via the action of Z(F).

Assume next that F = (a,b), where a* =a~' and b*=5b"1. Then
V =[V,allV,b] and |V| < 2° since [V, all=[V,bll=2% and [V, x] <
[V,a]l N [V, b]. Hence, G is a subgroup of SL,(4) and (c) follows.

Assume finally that there exist a,b € F so that a* =a %, b* =b"1,
[a,b] + 1,and F # {a,b). Set F, = {a,b) and V,, = [V, F,]. By induction
[V,| = 2% and F, is extra special of order 3% Note that the structure of
SL,(4) gives V, # V and Cp(Z(F,)) # F. Let F, = C.(Z(F,)) and F, =
Ni(F,). Again by induction F; = Cr(x)F, and [Z(F)), x] = 1. It follows
that [F,, x] # F, and so [F,, x, Z(F))] # 1. On the other hand,
[x, Z(F), F,] = [Z(F,), F,, x] = 1 which contradicts the 3-subgroup
lemma.

1.4) Let QW) ={F,,...,F}and Wy = (F,,...,E) < O4(G). Then
@ Wy=F X XF, and
(b) V=V, XV, XXV, whereVy=C,(W,) and V; = [V, F,].

Proof. Note that [V, {F,, F,)] < 2° Hence, the structure of GL,(2)
gives (a) and (b).

(1.5) Let U be a subgroup of S. Then
@ 1C,(U)/CL (S =m(SHmU) S /UL
Moreover, if S is elementary abelian, then

b)) S=<A|1A4<2(S), Al =2),

© W={(Cy(A)IAecZ(S),I|S/Al =2),

(d W=L(Cy(A) A4 ecZ(S),|Al=2)if |S| >4,
(e) m(S) = 1.
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Proof. Claim (a) is obvious. Let S be elementary abelian and A be any
subgroup of index 2 in S. From (a) we get

ICy(A)/C(S)| = 2m(S)m(A) .

Hence either C,(A4) = C,,(S) or m(A4) < m(S).

Let Y = [Cy(A), S]. Assume that C,(A) = C,,(S). Then Y centralizes
C,(S)and V= C,(Y) X [V,Y]. Since [V,Y]is S-invariant and C,,(S) <
C,(Y) we get that [, Y] =1 and Cj(A) = C),(S). Note further that
C4(Y) # A also implies Cy,(A) = C,,(S). Hence (c) follows.

From (c) we get that S = (A | A € £(S), |S/A| = 2). If £(A) c £(S)
for every 4 € £(S) with |S/A| = 2, then (b) and (d) follow by induction
on |S|. Hence, to prove (b) and (d), it suffices to prove the above inclusion
Z(A) c 2(8).

Let A € £(S) with |[S/A| =2 and A, € £(A). Set Y, =[C),(A4,), S]
and V, = C,(A4,). Since Y < Y, and C,,(A) <V, we get that C4(Y,) <
Ci(Y)=A4 and Cy (V) < Ci(C(A) = A; e, Cy(Yy) =C, (Y, and
C,(Vy) = C,(V,). Now A, € £(A) implies that 4, € Z(S).

To prove (e), let A € £(S)and | 4| = 2. Then (a) implies that m(A) > 1
and thus m(S) > 1.

1.6 Let V* =[V,W1]. Suppose that S is elementary abelian, W = [W, §],
and m(S) < m(Y) for every subgroup Y + 1 of S. Then one of the following
holds:

@ [S|=2 and m(S) > 1.

() m(S) =2,G = SL,(2) X SL,(2), [V* = 2% and [V*,S,S] # 1.

(o) W=F, X+ XF, where F. € QW), [V,S,8]1=1, and
[V*/Cp,.(S)] = 2|S|.

(d WS=E, X XE, whereE, = SL,(2) and E! € Q(W), [V, S, S]
=1, and [V*/C,(S)| = |SI.

Proof. If |S| =2, then (a) resp. (d) follows easily. Hence, we may
assume that [S| > 4.

Let 2,(S) ={A4 € 2(S)||Al =2} and A € Z,(S), and let V, = C},(A)
and W, = [Cy(A4), S]. Note that m(A4) = m(S) and that Cy, (V,) = 1 by
the P X Q lemma. From (1.5)(a) we get

Va/Cu(S)| =18 /41 = 18 /Co(V).

Hence, by induction on |S| we may assume that W,S/A = E; X -+ X E|
and V, = Uy X Uy X -+ X U, where E; = SL,(2), U, = C,(W,S), U, =
[V,, E;], and |U]| = 4. In particular, W, is a 3-group. Since W is solvable
and [W, S] = W, (1.5)(d) implies that W is a 3-group.



18 BERND STELLMACHER

Suppose that there exists E; such that [V, E!] £« V,. Let 4, =S NE,
U=I[V,E] and S, = C4,(U). Then [U, A;, A;]1 # 1 and |A4;| = 4. More-
over, [V,/Cy(A)l =2 and so for a €A} either Cy(a) <V, or
ICy(@)/Cy (@)l = 2 since m({a)) = m(S) = m(A). Since U £V, we get

ICy(a)/Cy(a)l =|[V.,al/[V,,a]|=2  fora €A;\A.

It follows that |[U|=2* and [U,all=4 for a € S\ S,. In particular,

(U a,s]1=1[U a, A] for a € A,\ A and s € C{(E)\ S,. This gives

[U, s] = [U, A] by the action of E;, and C,(E;) = A. Hence S = A,S,.
Assume that S, # 1. Then by (1.5)a),

ICy(S0)/Cy(S)l = 4’”(5)’”(50)_1,

while |U/C,(S)| = 8, a contradiction. Hence S, = 1 and |S| = 4.

Let W, = Cy,(U). Then W, < C,(S) since [V, S] < U. As shown above
[Cp(X), S]=C, for X € 2,(S). Hence [Cp(X), S, W] =1 and W, <
Z(W) by (1.5)(d). It follows that [V, W,, W] = 1 since [V,W;,S] =1 and
W = [W, S]. This implies that W, = 1 and W = C; X C;. Now (b) is easy
to verify.

Suppose now that for every A € Z,(S), [V, Ell<V, for i=1,...,s.
Together with (1.4) and (1.5)(d) this shows that W = F, X --- X F,, F; €
QW), and S < N;(F). Hence [V*, S, S] = 1. We now choose 4 € Z,(S)
with the additional property the s is maximal; i.e., [W, A]| is minimal.

As above, for i = 1,...,s there exists 4 <A4; < S such that [A4;| = 4,
Vi/Cy(A)I =2, and [W,, A;] = F,. Let i be fixed and 4 = (a). Among
all subgroups of order 2 in A4, we choose B; such that B; = A and [W, B;]
is minimal with that property. Let B, = {x). Since a inverts [W, A] the
minimality of [W, x] gives Cp, 4(x) # 1. Hence, there exists F, € QW)
such that [F,, x] = 1 and [F,, A] = F,. It follows that [V, F,] < C,,(x) &
V, and m(B,) < m(A); in particular B, € Z,(S). Thus, the minimality of
[W, A] gives [W, All=W,Bl =3 or 9. Let By=A and V, = C,,(W),
and note that S = (B,,..., B,).

Assume that [W, A]l = 3. Then WS = SL,(2) X -+ X SL,(2), |S| = 2/,
V*/C, (S| =S|, and [V*/C,.(B,)| = 2. It follows that

V/Cy(S)l=1S] |VO/CVO(S)| = |SIm(S)
and

V/Cy(B;)l = 2|VO/CV0(Bi)| =2m(B,).

Hence C,(S) = C,(B) and [V, S,S] =1 since m(B,) = m(S), and (d)
follows.
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Assume now that [W, All=9. Then |§|=2"""! since W,S/4 =
SLy(2) X -+ X SL,(2) and [V*/Cy.(B)l = 4. Now as above C,(S)=
Cy(B) and [V, S, S] = 1, and (c) follows.

(1.7 Suppose that J(V, S) # 1. Then the following hold:

@ W=E' xCy(E).
®) B=J(,S) andJ(V,S) €V, S).

(o0 E=E, X XE, andV =Vy XV, - XV, whereV,=C,(E),
E, =SL,2), V.= [V,E] and V| =4 fori=1,...,n.

Proof. Let A e(V,S). Then m(A) < 1, and (1.5)(e) gives m(A4) = 1.
Now (1.6)(d) and again (1.5)(e) imply that [W, A]4 = E; X --- X E; and
V=C,(W,AlA) XV, X --- X V,, where E;, = SL,(2), V. =[V,E;], and
V)| = 4. Since E;, =[W,E, N AI(E; " A) each of the subgroups E, is
normal in WA.

Let O* be the set of all subgroups F of G such that F = SL,(2),
[V,F]l =4, and F is normal in WF, and let E, = (F | F € Q*). Then
E,=E, X -+ XE, where Q*={E,,...,E}. Note that E, is normal
in G.

Let S, =S N E,. As we have seen above J(J,S) < S,. On the other
hand, [V/C, (S, < |S,l and thus S, €24V, S); in particular S, = J(V, §)
and £, = E.

It remains to prove B =S,. Clearly, B normalizes every E;, € O*.
Hence B = §,Cz(E). However, C5(E) centralizes I and thus B = S,,.

2.

In this section G is a finite solvable group of even order and C;(0,(G))
< 0,(G).

Notation. S € Syl,(G), Z = Q(Z(8),V=(Z),and G = G /C;(V).
«(8) is the set of all elementary abelian subgroups of maximal order of §,
J(S) =(A 1A A8, Z=0,(Z(J(S)), B=Cy(Z),and L = (BY).

(21 0,G) = 1.
Proof.  This follows directly from the definition of V.

(2.2) Let E =[0,(G),J(S)1J(S). Suppose that J(S)+ 1. Then the
following hold:

(@) E is a normal subgroup of G.
(b) J(S)=B.
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(©) E=E, X XE,, where E; = SL,(2).

(d) V="V, X XV, where Vo= C,(E), V,=I[V,E,] and |V}| = 4
fori=1,...,n

Proof. Let A €./(S). Then the maximality of | A| yields
Ve,V =IVIC,(V)IIVNA™ <|Al

It follows that |V/C,(A)| <|A|l and 4 €4V, S) (for definition see
Section 1); in particular J(S) < J(V,§). Now (1.6)d) and (1.7) applied
to G and V give (c), (d), and, together with an easy Frattini argument,
also ().

Note that B normalizes E, for i = 1,...,n and centralizes V/, since
Vo< Z. It follows that Cz(E") = Cz(V) = 1. Hence J(S) < B implies that
J(S)=

(2.3)  Suppose that O,(G) = C{(V'). Then B € Syl,(L).

Proof. Assume first that [V, J(S)] = 1. Then V < Z and thus B <
C(V) = O,(G). Hence, B is normal in G.

Assume now that [V, J(§)] # 1. Let E = (J(S)Y). We apply (2.2). Then
J(S)=B and L = EB. Hence, it suffices to show that O,(E) < B. Let
Zy = Q(Z(J(O,(E))) and_A €.2(S). Note that by (1.5)e), C,(V)V &
M(S) Hence Z < Z, and Z e Cy (A)V It follows that [ZO, El<V:in
particular, ZV'is normal in E Now the structure of E and its operation on
I/ shows that there exists x € E so that E = (J(S), J(§)*)C(V) and
7V = Z*V, where Z* = ZNnZ*and Z = Z5(Z 0 V). Moreover, C.(V)
centralizes ZV/V and so C.(V) = Co(Z*V)O,(E). Since O,(E) normal-
izes Z* we conclude that Z* is normal in E. However, now [Z*, J(S)] = 1
implies [Z*, E] = 1, and O,(E) < C({(Z) =

(2.4)  Suppose that the following hold:

(i) No nontrivial characteristic subgroup of S is normal in G.
(i) S is contained in a unique maximal subgroup of G.

Then [0,(G), 0*(G)] < V.

Proof. By (i) neither Z nor J(S) is normal in G; i.e., [V,J(S)] # 1.
Moreover, (ii) implies that C¢(V) = O,(G). We apply (2.2) and (2.3).

Let B <L, <L sothat L,/O,(L,) = SL,(2) and |L,| is minimal with
that property. Then B € Syl,(L,) and L,/O,(L,) = D,.;.. Moreover, by
(i), (L,, S) = G and thus no nontrivial characteristic subgroup of B is
normal in L,. Hence, [8] implies that [O,(L,),0?(L))] < V. Let T be a
Hall 2’-subgroup of C,(O,(L)/V). Then L, < TS and TS = G. It follows
that [0,(G), O*(G)] < V.
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(2.5)  Suppose that G satisfies the hypothesis of (2.4) and G = SL(2). Let
T be a subgroup of AUt(S) of odd order. Then {Vr| < T) is a normal
subgroup of G in O,(G).

Proof. This is [8, 3.5].

3.

In this section G is a finite group of even order, § is a nontrivial
2-subgroup of G, and U is a subgroup of G containing S.

Notation. £(U,S) ={E < U|S € Syl,(E), O(E) # 1, and S #
O,(E)};, 2(U,S)={E U, S)|S is contained in a unique maximal
subgroup of E}; #*(U, S) = {E € 2(U, S) | O*(E) is subnormal in L for
some maximal element L € (U, S)}. ®,(U) is the inverse image of
dU/0,U)) in U. If U= G, we also write £(S), £(S), and 2#*(S)
instead of Z(G, ), #(G, S), and Z*(G, S), respectively.

(3.1) Let S € Syl,(G) and &% be the set of all subgroups U of G such that
S <Uand

(%) S =+ 0,(U) and S is contained in a unique maximal subgroup of U.
Then either = Jand § = 0G), or 0?(G) = (P | P €%).

Proof. Let G be a minimal counterexample and G, = (P | P €.%),
and let M be any maximal subgroup of G containing S. Then either
M = N(S) or, by induction, M = N,,(S)(M N G,). Since N;(S) normal-
izes G, we conclude that G,N;(S) is the unique maximal subgroup of G
containing S, but now G €.%. Since G = 0% (G)N,(S) = 0¥ (G)M it
follows that G = 0% (G), and G is not a counterexample.

(3.2) Let L € A(S). Then O*(L) = (P |P e2(L,S)).
Proof. This is a direct consequence of (3.1).

(3.3) Let P €(S) and B be the maximal subgroup of P containing S,
and let P, be the largest normal subgroup of P contained in B. Suppose that P
is solvable. Then

(@ O*P/0,(P)) is a p-group for some odd prime p,
(b) O2*(P/P,) is an irreducible S-module,
(©)  Py/0,(P) = ®(O*(P/O,(P))).
Proof. Let P = P/0,(P). The existence of Hall subgroups in P shows

that P is a {2, p}-group, where p is some odd prime, and the Frattini
argument shows that P, is a p-group.
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Clearly, ®(0?(P)) < P, and Maschke’s theorem gives P, = ®(O?(P))
and (b).

(3.4) Let P €(S) and T be a normal subgroup of S. Suppose that P is
solvable. Then either T < O,(P) or [O*(P), T] = O*(P).

Proof.  Since [O?(P), T]is normal in P, the claim follows from (3.3).

(35 Let P €2(S) and N be a normal subgroup of P in O,(P). Suppose
that P is solvable and [N, O,(P) N O*(P)] = 1. Then either [ Z(S), O*(P)]
#1or[N,0*P)] =1

Proof. Note that [N, O0%(P)] < Z(0,(O*(P))) and that [N, O%*(P),
O%*(P)] = 1 implies [N,0?(P)] = 1. Hence we may assume that N <
O?(P) and N is abelian. By Maschke’s theorem N = Cy(O?*(P)) X
[N, O%(P)]. Since [N, O%(P)] is S-invariant, the claim follows.

(36) Let PeA(S), P= P/O,(P), and Z and T be two normal sub-
groups of S, and let A be a subgroup of S satisfying ®(A) < O,(P) and
a € A\ O,(P). Suppose that P is solvable, Z < O,(P), and T « O,(P).
Then there exists x € P so that for L = (A, A*) the following hold.:

@ L=E ><A_O, where E = D,,» and A = (ayA,.

(b) O* (L) £ D, (O*(P)).

() Any two elements in Z" are interchanged by an involution of L.
(d 0*(L) <[0*(D),T].

Proof. Let F =[0?*(P),al. If F < ®,(0*(P)), then a € O,(P) which
is not the case. Hence F ¢ ®,(0%(P)). Let F, < F such that

(%) F,is A-invariant and F, £ ®,(0*(P)).

Among all such F, satisfying () we choose F, such that first | F,[ F;, T]
and then |F,| is minimal. Since F = {Cz(A,)||1A4/A4,| = 2) there exists
Ay < A such that |4/A,| = 2 and F, < C(A,) by the minimal choice of
Fo Note that F, « ®(F) and so @ & A,.

Choose & € F,\ ®(0?(P)) such that &% = ¢~ The minimality of F,
gives F, = (&). Set L = (A, A°). Then (a) and (b) hold. Since O,(L)
normalizes every element in Z*, the structure of L/0,(L) also gives (c).

By (3.4), F, < [F,, T1®(O*(P)). Hence F, == [F,,T,al & ®,(0*(P)).
Now the minimality of Fy[F,, T] gives F, < [F,, T, and (d) follows.

(3.7 Let L €Z(S)and L = L/O,(L). Suppose that L is solvable. Then

[F(L),5] =(O*(P) 1 Pez*(L,S)).



2-LOCAL STRUCTURE OF N-GROUPS 23

Proof. Let F be the inverse image of [F(L),S]in L. By (3.2), FS =
(P|Pe>(FS,S)). Moreover, O*(P) is subnormal in L for every P €
P(FS,S); i.e., Pe@*(L,S).

Now let P €.2*(L,S). Then O2(P) is subnormal in L since L is the
unique maximal element of Z(L, §). It follows that O?(P) < F(L) and so
P € 2(FS,S) and #*(L, S) = 2(FS, S).

(3.8) Let P,,P,e(S) and H=<{P,,P,), and let N be a normal
subgroup of H which is maximal (with respect to inclusion) such that
O*(P) &« N for i = 1,2. Suppose that P, and P, are solvable. Then there
exists a normal series Q < N < Hy, < H, < H such that

(@ Q=S8SNNand Q is the largest subgroup of S which is normal
in H,

(b) H,/N is a minimal normal subgroup of H/N and O*(P,) < H, for
some j € {1,2},

(¢) H,=H, or H = H,O*(P,), where O*(P,) & H,,.
(d) H=SH,

Proof. Let Q* =S N O,(H). Clearly, Q* is the largest normal sub-
group of H in S. Hence Q* < N by the maximality of N;ie, O* < SN
N = Q. On the other hand, by (3.4), Q = 0,(P,) N N since O*(P,) £ N.
Hence QO = Q*.

Let H, be the inverse image of a minimal normal subgroup of H/N.
Then there exists j € {1,2} such that O*(P) < H,. Let {1,2} = {j, k}. If
O%(P,) < H,, then H,S = H. If O*(P,) & H,, then H,O*(P,)S = H.

(39) Let P, P, and H be as in (3.8), and let S < T € Syl,(H) and
Q =S N O,(H). Suppose that H is solvable, Q,(Z(8)) < Q, and J(S) =
J(T). Then one of the following holds:

(@ [QZ(8),0%(P),0%(P)] =1 fori+j, or
(b) C5(Q(ZU(S)))) < O,(P) for some i € (1,2}, or
© [QLZ(8)), 0% P)] =[Q,Z(S)), 0*(P,)].

Proof. Let Z = Q(Z(S), V=<(z"), H=H/C,(V), and B =
Cs(Q,(Z(J(S))). We may assume that B ¢ O,(P), and O?(P,) « C,, (V)
for i = 1,2. We apply (3.8) with C,,(JV) < N.

Assume that J(S) < C, (V). Then J(S) < Q and V < Z(J(S)). Hence
B < Cy(V)andso B < Q < O,(P), i = 1,2, a contradiction.

Assume now that J(S) ¢ C, (V). Then there exists i € {1,2} such that
J(S) £ 0,(P); ie, O*(P) < (J($)") by (34). Let F=0,(F(H))-
O*(P)J(S).
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Since J(S) =J(T) and S N O,(H) = 1 we get [J(S), 0,(H)] =1 and
thus [F, O,(H)] = 1. It follows that

O,(F) < C5(F(H)) =S8N 0,(H) = 1.

Hence (1.7) applied to F and V gives 0% P) < O,(H); in particular,
3(H)P where {1,2} = {i, j}, and S € Syl,(H).
Assume that J(S) £ O,(P). Then by the same argument, OZ(P) <

O,(H) and H = O,(H)S. If P, # P,, then again (1.7) gives (a). In the
other case, (c) follows.

Assume that J(S) < O,(P). Since B & O,(P) we get that
[Q(ZUJ(S$H)), 0*(P)] = 1. However now (1.7) applled to H and V shows
that [V, O%(P), OZ(P)] = 1, and again (a) holds.

4,

In this section G is a finite group of even order, S € Syl,(G), and the
following hold:

(a) Every 2-local subgroup of G containing S is solvable and of
characteristic 2 type.

(b) S is contained in two different maximal 2-local subgroups of G

Notation. Z = Q,(Z(S)), C = C5(Z), D = Npc 5s50,(P), M=
Ng(D), B = C(Q(Z(J(S)))),

Py(8) =P*(C.$) U (#(5)\Z(C,S)),
P (S) =F7*(M,S) U (#*(S)\P(M,S)),
A ={(P,P,) | P,e2(S), O,({P;, P,)) = 1}.
Remark. A subgroup similar to D was used in [3].

(4.1)  The following hold:
@ AS)+ T +28).
(b) O0,(M) # 1.
© NS <M.

Proof. N;(S) is not the only 2-local subgroup of G containing S
Hence (3.2) implies (a).

Claim (b) holds since Z <D < O, M), and (c) holds since N;(S)
operates on the elements of 2(S) by conjugation.
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(42) Let L € 2(S), D, = N peoy.50:(P), and Dj =
N pe oxr 502(P). Then D; = Dj = OxXL) and D = N c 45:502(L),
where #L(S) is the set of maximal elements of Z(S).

Proof. Let F, be the inverse image of F(L/O,(L)) in L and F =
[F,, S]. By (3.7), FS = (P |P e2»*(L,S)). It follows that [F,, Dj] < F
and [F, Df ] < O,(L). We conclude that

O,(L) <D, <Dj <0,(L).
and the claim follows.

(43) D= pepsOLP) fori=0,1.

Proof. For & # 2 CZ(S) define 0,(2) = N pc,0,(P). Let My =C
and M, = M. By (4.2) it suffices to show that 0, %.(S)) < O,(L) for every
maximal element L €. #(S).

We have #*(L,S) c2(M;,S) U (F#*(S)\2(M,, S)), and by (4.2),
O0,(F*(M;,S)) = 05(2(M;,S)) = O5(M,).

Hence

0,(Z(8)) = O5(Z(M;,5)) N Oy F*(S)\P(M;, S))
< O(F*(L,S)) = Oy(L).

(4.4) Let PeP(SI\P(M,S) and k € {0,1}. Then there exists P*
P(S) such that (P, P*) € A.

Proof. Let #(S)={P,,...,P) and H,={(P,P), i=1,...,n. We

may assume that O,(H,) # 1 for i = 1,...,n. Hence by (4.2) and (4.3),

D < N Oy(H) < 0(P) =D
i-1 i=1

and D = N ,0,(H,). However, now P < M, a contradiction.

45 Let 2(S)=2(M,S) UP(C,S) and P € P(S)\P(M, S). Then
there exists P* € 7*(M, S) so that (P, P*) € A. If in addition #*(C, S) C
P(M, S), then O,(M) < O,(C) and 0,(C) € Syl,(O*(P*)0,(C)).

Proof. By (4.4) there exists P* € %,(S) such that (P, P*) € A. Since
P < C, we have P* £ C and thus P* € #*(M, S).

Suppose that #*(C, S) c2(M, S). Then (4.2) implies that O,(M) <
0,(C). Since 0,(0%(P*)) < O,(M), we conclude that O0,(C) €
Syl,(OA(P*)0,(C)).
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(4.6) Suppose that P(S) =2(C,S) UP(M,S). Then #*(C,S) ¢
P(M, S).

Proof. Assume that #*(C,S) c2(M,S). By (4.5) there exist P
P(C,S) and P* € *(M,S) such that (P,P*) e A and O,(C) e
Syl,(O2(P*)0,(C)). B

Let By = Cp, o (Q(ZJ(O,CN)), L ={(B;"), V=(Z""), and L =
L/C,(V). Note that B, is normal in P and thus not normal in P*. Hence
by (3.4), O*(P*) < L, and by (3.3), O,(L) € Syl,(C,(V)) since P* « C.
Thus (2.3) gives B, € Syl,(L). Moreover, since (P, P*) € A there is no
nontrivial characteristic subgroup of B, which is normal in L. Hence
LS = P* and (2.2) imply

() L=E, X XE,
(i) V=VyX- XV,

where the notation is as in (2.2). Since V, N Z is normalized by P and P*,
we get ;N Z =1 and thus 1, = 1.

Let T be a Sylow 3-subgroup of P*. Then by (2.4), [0,(P*),T] =V and
O,(P*) = VCy,p(T). The Frattini argument shows that C, p«(T) is
normal in S, and V; = 1 gives Cp,_p«(T) = 1and O,(P*) =V} X --- X V;
in particular, O,(P*) = O,(M).

Let R, =[V;,Byjland Q ={R;|i=1,...,n}. Note that Q = {R] |s €
S} since P* € 2(S). Choose a € Aut(B). If [V,a, V] # 1, then R, =
[Via, Vil =[V,a, Byl = R;a. If V,a <V, then there exists E; so that
[Vie, E; N Byl = R; = R;«. We conclude that Aut(B,) operates on ().
Since C < N;(B,) we get that C = SC,, where C, = N.(R)).

Let U be a Hall 2’-subgroup of C, and u € U. By (2.5), [V, V}*] = 1,
and [V, V1 <R, NR;=1 for 2 <i. It follows that (V') < O,(P*).
Hence also

VEYy = (VPSy < 0,(P*).

However, US = C and (V) = 0,(P*). Now O,(P*) = O,(M) implies
that C < M, and M is the unique maximal 2-local subgroup containing S.
a contradiction.

(4.7)  There exists (P, P*) € A such that P « C and P* € 2#,(S).

Proof. Assume that 2#(S) #2(C,S) UP(M,S). Then (4.4) yields
the assertion. Assume that 2(S) =2(C,S) U#(M,S). Then (4.6) im-
plies that #*(C,S) ¢ (M, S). Now (4.7) follows from (4.5) for P*
P*(C, SHI\P(M, S).
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In this section we assume

HypoTHESIS 1. H is a finite group of even order, S, € Syl,(H), and the
following hold:

(i) Every 2-local subgroup of H containing S, is solvable and of
characteristic 2 type.

(i) O,(H) = 1 and H does not contain a strongly embedded subgroup.

(5.1) There exists a nontrivial subgroup S of S, and P,, P, € #(S) such
that O,({ Py, P,)) = 1 and one of the following holds:

@ S =38, and Q,(Z(S)) is neither normal in P, nor in P,.
(b) S =358, and P, € 2*(C,,(Q(Z(S)), S).

© S =+38, S, is contained in a unique maximal 2-local subgroup M
of H, and

(c) Q,(Z(S)) and J(S) are neither normal in P, nor in P,,
(c,) P & MandS € Syl,(N,(O,(P)) fori=1,2, and

(cy) fJS) <T<S,, P, PreRT) and O,(KPf, PF)) +# 1, then
either (P, P¥) < M orJ(S) =J(S,) for T < S, € SyL,({(Pf, P¥)).

Proof. Assume first that S, is contained in two different maximal
2-local subgroups of H. Then (a) or (b) follows from (4.7).

Assume now that there exists a unique maximal 2-local subgroup M of
H containing S,. Since M is not strongly embedded in H there exists
1+ Q < §, such that N,(Q) « M. Among all 2-local subgroups which are
not in M we choose N such that for S € Syl,(N N M) consecutively

@) [J(S)| is maximal,
(ii) |S|is maximal.

After conjugation in M we may assume that S < S,. Since § # S, we
have that

(%) Ny (J(S)) <Mand Cy(Qy(Z(S))) < M;

in particular § € Syl,(N). Hence by (3.2), (N, S) ¢ #(M, S).

Let P €2(N,S)\2(M,S) and let x € Ng(S)\ S with x* € S. Set
P, =P, P,=P} and H, = {(P,, P,). Since x € N,(O,(Hy)) and H, « M
the maximality of S implies that O,(Hy) = 1; and similarly S e
Syl,(N,(O,(P)))). Together with (), (c,) and (c,) follow.

Now let P and P beasin(cy)andlet H* = (P}, Pyyand T < S, €
Syl,(H*). Assume that J(S,) # J(S). Then the maximality of J(S) gives
H* < M. Hence (c,) holds.
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(5.2) Let Zy = Q(Z(Sy)), By = Cs(Q(ZJ(S ), C = Cy(Zy), and
P e #*(C, S,), and let K be a subgroup of P. Suppose that the following hold.:

(i) Every 2-local subgroup of H containing B, is solvable and of
characteristic 2 type, and

(i K=I[K, Byl
Then K is subnormal in every 2-local subgroup of H containing By K.

Proof. Let D be a 2-subgroup of H which is normalized by KB,. Note
that B, is normal in DB, and by (ii), K = O*(K). Hence [D, B,] < D N B,
and

[D,KB,] = [D,(B£Y] < (D N By)*) < KB,.

It follows that D € N,(KB,), and K = O*(KB,) yields D < N,(K). We
have shown:
(1) Let D be a 2-subgroup of H and KB, < Ny,(D). Then D < N,(K).

From (1) we get that K is normal in KO,(P) and from (3.3) that
KO,(P) is subnormal in P. Hence

(2) K is subnormal in O?(P).

Assume now that K is a counterexample such that |K| is maximal. Set
N = N,(K). By (1) there exists T € Syl,(N) such that O,(C)B, < T. Let
g € H such that T < S§. Then g € Ny(B,) and Z§ < Z(0,(C)). On the
other hand, the subnormality of O?(P) in C gives O,(0*(P)) < 0,(C)
and by (3.5), [Q,(Z(0,(C))), O*(P)] = 1. Hence O*(P) < C&.

If K+ O*(P), then the maximality of K implies that O?(P) and thus by
(2) also K is subnormal in C%. If K = O?*(P), then S, € Syl,(N) and
by (2), K is subnormal in C. Hence, we have shown:

(3) There exists h € N, (B,) such that S} NN € Syl,(N) and K is
subnormal in C".

We set T, = S and Z, = Z, where h and S, are as in (3). Since K is a
counterexample there exists a subgroup M such that the following hold:

4) C,(0,(M)) < O0,(M)and KB, < M.
(5) K is not subnormal in M.

(6) K is subnormal in every proper subgroup of M containing
KB,0,(M).

By (1), O,(M) < N and thus by (3), O,(M)B, < T§ for some g € N.
Then B§ = B, and we may assume that 7, = 7§. Now (4) implies that
Zy < Z(0,(M)).
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Let V= (ZM) and C, = C,,(V). If K < C,, then by (3), K is subnor-
mal in C, since C, < C", and thus K is subnormal in M which contradicts
®).

Suppose that O,(K) < C,. Then [V, K] < Z(O,(K)) by (1) and thus
[Z(0,(K)), K] # 1 since K « C,. This contradicts (3.5). We have shown:

(7) O,(K) & C,.

Let M = =M/C, and W = 0,(M). Then as above in the proof of (1),
(W, B 0l < WmB and W<N—(K) i.e., W< N, (KC,). On the other
hand, K is subnormal in KC, and thus O,(K) < 0,(KC,). Hence

0,(K) N W < 0,(W) <0,(M) < C,.

Since K/0,(K) is a p-subgroup we get that [, K] = O,(K) N W = 1. In
particular,

[0,,(F(M)),0,(K)] # 1

by (7). Now (6) implies that M = O,(F(M))KB, and W < T, \ M. The
definition of 17 implies that W = 1. Since by (7), V £ Z(B,) we get
J(T,) « C,. Hence (2.2) gives K < O,(M) and O,(K) = 1, a contradiction
to (7).

We now have set the stage for the amalgam method, which will deal with
a triple (P, P,,S) as in (5.1). In case (5.1)c), P, and P, need not be
solvable or of characteristic 2 type. To get these properties we will make a
further hypothesis which will be used in most of the following sections.

HYPOTHESIS 2.  Hypothesis 1 holds, S, P,, and P, are as in (5.1), and
B = C4(Q(Z(J(S))). In addition:

(iii) Every 2-local subgroup of H containing B is solvable and of
characteristic 2 type.

(5.3) Assume Hypothesis 2. Then P, and P, are solvable and of charac-
teristic 2 type.

Proof. Let N = N,(O,(P)). By (5.1), S € Syl,(N), and by Hypothesis
2, N is solvable and of characteristic 2 type.

(5.4) Assume Hypothesis 2. Let B<T < S, F,,F, € A(T), and H, =
(F,,F,), and let M be a maximal 2-local subgroup of H containing S,.
Suppose that O,(H,) # 1 and either S = S, or Hy & M. Then Q,(Z(S)) <
0,(H,).

Proof. Let Ty =T N O,(Hy), N = Ny(Ty), and T < S, € Syl,(Hy). If
S = S,, then obviously J(S) = J(S)); and if § # S,, then (5.1)(c) shows
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that J(S) = J(S,). Hence [O,(H,), J(S)] < J(S) N O,(H,) < T, and T, #
1 since Q,(C5(J(S)) < J(S).

We have shown that N is a 2-local subgroup of H. By (3.8), H, < N.
Thus, N is of characteristic 2 type. Let Z = Q,(Z(S)) and W = (Z"V). As
above J(S) =J(S,) for T < S, € Syl,(N). Since Z <J(S) we get that
[O,(N), W] < T, and [Ty, W]= 1. It follows that [O*(W), O,(N)] =1
and thus Z < W < O,(N). We conclude that Z < O,(H,).

6.

In this section we assume Hypothesis 2.

Notation. Q, = O,(P,), L, = (B"), Z, = (Q(Z(B)), V =
(Q(Z(SN™), P, = P,/Cp(V), and J(V, S) is defined as in Section 1.

(6.1) B £ 0,.

Proof. Assume first that J(S) < Q,. Then J(S) « Q, since
0,KP,, P,>) = 1. Hence B « Q,.

Assume now that J(S) £ Q,. By (5.3) and (3.3), Ci(VV) = Q, and by
(2.3), B € Syl,(L,). Assume that B < Q,. Then J(S) is normal in P,. In
particular (5.1)@) or (b) holds and § = S, According to (2.2) there exists
E, € 2(L,, B)such that E, /C([V, E;]) = SL,(2) and (E}, §) = P;. Since
(E,, P,) = {P,, P,) there is no nontrivial characteristic subgroup of B
which is normal in E,. Hence (2.4) gives [O,(E,), O*(E)]l = 4.

Let W, = [0,(E)),O*(E)] and W = (W}* |u € U), where U is a Hall
2'-subgroup of P,. Then by (2.5), W is normal in {(E,;,U). Let u € U and
H, = {E,, E}). Clearly J(B) = J(S,) for B < S; € Syl,(H,) since § = S,.
Moreover, by (5.4), Q,(Z(S)) < B N O,(H,). Hence (3.9) gives O?(EY) <
N, (W) and O*(E,) < N,(W}); ie., by (22), {(L,,E¥ lu € U) < N,(W).
In particular, O,((E}, E{')) # 1 for s € S. Now the same argument with
E;, s € S, in place of E, gives O*(E}) < N, (W}"). It follows that (L,,U)
< Ny(W).

Set W* = (W"). Then W* is a normal subgroup of P, in Q,. Since
P, = SU = US we get that U < N,(W*) and thus (P,,U) = (P, P,) <
N, (W*), a contradiction.

(6.2)  Suppose that [P,, Q,(Z(SN] #+ 1. Then J(S) £ Q;, i = 1,2.

Proof. The hypothesis is symmetric in P, and P, since also
[P, Q(Z(S)] # 1. Hence (6.1) implies B « Q,, i = 1,2. Now (3.4) gives
[0%(P), B] = O*(P). Assume that J(S) < Q,. Then Q,(Z(Q,)) < Z(B)
and [Q,(Z(Q,)), 0*(P)] = 1. Thus (5.3) yields [P, Q,(Z(5)] = 1, a con-
tradiction.
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(6.3) Suppose that [P,, Q(Z(S)] #+ 1. Then P./Q; = Dy.5n, i = 1,2.

Proof.  From (6.2) we get that J(S) £ Q;, i = 1,2. Hence B € Syl,(L,)
by (3.3) and (2.3). We apply (2.2).
There exists E; € (L;, B) such that

(E,S$)=P, |[z,0%E)]|=4 and
Ei/CE,([ZiI Oz(Ei)]) = SL,(2).

Assume first that O?(E,) normalizes [Z,, O*(ES)] for every s € S. Then
E, normalizes [Z,, O*(L,)] and {P,, P,> < N,((Z,, L,]), a contradiction.

We may assume now that E, and E, are chosen such that O%*(E,) &
N,(Z,,O%(E)D). Let H, = {E,, E,). Suppose that O,(H,) # 1. If (5.1)(c)
holds, then H, ¢ M [M as in (5.1)(c)] since P, « M. Thus J(S) = J(S,) for
B < S, € Syl,(H,) in any case. Moreover, (5.4) yields Q,(Z(S)) < O,(H)),
and H, satisfies the hypothesis of (3.9). Hence O*(E,) < N,((Z,, O*(E))),
a contradiction.

Suppose now that O,(H,) = 1. Let Z, = Cq (55)(E}). Then C,(E,) =
1. Since by (2.2),

10.(Z(B))/Q(Z(B)) N Cu(E)| = 2,

we conclude that |Z,| < 2 and [Q,(Z(B))| < 4; in particular [Q,(Z(B)), S]
< Q(Z(5)).

Assume first that L, = E,C,(Z,). Then S =BQ, and Z, < Z(L,).
Since L, is normal in P, and [Q,(Z(S)), P;] # 1 we get that [Z,,0;] =1
and Q,(Z(B)) = Q,(Z(S)). Hence also L, = E,C, (Z,), and the assertion
follows with (3.3).

Assume now that L,/C,(Z)) = SL,(2) X SL,(2) and by symmetry
also L,/C,(Z,) = SL,(2) X SL,(2). Then Q(Z(B)) = Z, X Z; and
[Z,, E3] = 1, where s € S\ B. The above argument applied to {E,, E5)
shows that E; < N,([Z,, O*(E)). Since L, < N,(Z,, O*(E,)] we con-
clude that O,(E;, E;)) = O,(Hg) # 1. This contradicts O,(H,) = 1.

(6.4) Suppose that [P,, Q(Z(S)] =1 and J(V,§) # 1. Then P, +
(Cp(W), S for every w € C,(J(V, S\ Qy(Z(5)).

Proof. Let Z, = C,(J(V,S5)) and E = O2(P)J(V,S). We apply (2.2).
Then
1) B<JWV,S),
(20 E=E, X XE, E, =SL,2),and

Q@) V=V, XV, XXV, V,=C,(E), V,=[V,E], and |V,| = 4
fori=1,...,r
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Note that [P,, Q,(Z(S)] =1 and (5.3) imply that Q(Z(P,)) = 1. If
r=1,then Z, = Q,(Z(S)) and there is nothing to prove.

Let r > 1, we Z,\ Q,(Z(S)), and T = Cg(w). By (1), B < T, and by
(2) and (3) there exists j €({1,...,r} such that [w, E] =1 Let F, €
P(ET,T) such that [w, F,] =1 and E] <F,.

Assume that (Cp,(w), S> = P,. By (6.1) and (3.4), T is not normal in

O*(Cp(WT. Hence, there exists F, € #(Cp(w),T) such that (F,,S) =
P,. Let L = (F,,F,>and Q =T N O,(L). Note that w € O ,(L) and thus
O,(L) # 1.

Again (6.1) and (3.4) imply that [O?(F,), Bl = O%*(F,). Let C =
C,(Q,(Z(8))). Then O?(P,) is subnormal in C. Since O?(F,) is subnormal
in O%(P,) we get

(4) O?(F,) is subnormal in C and [O%(F,), B] = O*(F,).

By (5.2), O*(F,) is subnormal in L and by (5.4), Q,(Z(S)) < Z(Q).
Moreover, by (3.8), Q is normal in L. Let W= 0,(0%F,)) and U =
[Q,(Z(S)), 0%(F)]. Then W < Q and U < Z(Q); in particular, [U, W] = 1.
It follows that [U, O*(F,)] < Z(W).

Suppose that [U, O*(F,)] # 1. Then (4) and the P X Q lemma yield
[Z(0,(C)), O*(F,)] # 1 and thus [ Z(0,(C)), O*(P,)] # 1. Now (3.5) gives
[Q,(Z(S)), 0%(P,)] # 1, a contradiction.

We have shown that [U, O*(F,)] =1 and thus [V}, O*(F,)] = 1 since
V; < U. Now

(O*(P,)B,F,B) < Ny(V)),

and the above argument with IV = [Q,(Z(S)), O*(P))] in place of U yields
[V,0%F,)]=1and (P, F,) = (P, P,> < N,(}V), a contradiction.

7.

In this section G is a finite group and S a is nontrivial 2-subgroup of G
such that the following hold:
(i) There exist P;, P, € 2(S) with G = (P, P,).
(i) P, and P, are solvable and of characteristic 2 type.
(i) 0,(G) = 1.
DerFiniTION.  Let T' = T'(G, P,, P,) be the graph whose vertices are the

right cosets of P, and P, in G and whose edges are the unordered pairs
{P,g, P,h} with P,g N P,h + .
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I' is called the coset graph of G with respect to P, and P,, and G
operates on I' by right multiplication. We identify T' with its set of
vertices.

For 6 € I' we define:

G; is the stabilizer of 6 in G,
d( , ) is the usual distance metric on I',
A(8) ={reT1d(Ad) =1},
Qs = 0,(G;y),
E; = 0%(G;),
Zs=Q(Z(T)) | T € Syl,(Gy)>,
Vo=<(Z, | A€ A(8)).

The properties collected in (7.1) are elementary and independent from
the structure of P, and P,. They will be used without reference.

(7.1)  The following hold:

(@ T is connected.
(b) G operates edge- but not vertex-transitively on T .

(c) There exists an edge {a, B} such that that G, = P, and Gy = P,;
i.e., the vertex stabilizers are conjugate to P, or P,, and the edge stabilizers are
conjugate to P, N P,.

(d) Gj operates transitively on A(S).

Remark. According to (7.1)(b) and (c) any statement about Gj, 6 € T,
is, after conjugation, also a statement about P, and P,, respectively. This
fact will be used freely. One particular application used frequently is the
following:

Let {8, A} be an edge of T and let N be a subgroup of Q5 which is
normal in G5 and G,. Then a suitable conjugate of N in S is normal in P,
and P, and thus contained in O,({P;, P,)) = O,(G) = 1. Hence N = 1.

(7.2) The kernel of the operation of G on T is trivial.

Proof. Let K Dbe the kernel of the operation of G on I'. Then K is a
normal subgroup of G contained in P,. Since P, is of characteristic 2 type,
either K = 1 or 0,(K) # 1. The latter case contradicts O,(G) = 1.

(73) Let €T, A € A(8), and T € Syl,(Gs N G,). Then the following
hold:

@ T € Syl,(G;) N Syl(G,); in particular, Q5 < G,.
() Z; < Q(Z(Q5)).
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(¢) Either C;(Z3) = Q5 or Zs = Q,(Z(G;5)) = Q(Z(T)).
) If Z, = O(Z(G,)), then Z(G,) = 1.

Proof. We may assume that {G;, G,} = {P,, P,} and T = S. Now (a) is
obvious and (b) follows since P, and P, are of characteristic 2 type.

Let S, = C((Z5). Then Q; < S, by (b). Assume that S, £ Q5. Then
E, < (S§%) by (3.4); i.e., G, = G;(Z,)S. Now the definition of Z; gives
(©).

Suppose that Z; = Q,(Z(G;)). Note that Q,(Z(G))) < Q,(Z(S)) = Z;
and so Q,(Z(G,)) is central in {Gj,G,> = G. Now O,(G) =1 yields
Z(G)) = 1.

DEFINITION.
b=min{d(8,8") 18,8 €T, Z; &« Oy}

According to (7.2) and (7.3)(b), b is a well-defined integer larger than zero.
A pair («, «') is called a critical pair if d(a, @’) =band Z, £ Q,.. In the
following let («, a’) be a critical pair and vy be a path of length b from «
to a’. We denote y by (a,a+1,...,aa+b)=(a’ —b,...,a'); ie,
a+b=a" and a’' — b = a. Without loss of generality we may assume
that S < G,nG,,., and {G,,G,, } = {P,, P,}.

(7.4)  The following hold:

@ Z,<V,,.<G,.
b)) Z,<G,andV, <G,,,.
(© C(Z,)=2Q,.

d 1f 12,2, 1#1, then C(Z,)=Q, for T e Syl(G,) and
(a’, @) is also a critical pair.
(e) Z, is quadratic on Z . and vice versa.
Proof. (a) and (b) follow from (7.3)(a) and the minimality of b.
To (c). Suppose that C¢(Z,) # Q,. Then by (7.3)c), Z, = Q,(Z(S)).
Hence Z, < Z_,,, « Q,, which contradicts the minimality of b.
To (d). Suppose that [Z,,, Z,.]1+ 1. By (b), Z,. < G, and by (¢), Z, &
Q.- Hence, (a’, @) is also a critical pair and (d) follows from (c).
To (e). Z, and Z,. normalize each other by (a) and (b), and they are
abelian by (7.3)(b). Hence (e) follows.

(7.5)  Suppose that [Z,, Z,.] = 1. Then the following hold:

(@ bisodd ie., a' € (a+ 1)°.
(b) Za+1 = Ql(Z(S)) = Ql(Z(GaJrl))-
(c) CQa(Ea) = 1; in particular, Z(G,) = 1.
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(d) Ifb > 1, thenV,,, iselementary abelian and V, | is quadratic on
V.., and vice versa.

Proof. By (7.3)c), Z,,, = Q,(Z(G,)), and (7.4)(c) implies that a’ & a©,
i.e., a’ € (a+ 1)¢ and b is odd. Hence (a) and (b) follow.

To (c). Z(S) N C, (E,) < Z(G,). Hence, (7.3)(d) implies (c).

To (d). By (7. 4)(a) ‘and (b), V,,, and V,. normalizes each other, and if
b > 1, then b > 3 by (a), and both subgroups are abelian. Now (d) follows.

Remark. Assume Hypothesis 2. Then (7.4)c) and (5.1) lead to the
following two cases:

Case 1. Q,(Z(S)) is neither normal in P, nor in P,. Hence Z,_ ., £
Z(G,.)and [Z,, Z, ]+ 1 by (7.5)b). This case will be treated in (8.2).

Case 1. Q(Z(S)) is normal in P,; ie., (5.1)b) holds. It follows
that P, =G, and P, = G,,,; in particular, Z_,, < Z(G,, ;) and most
importantly,

E,. issubnormal in Cy(Z,,,).

[e3

This case will be treated in (8.6) and in Sections 9 and 10.
(7.6) The following hold.:

@ 0Q,NnQ,,,isnotnormalin G, ,.

() OLXE,.,) & Q,; in particular, E, < {O,(E,, ;)%).

© 0,NQ,., %0, forevery u € Ma + 1) with (Q,,G, N G,.1)
=Gyyi1

(d (Cg (Z2,),G,N G, 1) # G,y

Proof. Suppose that O, N Q,., is normal in G, ,. Then O, N
Qui1=0,+1NQ, forevery u € Ala + D).

Assume that b = 1. Then E i1 < (ZG«1) by (3.4). However,
[Qa+1’ Za] =< Qa N Qa+l and [Qa N Qa+l7 Z ] 1. Hence [QaJrl’ a+1]
= 1and G,,, is not of characteristic 2 type, a contradiction.

Assume that b > 1 and choose wu = a +2. Then Z,. <Q,., N O, .,
<Q, and [Z,,Z,]1=1 Hence by (75), o' € (a+ 1 a' — 1€ a“,
and Z,,, = Q(Z(G,, ). Since Z, < Q,._, but Z, « Q. we conclude
that O, « Q... Thus (3.4) gives O,(E,, ;) < Q, N Q.. Now (3.5) yields
[Z, E, ,]=1and Z, < O,G) = 1, a contradiction. This shows (a).

Suppose that O,(E,,,) <Q,. Then O, N Q,., is normal in G,
which contradicts (a). Hence O,(E, ;) « Q, and (3.4) gives (b).

Suppose that 0, N Q,.; < Q, for some u € A(a + 1) with (Q

G,..7=G,.,. Then O, N Qa+1 Q, N Qg since p € %, Hence
0,NQ,,,isnormal in G,,, which contradicts @.
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Note that Q, N Q,,, = Co_ (Z,) by (7.4)c). Hence (a) implies (d).

(71.7) Let C = Ciz(Q(Z(S)). Suppose that E,,, is subnormal in C,
0,(C) < S, and C is of characteristic 2 type. Then the following hold:

@ [Cs(Z), E,O(E, D] <Q,.
(b) Cs(V, . 1) is a 2-group.
(© E, «Cifb>1;inparticular, Z, + Z,,, if b > 1.

Proof. Note that Z,, , = Q,(Z(S)) since E, ., < C. Moreover,
O,(E,. ;) < 0,(C) by the subnormality of E,, ,. This gives
[C(Z,),0,(E, )] <0,(C)NC(Z,) <Cg(Z,). Hence (7.4)(c) gives
[Ci(Z,),0,(E,, )] <Q,, and (7.6)(b) and (3.4) yield (a).

Let E = O%(Cs;(V,. ). By (8, [E, E,] < EQ,. Since E = O*(EQ,,) we
conclude that E is normal in {E_,,G,,,> = G, and O,(E) = 1. On the
other hand, C;(V,.,) is of characteristic 2 type since Cs;(V, ;) <C.
Hence E = 1 and C;(V,,,) is a 2-group.

Suppose that b > 1 and E,. < C. Since E__, is transitive on A(a + 1)
we getthat Z, < Z_,,0,(E,, ;). Moreover O,(E,, ;) < O,(C)since E_, ,
is subnormal in C, and Z,, , < Q, by the minimality of b. Hence
Z,<(CNQ,N0,(C)and [Z,, E, ] < O,(E,). Now (3.3) gives Z, < Q,.,
a contradiction.

(78) Let 6 €T, A € A(8), and G5 = G;/Qy, and let A be a subgroup of
0, with A & Qs and ®(A) < Qjy. Then there exists x € Gy and A, < A such
that for L = { A, A*) the following hold.

@ 1A4/4,0=2,x€ L, x* € Q;s, and Ay = A N O,(L).

(b) (L,G,NG,;>=G,andL =D,,. X A,

(c) Any two elements in Z} are interchanged by an involution of L.

(d) L =<a, A*) foreverya € A\ A,.

() For T € Syl,(Gs N G,)) either B(T) < Q5 or O*L) <
[O*(L), B(T)].

Proof.  Apply (3.6).

8.

In this section we assume Hypothesis 2 and set G = (P, P,). We use
the notation concerning T = T'(G, P,, P,) as it was introduced in Section
7; in particular, S < G, N G, ,. The additional hypothesis for this section
islZ,,Z,]1+ 1.
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Notation. R =1[Z,,Z,], G, = G;/C;(Z,), and J(Z,, ) is defined as
in Section 1.

(8.1) The following hold:

@ 12,/2,0Q0,1=1Z,/Z, N Q,l

(b) EQJEZQ,E) =E, X XE andZ,=Vy X - XV, where V, =
C,(E,J(Z,,8), E, = SL,(2),V,=1[Z,,E], and |V| = 4, fori > 1.

© R=(RNV) X X(RNV).

Proof. 'We apply (7.4)(c) and (d). Since the configuration is symmetric
in « and «’ we may assume that

(*) |Za’/Za’ r\Qoz| lea/za mQCY/|'

Hence Z, <J(Z,,S) and (1.5)e) implies equality in (*). Thus (a) holds.
Claim (b) is a consequence of (1.7), and (b) implies (c).

. (8.2 Suppli)se that Z,., « Z(G,.,). Then Gs=3, or G;=C, X 3,
or every 6 € T'.

Proof. By (7.3)c), Zs « Z(G;) for every § € T. Hence [ P;, Q,(Z(S))] #
1 for i = 1,2. Now (6.3) yields G5/Q;s = D, 1, and G; = SL,(2).

Pick « —1 e A(a) such that {G,_, N G,,Z,)=G,. Assume first
that Z,_, < G,.. Then (7.1)(b) and (7.4) give b > 1; in particular, V,_, <
Qa+l'

Since Z,_, <Z,0, wegetthat[Z, ,,Z,]<R,and Z,_,Z, is nor-
mal in G,. By (7.3)X¢), C\(Z,_,Z,) = Q, N Q,_,and thusalso 0, N O, _,
is normal in G,. It follows that Q,. ., € Syl,(E,Q,.,). Since
0,({G,,G,.») = 1 no nontrivial characteristic subgroup of Q_,, is nor-
mal in E,Q,, . Let U be a Hall 2’-subgroup of G, ,. ThenV,,, = (ZY),
and (2.5) implies that V., is normal in G,, which contradicts
0,(G,.G,, ) = 1.

Assume now that Z,_, <« G,.. Then (a« — 1, @’ — 1) is also a critical
pair. With the same argument as above there exists o — 2 € A(a — 1)
such that {G,_, N G,_,Z, _,» =G,_, and (e — 2, @’ — 2) is a critical
pair (here o’ — 2 =a — 1if b = 1).

Set R,=[Z,_,,Z, _;], i =1,2, and assume that b > 1. Then R, <
Z(G,_,) since R, centralizes Z,._, and G,_, N G,_;, and similarly
R, <Z(G).If b>2,then R, <Z,_, <Q,.,and so R, is centralized by
G,. Hence R, < 0,(G,,G,_)), a contradiction.

Assume b=2 Let V,=V.NQ,_ . NQ,i s Then V, =2, .Z, .V,
and |V, /V,| = 4. In addition, [V, Z,., ] =R < Z, < Vyand [V, Z,_,] <
R, < Z, < V,. Hence, V, is normal in G, and V, < Z(V,).

If V, is elementary abelian, then [V, /V;| = 4 and the action of G, on
V./V, imply that 7/ = 1. However, this contradicts [Z,_,, Z,,,] # 1.
Hence ®(1,) # 1. Note that ®(}) < Q; for every 6 € A(a — 1); i.e,
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[®(V,),V,_1]1 = 1. On the other hand, with the above argument there
exists @ — 3 € A(a — 2) such that (a« — 3, @« — 1) is a critical pair and
(Go1 NGy 302y 1) =Gy 1. Thus V, , £ Q, yand <V, 5, Z,, 100,
= G,_,. Note that V, = Z,(V, N Q,) for k € A(a — 1) and thus ®(V;)
=o(,n Q) <Q, for v A(k). It follows that [®(V,),V,_,] =1 and
(V) is normal in (V,_,,G, N G,_,) = G,_, and G, a contradiction.

Assume finally that b =1 Let §€{a— 1, a}. Then Q;=(Q, N
Q,._1)Zs and so ®(Q;) = ®(Q, N Q,_,). This gives ®(Q;) = Land Q5 =
[Zs, E5] X Z(G;). By (8.1), [Z;, E5ll = 4 and so G;/Q; = SL,(2). Since
Z(G, ) <Q,, but Z(G,) n Z(G,_,) = 1 we also get |Z(G,_,)| < 2 and
with the same argument |Z(G,)l < 2. Now (8.2) follows.

DEerFINITION. Let H be a finite group. Then H is of fype L4(2) resp.
Sp,(2) provided H contains two subgroups G, and G, ; such that G, N
G,.,=SeSyl(H), 0,G,G,.))=1 and G, =G, , =3, resp.
C, X 3,.

Note that L,(2) and Sp,(2) are examples for groups of type L,(2) and
Sp,(2), respectively.

(8.3) Suppose that Z,, , < Z(G,, ;). Then O,(E,) £« Q1.

Proof.  Assume that O,(E,)) < Q,,,. Then Q,., € Syl,(E,Q,. ) By
(3.2) and (3.3) there exists F e Z(E, Q,,,, Q,.1) such that {(F,G, N
G,..> = G,. Hence, no nontrivial characteristic subgroup of Q_,, is
normal in F. Now (2.4) gives [O,(E,), O*(F)] < Z,. This implies that
O,(E,) < Z, and then O,(E,) = Z,_ since by (7.3Xd), Z(G,) = 1. How-
ever, now again Z(G,) = lyields Q, = Z, = O,(E,).

An application of (2.2) and (8.1) to Z, and E,J(Q,.,) resp. E,J(S)
shows that J(S) =J(Q,.,) =B, but now B < Q,_,,, which contradicts
(6.2).

(8.4) Let Z=C,U(Z,, S)). Suppose that Z,,,, < Z(G,,, ;). Then Z is
normal in G, ,

Proof Let S, =<(Z%+1) and V* | = (Z%+1), We may assume that
V¥ .+ Z. Note that Z(G,) =1 by (7.3Xd) and «’ € a® by (7.4); in
particular, b is even. We now apply (8.1). Then S, = J(Z,, S), and with the
notation given in (8.1):

1) E,S,=E, X XE, E, =SL,2),
@ Z,=Vi XXV, V,=[ V,E] and V)| = 4
3 C,(S) =

a
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Since S, is a normal subgroup of G +1 in Q,,, we get from (2) and (3)
that [V, ,, S;1=V*,and [V% |, S;] = 1; in particular,

@ Vi, <Q,andV:i NZ, =Z.

According to (1) and (2) we may assume that [V}, Z,.]1 # 1;i.e,V; £ Q..
We apply (7.8) with § =a’, A =a’' —1,and A =V;:

(5) There exists x € G,, and L, < G,. such that for a’ + 1 =
(a’ — D%

(i) xeLyand L, =<V, V) and
(i) (L, G, NG, .)=G

Let L = L,Q,. and O = 0,(O*(L)). Note that Q" | h € G,. N G, )
= O,(E,) and that by (8.3), O,(E,) « Q... It follows that O £ O, . .
We now apply (7.8) with § =a’ +1and A = a:

(6) There exists y € G,.,, and L < G,.,, such that for a’ + 2 =
a'r:

(i) yeLand(L,G 21 NG, ) =G, ., and

(ii) either L = VE Q4.0 and [VE L /VE NG, ., =2 or
= <Q Qa +2> and V;y*Jrl = Ga T2t

Define Z, =Z and Z; , =Z; .., where (o, a + D" = (5, )) and
Vi = <ZA s | A € A(8)) for s (a+ 1D Let D<Z,.,, , ., Such that
[D,V,]1<Z,. Note that D < V%, and so [D,V['] = 1. It follows from
() that D < V*_,Z,. N Va*,ﬂza, and [D,V*,]1= 1. Let D* = (D%),
Then also D* < V* _,Z . NV*, ,Z  and [D* 0*L)] < Z,. This im-
plies that [D*, Q] <V}, , NnZ, =Z, ., ,, by (4. On the other hand,
D*Z,, and thus also [D*, Q] is normal in L. Now [D*, Q] < V%, and
[V*H, V] = 1 imply that [D*, Q, O*(L)] = 1, and the 3-subgroup lemma
gives [D*, 0] = 1. Hence by (4) and (6) [D, L] = 1, and (6.4) and (6) yield
D < Z, ., We have shown:

MWD<Z, ,,,,and[D,V]<Z, , then D<Z, .,

Assume that b = 2. Then, according to (1) and (2), there exists u €
A(a’) such that E. <V+1,I/,L> Since by (4), [V}, V,* 1< Z(V,. ) N
ZV,) we get that [ SV Ell =1, and Z(G,) =1 implies that
[VQ*H, V¥] = 1. It follows that V* < Q,,, since V%, ; # Z, and thus by (1)
and (2), [Vu*, V1< Z,. Hence, VM"‘ZQ, is normal in G,.. Now, as above for

(D), [V, O,(E, )] = 1 which contradicts (8.3). We have shown:
8 b>2
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In particular, (8) implies that [Z,,,Z,,.,,] = 1 and thus [V}, Z,., Z,,. . ,]
= 1. Hence, by (1) and (2), Z,.,, N G, normalizes V. It follows that
[Zy 10041 NG, V1< Z,., and (7) yields

® Z, 5410 G,=Z, 4 inparticular, Z,. ., £ G,.

Let R, =1[Z,,, Z,.,) Then R, <Z, ., ... N G, by (), (2), (3),
and (8). Hence, (9) gives R, <Z,.,, and by (5, R, centralizes
(Gyry1, L) =(G,.,,G,). Thus R, = 1. We conclue that Z,, 2 S sz
< G, On the other hand, by (9), Z,.., £ O, and thus [ Ly o]
# 1.

Let R, =[V:5 NG, . » Z, . ,]N Za,%a +1. As for R2 we get that
R, =1 Now (1), (2), and (3) imply that [V*,, N G,.,,,Z,.,,] = 1. Since
[Va*ﬂ, ++2] # 1 we conclude that V ‘. % G,,, and by (6),
Vi 1/Cys (Z,, )l = 2. Now (1.2) gives |Za 22/ 2y N Q. 4l =2 To-
gether with (9) we get |Zyr 42 are1l = 4,and (1), (2), and (3) imply |Z,,| = 4
and G, = SL,(2) \ C,.

Assume that [V;‘H, wi2NQO, . 1=1 Then by 6), Z, NZ, ., =
Zoi2 N Qi It follows that Z,., ; ooy <[Z,15, Q1] <Ze i N
Q... since Q, ., normalizes Z,. N Z_. . ,, but now (9) yields Z,,, , .,
=Z,.,=V3,, acontradiction.

Assume that [V*,,Z,.,NQ,.;1# 1 Then §=0,0,., Let A€
A(e + Dsuchthat Z, .., £ G, ,andletU=C, ., (Z, ,.,) Then
4<|Uland by 6), U< Z, N Z .+ . However, now Zyio a1 <lZ, N
Z,. 5,0, or Z.nN Za,+2 =Z, 74 +1 Hence, in both cases
Zyiso a1 Ly MNZyyg <Zy N Qyyy aNd Zyoyy gy =Zypq, @
contradiction

(8.5) Suppose that Z,,,, < Z(G,, ,). Then G,/Q, = SL,(2) and b = 2.

Proof. Let Z=C,(J(Z,, S)). By (7.3)(d) and (8.1), |Z,| =|Z/?, and
(8.3) gives O, £ Q.. ,. Hence, (8.4) yields [Z, 0%(G, D]=1, and (6.4)
gives Z =Z2,,,. From (8.1) we get that |Z | =4 and G, = SL,(2); in
particular, by (3.3), G,/Q, = D,.;». Now (7.7)(@) shows that either G,/Q,,
= SL,(2) or O,E,, ;) < Q,. In the second case O, N Q. is normal in
G, , which contradicts (7.6)(a). Thus, we have G,/Q, = SL,(2).

Assume that b > 2. Since G, = SL,(2) we get from (8.1) that R = Z =
Z,... The same argument in G,. gives R = Z_._,. Hence {G,,, G, 1)
< Cy(R),but E,_, issubnormal in C,(R) and so O,(E, ;) < O,(C,(R)).

Let « — 1€ Al(a)\{a +1}. Note that V,_, <Q,,, since b > 2.
Hence, conjugation in G, ; shows that

Va1 < V,05(Eq. 1) < V,0,(Cy(R))

[e3
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for suitable u € A(a + 2). Since d(u, @’ — 1) <b — 1we have V, < G,,
and since O,(Cy,(R) <Q, _, wegetV, ,<G,.Nowl[Z,,V, ;]=R
and V,_, isnormal in G,_; and {G,_, N G, Z,.) = G, a contradiction.

(8.6) Suppose that Z,, , < Z(G,,,). Let a—1¢€ Ala)\{a+ 1},
D=0, ,N0,.,, L={0%, 0=04L), and T € Syl,(G,). Then
[D,L]=Z,, Q/D and D are elementary abelian and one of the following
holds:

@ 2°<|Sl<2% Gs/Q;5 = SL,(2) for every 6 €T, and

(@) 0=0,, O,(E)=C, X C,, and Q = O,(E )Xt), where either
t = 1 or t inverts the elements in O,(E,),

@) Qu1=CyYQg0rQgY Qg and O,y NE, = QO
(b) 2° <|S| <2 G,/0, =SL,(2), and G, ,/Q,., = SL,(2) \ C,,
and

(b)) 1Q0/0,(E)| < 4, and OLE,) is special of order 2° with
Coy(T) = 1.

(b)) Voe1=0sY Qg and ¥(Q, 1) = Z,, 4,

(b,) there exists an elementary abelian normal subgroup W of order 2* in
L such that N;(W) is nonsolvable.

(¢ 2" <|S|<2® G,/0,=SL,2), andE,, ,/O,(E,, ) is elemen-
tary abelian of order 3*, and

(c) 10/DI =25, 1Dl = 25 |Z,| = 4 and D = Cy(T) X Z,,

(c,) Q.. is extra special of order 2° and Q/Q N Q, ., is elementary
abelian of order 2°.

(cy) Every Q-invariant subgroup of order 3 in E_, ;/O,(E, . ,) operates
fixed-point-freely on Q,,, ,/Z,. 1, and every involution in QQ, ., ,/Q, ., cen-
tralizes a subgroup of order 2° in Q. 1;

(c,) there exists A € Ala + D\ {a} such that N;(Z,Z,)/C(Z,Z.)
= [4(2).

Proof. We apply (8.1) and (85). Then b =2, G,/Q, = SL,(2) and
|Z,| = 4; in particular, Z(G,) = 1. We choose the following additional
notation:

A=V, N0, A=V,inQy V=Vii/Zy,,

Note that £, < L and that D is normal in G,. Note further that
LnS=V,,0sinceV,. ., «0Q,andthat[V,, ,,0,,,1=2Z,,,. It follows
that

(1) [D,0%(L)] =2, Q=AAD,[0,Q,.,]1D = AD, and ®(Q) < D.
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Let D, < Cp(V,,,) such that [D,,S] < Z_,,. Then by (1), D,Z, is
normal in G,. On the other hand [Q, D,Z,] < Z,,, and so D, < Z(Q)
Now Z(G,) = 1yields D, < Z, and then DO < Z,.,. Moreover, |V, , /A
=2and [C,(AD),V,, ]l <2 also gives C,(A) = Z,. We have shown:

@ CpVo.) =2Z,.,and Cp(AD) = Z, = Cp(A).

Since [Q,.,V,.11=2Z,,, we have [®(D),V, ;1= 1. Now (2) gives
d(D) < Z,,,. Since (D) is normal in G, we get

3 ®(D) =1
An easy consequence of (1) is

@4 fxeQ, .,\Qand U<Q, ,NQ, such that [U, x] < D, then
U<D.

Assume that A < D. Then by (1), O,(E,) = Z, and Z(G,) = 1 implies
Q,=Z72, Nowb = 2qgives 0, < 0Q,,, and Q,,, = S, a contradiction.

Assume that there exists 4 N D <A, <A such that 4, £ D and A,
operates quadratically on V. Then by (1.2) there exists x € V., \ Q, and
A, <Ay such that [4,,x] < Z,., and |4,/A4,| = 2. Now (4) implies that
A, < D. We have shown:

(5) A« Q,.,, and no noncyclic subgroup of 4Q,.,,/0,., operates
quadratically on V.

Suppose that |4 /4 N D| = 2. Then by (1), |Q/D| = 4. Moreover, since
[D, Al < Z,_, and D is elementary abelian we get that |[D/D N Z(Q)| <
2. Now Z(G,) = 1gives DN Z(Q)=Z, and |[D/Z | < 2.

Note that § = 0,0,., and s0 Q,/Q, N Q,.1 =5/Q,, =S Since
|A] = 2 we get 4 < Z(S). On the other hand,

0,=Co(T)A(Q, N Qus1) for T € Syl,(G,)

and G, (T) NA = 1. By (3.4), Z(5) is cyclic and thus Q, = Q, IS/Q,, .,
=2, and IS|=2%if D=2Z, and |S| = 2%, if |D/Z,| = 2. Assume that
V...l <2% Then G +1/Qa+1 =SL,(2) and V., =C, Y Qg and (a) is
easy to check since V,,, N Q, = C, X C,.

Assume that |V, .| = 2°. Then V 1 = Qg Y Qg since D is elementary
abelian of order 2® in V,, ;. In particular 5 does not divide |G, ;| and so

G,.1/0,.1 = SL,(2). However, now there are only three conjugates of Z,
inV,,.,and |V, | < 2% a contradiction. We have shown:

(6) If |A/A N D|= 2, then (a) holds.
From now on we assume
(7) |A/A N D| = 4.
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Choose a € A\ Q,,, such that [V, a]l is minimal. Then by (7.8) and
(3.6) there exists y € G, , and E = (A, A?) such that for A = a”:

(i) y€E,

(i) |[A/ANG|=2anda&AN G,
(i) (E,G,NG,,,)>=G,,.,

(v) [ANG,El<OQ,,.

Let V, =<Z2), V, = C,  (O*(E)), and Y = [0, ,, O*(E)]. Note that
by (1, Q,.1 =V, D andthat[D, Al1<Z, , <V, Hence (5 gives

® Y<[Qu1 Epril <V i1

Suppose that V; « Q,. Then we may assume that Z, « Q,. Since
([ANG,,Z]<Z,,, <D we get from (4) that 4 N G, < D. Hence
|A/A N D| = 2, which contradicts (7). We have shown:

9@V =<9,

Note that [V, N D, Al < Z,_, N V. Since by (iii), Z, is not normal in
E we get that Z,_, « V, and [V, N D, A] = 1. Now (1) and (3) yield
Vo N D < Z(Q) since (V, N D)Z, is normal in L, and Z(G,) = 1 gives
VonND<Z, Hence, Z,_, £V, implies:

(10) V,NnD=2,,,.

Since [V, N Q,, Al <V, n D we get from (10), [V, N Q,, Al < Z, .4,
and by (iv), [V}, A N G,]1 < Z,,,. Thus, we have

an W,n0)ANGl<Z, ,and[V,nQ,, Al<Z,.,.

From (11) we get that A acts as a cyclic group of order 2 on V,/Z . ;;
ie, [V, A, A1 < Z,, . On the other hand, by (9), [V}, 4, Al < Z,_,. We
conclude that

[V,,A,A]1<Z, ,nZ, ,=1.

Hence (2) yields [V, A1Z,,,, = Z,. This gives
(12) |V,l=2%and V, <Y; in particular, E/Cp(V}) = SL,(2).

Suppose that a induces a transvection on V/C,(O*(E)). Then Y =V,
and V., = V,(V, NV, ,); in particular, by (9), V, NV, ., £ Q,. Hence
(11) implies that [V,,, N Q,, AN G,1 < Z,,,, and by (7),

V/Cp(AN Gl =2.

Now the minimality of [V, a] shows that [V, a]l = 2. Since [Y,al £ Z,,_,
we get [V, NV, ,,al <Z, , which contradicts (4) since a ¢ D. We have
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shown:
(13) a does not induce a transvection on VV/C,(O*(E)).

Assume that V, « Q. Then by (), [V,, O] < [V}, AID < VD and thus
Qi1 =VoD and V.., Al < Z,_V,. This contradicts (13) Hence we
have:

14 V,<Q,and Y £ Q,.
Suppose that |V /C,(a)l = 4. From (12) and (13) we get

|Y/V1| = |V1/Za+1| =4

in particular, |Y| = 2° and E/O,(E) = SL,(2). Moreover, by (11) either
[YANG]l<Z,, ,or[Y, AnG,lZ,. , =V, The first case contradicts
(4) and (7) since Y £ Q,. Thus, we have [Y,A NGlZ,., =V, Now
(11) and (14) show that A N G, is quadratic on V/, and (5) yields that
|lANG,/Dl=2and |[A/A N D| = 4.

Again by (11) and (14), |V/C,(A)| =8 and |[V/C,(x)| =4 for x €
A \ Q.. Hence (1.6) shows that G, ,/Q,., =SL,)\C,and V|, =

; in particular, V, ., = Qg Y Q.

Slnce AA is normal in G, we get that A4 = O,(E,), |0,(E,)| = 2°, and

C,{T)=1for Te Syls(G ). By (14), V, < Q,, and by (1) and (10),
VonQ, .=2,,,and V,/Z,., is elementary abelian. Since V,/Z_,, is
isomorphic to a subgroup of D, we conclude that |V,/Z, | <|A/A N D|
= 4. To prove (b) it remains to prove (b,).

Let W=[V,, E,] Since |V,/Z,| =2 and C,(T) =1 we get that W is
elementary abelian of order 24 In addition, E,/C, (W) =

Since [V, W] =1 we have that [W,E] <V, , and (WE> NV, <

Cy (V) =V, Hence E < Ny(W) and E/CE(W) 2,. Now E fixes
Za+1 in W while E, operates fixed-point-freely on W, and (b,) follows. We
may assume now:

(15) V/C,(x)| = 8 for every x € A\ Q. ;.

Assume that V;, « D. Let v € V,\ Q,_;. By (12), [v, A] < Z,_, and thus
(v, V, 12, ,/Z,_,| < 4. This contradicts (15). Hence we have:

(16) V, <D.

In particular, by (1), V/; is normal in L. Now (c,) is easy to check.

Let V, = (Y " D)®). Then[V,, A N G,] <V, <D, and by (4) and (7),
V, < Q,. Moreover [YN Q,, Al <YND <V,, and A4 induces transvec-
tions on Y/V,. We conclude that |Y/V,|=V,/Z, .| =4

Let Y=YZ,,,/Z,,, and b€ (AN G)\Q,,, Since Y/Cy(b) is
E-invariant we get from (5) that |Y/Cy(b)| > 2% On the other hand,
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[Y,b]/1V,,bll < 4 and [V,,b] < V,. It follows that [Y,b] < 2% Now
[Y/Cy(b)l = [Y, bl implies

2* =1Y/Cy(b)I =Y, b]

and [V, b]l = 4; in particular, |Y| > 28,

From (11) we get that [Y, b] = [V, b] since by (14), V, < Q, and by (10),
VoND=Z, , Hence, the minimality of [V, a] and the fixed-point-free
action of O2(E) on Y give

A7) |Yl=2%and [V,al =[Y,al = 2*

By (10), V,n D =Z,,,. Hence [A,V,]<Z, , and [V, _,, w]
Z, /Z, .| < 4forevery w e V,. Now (15), applied to V,_,/Z_,_,, yields
Vo < D and thus V, = Z,, ;. We have shown:

(18) Q41 =V, =Y.

Now (7.3)(b) shows that V., is extra special. Since [V,, A] < D and
[D,A] < V, the action of E also gives [V, ., N Dl = 2°and |V, ,/D| = 2%
in particular, | A] = 23. Moreover, as seen before,

19 V/C (x| =|C,(x)| =2 forevery x € A\ Q,, ;.
Since Cz_ (x) operates faithfully on C,(x), (19) and (12) imply
(200 C; () =U, < C3 X C, forevery x €AN\Q, ;.

Note that [A] = 2° Let A,,..., A, be the subgroups of index 2 in 4
such that E; = Cp (A;) # 1. Then

E,,=<{Eli=1,....,n)

and (20) implies that
(21) E,_., is elementary abelian and |E,| = 3.

In particular, there exists z € A which inverts E_,,. Since z is in 3
subgroups of index 2 in 4 we have n < 4. In addition, an easy argument
shows that E,,, = E, X -~ X E,. Hence § is transitive on {E,,..., E,}
and n = 2 or 4. The first case contradicts |A| = 2%, and (c) is proven.

DerFINITION. Let H be a finite group. Then H is of type G,(2)', Q5 (3),
and Q;(3), respectively, if H contains two subgroups G, and G, ; such
that G,NG,., =S € Syl,(H) and 0,KG,,G,,,)) =1, and G, and
G, , satisfy (8.6)(a), (b), and (c), respectively.

a

Note that G,(2), Aut(Qg(3)), and Aut(Q; (3)) provide examples for such
groups H.
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9.

In this section we assume Hypothesis 2 and G = (P, P,), and we use
the notation concerning I = I'(G, P,, P,) as introduced in Section 7. The
additional hypothesis for this section is [Z,, Z,.] = 1. According to (7.5)
this gives Z,, = Q,(Z(T)) < Z(G,) for T € Syl,(G,) and Z(G,) = 1.
Hence, as mentioned in the remark after (7.5), it follows that E . is
subnormal in C,(Z,).

(9.1) Suppose that b = 1. Let V., = {((Z, N Q,)°). Then the following
hold:
@ G,/0,=SL,(\C,and G,./Q,. = SL,2).
) I1SI1=2",0,=2,, and V} = Qg Y Q.
(¢) There exists U < V% such that \U| = 23 and N,(U) /U = Ly(2).
Proof. Since b =1 we have o' =a+ 1 and Z, £ Q,.,. We apply
(7.8) with §=a+ 1, A=a, and 4 = Z_. Then there exists x € G,
such that for E =<Z_, Z})and a + 2 = a™:
(i) x€E,
i) 1Z2,/Z, N G,,,l =
(i) (E,G,.,NG)>=G,,,,
(IV) [Za N Ga+2’ E] = Qa+l’
v E=<a,Z,,,) foreveryacsZ \G,,,.
LetV=Z, NG, NZ,.,nGland V,=Z NZ,,, Then

1) Vy<Z(E)and[VQ,.,, El1<V, and
@ vnQ,=VnZzZ,=2,nG,.,=Cy,(a)foracZ,\G,,,.

By (1), [Q, 1, OX(E)] < Cy, (Z(V)) and by (7.5)(b), Q,(Cy,(Q,.1))
= Z,.,- Hence [C,, (0O, ), O*(E)] = 1 and the P X Q lemma gives

3) [Z(V),0%E)] = 1.

On the other hand, |[V/V,| < 4 shows that V' is abelian since V is
generated by involutions. Hence, (3) gives

@) V/V,l > 4; in particular, [V/V N Q| > 4.

Let G, =G,/Cg (Z,). Assume that X is a subgroup of V" such that
X #1and [Z,, X, X]= 1. By (1.2) there exists X, < X with |X/X,| =2
and C,(X,) £ Z, N V. Now (2) and (v) imply that X, <V, <Z, and
X = 1."We have shown

(5) No noncyclic subgroup of ¥ operates quadratically on Z,.
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For X < V define as in Section 1,
m(X) =1Z,/C, (X)X,

Note that m(}”) = 2 by (ii) and (2). Suppose that there exists 1 # X < I/
such that X # 1 and m(X) < m(V). By (1.5)b) we may assume that
|X| = 2 and thus |Z,/C, (X)| = 2. However, now [Z,, X, ] = 1 and by
®3),[Z,, X] < V,.Thus (v3 yields X < V, and X, = 1, a contradiction. We
have shown:

(8 m(Y)>m(V) for every 1 # Y < V; in particular, no element of
V# induces a transvection on Z,.

Let F=I[E, V] W=I[Z, F], and Y, =C,(F). Then (5 and (6)
together with (1.6) imply:

(7) FV=SL,(2) X SL,(2)and [W|= 2% in particular, [V/V,| = 2* and
W/ WAV =2

Thus we have for x € '\ Q,,
W/Cy(x)=12,/C, (x)|=4 and (W, x]1=1[2,,x].

In particular VN Z,=1[Z,, xIV,. This gives [Y,,x] =1 and Y, <V}
by (3). Assume that Y, # 1. Let Y=Y, N Z(B). If J(S) <Q,, then
Y=Y, # 1 If J(S) £ Q,, then (2.2) shows that Y # 1.

Now (6.4) and (v) give Y=Z_, ,. Hence (F.G,NG,,,» =G, <
C,(Z,,,), a contradiction. We have shown that Y, = 1 and thus:

® 1Z,|=2G,=SL,(\Cy,and Z,NG,,, =Z,NQ, ..

By(®)and (8),V, = Z,,,. LetV, < Q,,, be maximal with [V}, Q,,,] =
Z,.,and [V,,E, 1=V, Thenby (U, [V, nV|>8and V, £ Q,. Since
[V,,V]1=1and V; is normal in S we get from (8) and (3.4) that

© V, <V0Q,, 1+ V,/C(Z,) <4 and [E,,V,] =

Again by 34), E,,, =[E,,, Z,]. Note that [Q,,Z, N V;]=1 and
1z, N V,/Z,,,| <4 Hence (13) yields that [V,/Z, .| <2* and
10.00+1/Qus1Z,1 <2 or that [V,/Z, \|=2% and E,. ,/Cy (V) is
extra special of order 3%,

Assume first that there is a noncentral chief factor of G, in Q,/Z,.
Then[Q,,V;1 &« Z, and thus |V, /Z,. ;| =2%and |Q, N V,/Z, N V)| = 4.
Hence (8) and (7.7)(a) imply:

_(10) 1Q0,/Cl=2* where C is maximal in Q, with [C,E,]=2Z
Vil=4,and [Q,, V,V]I< Z,.
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Now (10), (9), and (5) imply that Q,/C and Z, are nonisomorphic
G,/Q, modules. Since Z(G,) = 1 this shows that C = Z, and |Q,| = 28,
in particular, E,/Q, = C; X Cyand E, ,/Q,,, is extra special of order
38,

Let D € Syl,(G,) and let D* be a subgroup of order 3 in D with
V < N;(D*Q,) and Q = C, (D*). Since D* operates fixed-point-freely
on Z, we get |Q| = 4and Q m Z, = 1. Hence QZ, is elementary abelian.
On the other hand, QZ, is normal in Q. V, and thus [V,,0Z,,0Z, 1= 1.
It follows that QZ 6 centralizes Z(E,,,/Q,.,). However, then Q <
Z,0,.,and [Q,V,] < Z_  which contradicts the action of D*IV'on Q,/Z,.

We have shown that [Q,, E,] = Z,. Now as above Z(G,) = 1 yields

1) Q,=27,.

In particular, we conclude from (8) that |S| = 2" and G,/Q, = SL,(2)\
C,. Now [V, N V|=8and V= Q, Y Qg follow. In particular G, /0, .,
=SL,(2)and V =<{(Z, N Q,,)%1). It remains to prove (c).

The elements of order 3 in E_,, operate fixed-point-freelyon V/Z_, ,.
Hence, there exists an elementary abelian normal subgroup U of order 8
in E,,, different from VN V; such that [U, Z,] < U. Clearly N; (U)/U
= 3,. Since U £« V,Z, we also have that [E_,U] # E, and Ng, (U)/U~
3,. It follows that N, (U)/CG(U) L,(2). Since CH(U) < CH(ZO[H) and
C,(Z,,,) is of characteristic 2 type, it is easy to see that C,(U) =

DEFINITION. Let H be a finite group. Then H is of npe QF(2) if H
contains two subgroups G, and G,. such that G, N G, = S € Syl,(H)
and 0,(G,,G,.») =1,and G, and G, satisfy (9.1)(@)—(c).

Note that Q}(2) [= 2, = Aut(L,(2))] is a group of type Q7 (2).

(92) Let § € (a)’ and A, u € A(S). Suppose that |Z,/Z, N zZ,|=2
and {Q,,G, N G;) = G;s. Then G,/Q, = SL,(2) and |Z,| = 4.

Proof. After conjugation we may assume that § = a« + 1 and A = a.
Let L =<Q,,0,>and Q=0,,;NQ,. By (76)©), Q « Q,. Thus, Q
induces transvections on Z,_. We apply (1.7).

Let X=[Z,,0] Then X <Z,n Z, N Z(B). Since <Q,,G,,; N G,)
=G,,, we get from (6.4) that X < Z_,,. Now (1.7) yields |Z,| = 4.

Hence G,/C;(Z,) = SL,(2) and E,/O,(E,) is cyclic. Now (7.7)(a) yields
Qa = CGO((ZDL)'

(9.3) Suppose that b > 1. Then G,/Q, = SL,(2) and |Z,| = 4 for every
A€ af
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Proof. It suffices to prove the claim for «. Recall that Z(G,) = 1.
According to (9.2) we may assume that

@ lz,|> 4

We apply (7.8) with §=a’, A=a’' — 1, and A=V, ,. Then there
exists x € G, such that for E =<V, ,,V.*, ;> and u = (a' — D™

(i) xe€ O%E).

(i) Z,« G, and |V+1/ w1 NGl =

(i) (E,G, N G, ) =

(iv) E ={a, VH} foreveryaeVaH\G
w [EV,,;nG]l<0O,.

By (7.5Xd), V. , operates quadratically on V., and vice versa. Since Z,
is not normal in G, and [Z,, V\, ;] = 1 we get from (i), (iii), and (iv) that
Z, % Q..

Note that by (7.5)Xd), [Z,,Z,NG,, Z, NG, <IV,,Z,NG,]=
Hence, by (1.2) there exists W < Z, N G, such that |Z, N G,/W| < 2 and
C, (W) £« G,. Now (i) and (iv) |mply that W<Z,n Z _,and W<Q,.
Together Wlth (1) and (9.2) this gives

(2_) z,Nn0,=2,nZ2,_1,12,nG,/Z, NQ,|l<2 and Z, £ G
particular, V. « O, 1.

We now apply (7.8) with 8— a+l, A=a+2 and A =1V,. Then
there exist y € G,,,, E =<V, V"), and i = (a + 2)” such that (|) v)
holdfor (y,E, a’, i, + 1, @ + 2)inplace of (x, E, a + 1, u, @', @’ — 1).
Moreover, by (7.8) and (6.1) we may also assume that

(3) 0X(E) < [0XE), B(T)], where T € Syl,(G,,, N Gy).

The same argument as above with (, w) in place of (u, o) shows that
Z; 4« G,and |Z; N G,/Z; N Z,,,| < 2. Hence, without loss of generality
we may assume that u = «. This gives together with (2) and (9.2):

»Iz,/z,nNnG,l=1Z2,nG /2, NZ, ,|=12,/Z,"G,|=1Z,N
G,/Z,N Z. ,l=2and O%E) < [0 O*E), Bl

“Let R, =[Z,nG,, Z, NG, 1N Z(B) and C = Cy(R,). Assume first
that R, # 1. Then C is of characterlstlc 2 type since B < C. Note further
thatR <Z,NZ,.,NZ,NZ, _,and thus (E, E) <C.

Let F [O (E) Bl. Then F =[F,B] <E,_,,. Hence, (5.2) shows that
F is subnormal in C; in particular, OZ(E) <F <0,,(C). Since a and
a + 2 are conjugate by an element of O2(E) we get

Za =< Za+202(c) =< (Qoé' N C)OZ(C)’
a contradiction since [Z,, E] is not a 2-group.
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Assume now that R, = 1. Then Z, « Z(J(S)) and thus J(S) £ Q,.
From (6.4) we get that Z, N Z,,, N Z(B)=Z,,, since [Z, N Z,,,, E]
= 1. On the other hand by (4), |Z_/Z, N Z,,,| = 4. Thus, (1.7) yields

|Z,|=2% and G, = SL,(2)\ C,.

Moreover, since R, = 1 we have S = B(ZM N G).

Let R, =[Z, N G,, Z,n G,]and C, = Cy(R,). Note that {E, E) <
C, since R, <Z N sz ﬁZ N Z, _, and that |R,| = 2 since R, = 1.
Because C;(Z, N G,) acts tran5|t|vely on [Z,,Z, N G,]* there exists
S8 <G, such that S8 < C,. Hence, C,, is of charactenstlc 2 type.

If OX(E) < 0, ,(Cy), then as above for £ and C, Z, <Z, ,0,(Cy
and (z,, O2%(E)] is a 2-group, a contradiction. Assume that OZ(E) &

0, ,(C, ) Then [0y, (Cy), Z,] £ 0,(Cy) and thus |Z, N O(Cy)/R,| <
2. Hence, Z,, induces transvections in 0,(Cy)/D(OL(CIR, since O,(C,)
< 8¢ < G,. Now (1.7) gives O*(E) < O, ,.(C,), a contradiction.

Remark. In the following lemmata we will use (9.3) without reference.
Note that (9.3) has the following easy consequences which will be used
frequently.

Suppose that b > 1. Then Z, =2, , X Z,.,, where a —1 € A(a)\
{a+1} and |Z,,,/=2 By (76)b), $S=0,0,.,=G,NnG,,., and
[z, S1=Z2,,,. It followsthat [V, ,,Q,.,1=2Z,,,,and V,, ,/Z ., isa
G,..1/Q,., module. Moreover, by (7.7)(b) this module is faithful.

Note further that by (9.3), E, is 2-transitive in A(«). Hence, all paths of
length 2 with initial vertex in (« + 1)¢ are conjugate under G.

DeFINITION. Let § €T. Then Wy =<V, | X € A(8)) if § € a® and
W, =V, 1d(8,)) =2)if 8 (a+ 1.

(9.4) Let b>1 and peT with d(p, a + 1) = 2. Suppose that there
existt € CGLM(VP), x€[E, 1, tl,and A < V' such that
0 [A1]1<V,
(i) (G,, NG, t)= aHforveA(oH—l)mA(p)
(i) l[V+1,t]Za+1/Za+1l
ThenA <V, ,.
Proof Possibly after conjugation in G,,, we may assume that v = «a.
Set p* = a — 1. Assume that 4 « V., and without loss V,_, NV, ., <
A. We choose the following notatlon T = {(t*)%), F = <Q NQ, 1,1,

0 = O,(0%(F), Gui1 = Goi1/Qui1r Var1 = Vai1/Zosr, and V, =
Ka)V,,,,01Z,. , for a € A.
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Note that ¢t & Q, ., by (i) and that [V,_,,T]1=1, ie, T<Q,_,
(7.4)(c) and (7.7)(b). Now (iii), (1.7), and (7.7)(b) imply:

(1) E,.,T=E, X XE, E, = SLy2), and
@ W Eypl=V, X - XV, V,=[V,,,, E]l and V]| = 4.

We may assume that [E,,, t]<E;; ie, x€E, and O%F)=
(O¥E)|ly €Q,NQ, ,>. Note that V, is F-invariant and V, <
V.., O4F)IZ,, . Since |0/0 N Q.| < 2 we also get that

@ W,/v,nv, <2

Assume that |V, . ,/V, ., NV, /=2 Then V,_,=A and {Q,,t)
normalizes V,,_,V, .. Since G, N G,,, = Q,0,., we get from (ii) that
E, .. <40, t). Now (7.6)b) shows that W,=V,_ .V, It follows that

W, is normal in G, and G, ,, a contradiction. We have shown:
@ W, . /V...nV_ =>4

Suppose first that V, # Z,.,. Then [V,,O*(F)] # 1 and thus V, <V,

since O%(F) = (O¥E,)’ly € 0, N 0, ). Now (3) gives V, = V,(V, N

v, ) and [V,, T]1=[V,T]<V,. It follows that O?(F) = O*E,) and
F/OZ(F) SL ,(2); in particular,

B) V,=V,.
Since Q,NQ,_, is normal in Q, and § =0, we conclude that

0,N 0, , normalizes E, fori=1,...,rand T<Q,NQ, , <TO,,,.
Now [V, _,,T]= 1 gives

[Va—l NVei1 QN Qa—l] = [V:x—l NVes1, QuNQy1 N Qa+1] =1

since Z,_, NZ,. ,=1.
On the other hand, V,,_, NV, ., isnormal in G, and O,(E,) < {(Q, N
Q,_ )% It follows that [V, _, NV, ., 0,(E)] = 1, and (7.5)(c) yields

©® V., 1NV =2,

Thus, (3) and (5) show that Z, <V, = V;, and V,,, = V; since O*(F)
is normal in E_, ; in particular, G,,, = F and |V, ,| = 8. This contra-
dicts (4).

Suppose now that V, = Z_, , for every a € A and thus

™ [4,0l<Z,,,.

If Q«£Q,, then 4 < Vaﬂ, which contradicts the assumption on A.
Hence 0 <Q,. Let 0* =N, (0, N Q.. and O,y = O, /0"
Then 0, 1N Q11 =0,-1N 0, NQ,.1 <O(F)andso O, ; N Q4
< Q*. It follows that [Q,,, N O, O, N Q,_,1=1. Hence |Q,,,/0,.1
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N Q,| = 2 implies that F/C.(Q,,,) = SL,(2). However, C.(Q,,,) nor-
malizes Q,., N Q, and thus by (7.6)(c) and (1), C.(Q,,,) is a 2-group.
Now F/O,(F) = SL,(2) and O*F) = O*E,). As above we get that
0.NQ, 1 <70,y and [V, NV, O, NQ, ;1 =1and then V, ,
NVor = Z,.

Since 9, N Q,_, < TQ,,, we also get that

[A’Qa N Qafl] = [A'Qa N Qafl N Qa+l] < Zafl'

and by (7), [4,0, N Q,_, N OQ,.,]1Z,., is F-invariant. Hence [4, 0, N
Q.1 =1 since by (ii), Z, is not normal in F. On the other hand,
Q. 1/0, N Q,_,1=2and thus |4/C(Q,_)| < 2; in particular, 4 =
z,C[(Q, ) and C(Q, )+ Z,_, since A+ Z,. However, Z, <A <
V-1, E,_11Z,, and by (1) and ), C;y,  r (Q._ 1) =Z, ;. We con-
clude that

|CVQ_1(Q01—1)/ZO(—1| = |CVH_1(QD(—1)[I/D(—1’ Ea—l]/[I/a—ll Ea—l]'
= |CA(Qa—1)[Va—1l Ea—l]/[Va—b Ea—1]|
= |CA(Qa—1)/Za—1|-

Thus C,(Q,-,) =Cy, (Q,_and A =Z,C, (O, ).

Now G, N G,_; < N;(A). Hence {Q,, F) and thus E,,, normalizes
AV, . Let V¥ =[Ka)V, ,,0,(E, )DIZ,, , for a € A. Then, as for V,,
Ww*/v¥nv,_,<2and V¥=2,, 0or Z, <V* If Z, <V* then
v =V, ., E, ;] and [V, ,/V... NV, _;| =2 which contradicts (4).
Thus, we have [A,0,(E, . )1 <Z,,, and A <V, , since by (7.6)b),
O,(E,.,) « Q,, a contradiction.

(9.5) Suppose that b > 1. Lett €V, .\ Q, such that [V, t1Z,/Z,.
=2and [V, t]1 <V, _,. Then either
@ 1V, |=2%and G, /Q, = SL,(2), or
0 IV, 1=2%G, /0, =SL\C,y, and |V, N V,,_,| =23
Proof. Let V, =V, /Z,, R=1[V,,tl, and E, =E, /Q,. Then ¢
induces a transvection on V.. Hence (1.7) and (7.7)(b) imply:
() E, =E, X XE, E =C,and
(i) V, =VyXxV, XXV, V,=[V,,E] and |V,| =4 for i > 1,
and V, = Cy, (E,.).
We may assume that R < V,. Note that RZ, _, is normal in

<Qa'—2!Qa’> and
[R,(Qu-2,00] < Zur_y.
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On the other hand, by (7.6)b), E,._, <<Q, _,,0,.7, and by (7.5)c),
R « Z(0,(E,. _,)). Hence there exists w € O,(E,._,) such that [w, R]Z .
=Z, _,. It follows that Z,._, < V}V}*. Since V;V}* is normalized by E_.
we conclude that V. = V,I/}”. If V; = V}*, then (a) holds, and if V] # 1},
then (b) holds.

(9.6) Suppose that b>1 and G, ,/Q,., =SL,2). Then |V, ,/
Vo1 N Va+3| =2

a

Proof. Let « — 1€ A(ae)\{a+1}andlet R=[V, ,,V, 1and R,
[V, .,V, _,] Since |Z, |=4 and there are only three G, conjugates
of Z, we get that |V, ,l <2* and [V,,,, E,. ] = 2% Hence, we may
assume:

() Wl=2V, . nV, =2, and Z, £ [V,,1, E, 4]

Suppose first that Ry =1. Then V,_, <Cq; (V,_,) < Q. _1 <G,
by (7.7)(b); in partlcular [V, ,1, R] = 1. Hence [V _uV..1<RZ,. Since
Ww,/Z,_Rl=2and[V,_;,Z, _,R] = 1thereexists A <V, _, such that
W, ,/JAl=2and [V, ,E,, Al=R. If [V, E, ]<Q,,,,then R=Z__,
and £, <<Q,_,[V,,E,]). Thus [A,E,]<Z, and A<V, , NV, 4,
which contradicts (). If [V, E, 1« Q,.,, then (9.4 with p=a + 3,
telV,,E, I\ Q.. and (a + 3)* = a — 1 shows that 4 <V, _,, a con-
tradiction as above. We have shown that R, a& 1.

Suppose next that b = 3. Then RZ,,, <V, , NV, ., Now () yields
R<Z, ,and Z  , <[V, E,] This contradicts () with «’ in place of
a+ 1.

Suppose finally that » > 3 and R, # 1; i.e, b > 5. Then [R,,V, ] =1
and, as above, with (9.4), Ry <V,_, NV, ., =Z,. It follows that either
zZ,<IV,_,E,_orV,._,<Q,_,and R, = Z,_,. The first case contra-
dicts (*)Wlth a—1in place of a + 1. The second case gives [Z,,,V,.] = 1,
which contradicts (7.7)(b).

9.7 Suppose that b>1 and |V, ,/V, .1 NV, 3l =2 Then b =3,
Verrl =8, and G,y 1/ Q411 = SL(2).

Proof. Let t€V, . ;\Q,. Then [V, ,t]<V, NV, _,=Cy, (1) and
v,,tlz,./Z,| = 2. Hence (9.5) implies that |V,.| = 8 and G /0,
SL2(2) since Cy, (1) is Q, _y-invariant and G, = Q,,._,E,.Q, . It remains
to prove that b = 3.

Assume that b > 3. Let R=[V,,Z,] Then |[Rl=2and R<Z, _,
since |Z,/C, (V)| = 2and |V,.| = 8. With the same argument R < Z_, ,.
Hence, there exist p € A(a + 2) and p’ € A(a’ — 1) such that R =
Z,=2,.

Assume that b =7. Then R < V+3 NnNV,.e=2,,, and thus R =
Z,.3=2,,5 Which contradicts Z,,, =Z,,, X Z, s

a'—1
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Assume that b > 7. Let U = (W.| 7 € A(a)). Then U is abelian and
U<Q, Let C=0,CsR)). Then C<Q, <G, _,. Hence W, _,
is C-invariant. Note that E, is subnormal in C;(R) and thus O,(E,) < C.
If p&{a+1, a+ 3}, then by (7.6)(b) there exists x € C such that
(a+1D*=a+3. Hence [V, W, _ IV, .3 W, _;]1=1 which contra-
dicts [V, ,,V, ] # 1. Thus, we have p € {a + 1, « + 3}. On the other
hand, E, is subnormal in C,(R), W,<Q, for 7€ A(a), and E, is
2-transitive on A(p). Hence, there exists « € I such that W < CW,,
d(k,a’) <b—-3,andd(k,a’ — 1) <b — 4 Weconcludethat U < G, _,.

Assume that U < G,.. Then [U,V,.] < RZ,. and either [W,,V,.] =R or
w,v,1=I[w,V,] Suppose that V,, < Q,.,. Then R=2, , < Z_, and
the first case shows that V, is normal in G, for 7 € A(«a), while the second
case shows that W_ is normal in G, for 7 € A(a), a contradiction in both
cases. Suppose that V. £« O, ,,. Then either W, is normalin G,,, or U is
normal in G, ,, a similar contradiction.

Assume that U « G,.. Then Z_. &« [W,,., N G,.,V,.]since U is abelian
and Z,,_, =Z, X Z,. _,. It follows that [W, n G,.,V,.] = R.

Suppose that W, < G,.. Then [W,,V, ]=R<V,,,<W, and V,, <
Q... Since W, is not normal in G,,,. It follows that R=Z7,, , and
(W, V., 1=2Z,.,.Hence V,_ is normal in G, for 7 € A(«), a contradiction.

Suppose that W, « G,,.. Then [W,,Z,._,1=Z, _, = R. On the other
hand, Z,._, <Q,andso [W,,Z, 1<Z,NQ, =Z,,,. Itfollows that
R=2Z,.,=2Z,_, Inparticular,V,, < Q,.,and [U,V,.]1=[W,,V,.]since
Z, « U, but now W, is normal in G, for 7 € A(a), a contradiction.

It remains to discuss the case b =5.Then R<Z, ., NZ,, s =Z,. 5
i.e., p=p' = a+ 3. Now the proof can be finished by a nice argument of
Goldschmidt [2] which we will repeat here.

Note that |A(8)| = 3 for every 8§ € I'. Hence, a subgroup of G5 N G,,
7€ A(S), is transitive on A(8)\ {r} whenever it is not in Qs. Thus,
G,..NG,,, is transitive on A(a + 2)\ {a + 1} and Q,,, is transitive
on Ala + )\ {a + 2} since Q,.,0,.5 € Syl;(G,, 3). Moreover, Q_,, N
Quis# Q3N O,y by (7.6)c), and so Q,,, N Q,, 5 is transitive on
ACa + H\ {a + 3}. We conclude that G, , is transitive on paths of
length 4 with initial vertex « + 1, and so G is transitive on paths of length
4 with initial vertex in (a + 1)°.

We now investigate a path (o« + 1,...,a + 5,..., a + 7) of length 6.
Then V, . £« Q,., and [V, 5, V.. ;1=Z, . .. Hence, there exists y e
V,.7\Quss and weV,  ,\Q,.s such that for z =[y,y"] and z' =
[w, w”],

z e [V+7lVaV17] = Za+5 and z' e [I/Lv+1"V(1y+l] = Zu+3‘

a

On the other hand, {y,w) is a dihedral group of order 2[(y, y”)| < 16. It
follows that (yw)'z = (wy)* =z' and z=z'€Z,.,NZ,, s =1 Since
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v...=2,Z, ,and [V, ,Z2) ,1=1Z,.,,V} ;] =1 we have shown that
[V, .., V2. .]=1. However, the path (¢ +1,...,a+3,...,(a+ 1)) is
a G-conjugate of (¢ +1,...,a+5) and thus also [V, ,,,V,.:]=1, a
contradiction.

(9.8) Suppose that Z,, <V, ,,. Then b < 3.

Proof. Assume that b > 3; i.e,, b > 5 by (7.5)@). Let A € A(a + D).
Then W, is abelian and W, < G,. _,; in particular, [W,,V, ;] = 1 and thus
W, Z,1=1. Since Z,_,=2,_, X Z, we conclude that W, <
Cs(Z, _). Now (7.7)a) gives [W,, E,._,]1 < O, _,. Since E,_._, is transi-
tive on A(a’ — 1) we get that W, < G, ..

According to (7.8) and (7.6)(d) there exists u € A(a’) such that

W,/W,nGl=2  Z,£G, and |[Z,.Z,] #1.

Assume first that Z, < G,. Then [Z,,Z,]1=2Z7,,, and [W,,Z,]<
Zyi1Z, . Let a — 1 € A(a)\ {a + 1}. Then there exists a subgroup A of
index 2 in V,_, such that [4,Z,]=Z,.,. Since E, <{Q,_,,Z,) we get
that A <V, ., which contradicts (9.7).

Assume now that Z, « G,; in particular, Z, £ O, ;. Note that

W Z,] <20 2,]Z0 < Vi1 < W,.

Hence, W, is normal in (G, N G, , Z,). Since W, is not normal in G, ,
we conclude that (G, N G,,,,Z,) # G, ;. On the other hand, Z, £ G,
and so by (3.3),

(#) E,,,/O,(E,. ) is not elementary abelian.

Assume that Z,, , « V.. According to (1.2) there exists A < V. and
U<V, such that |V, ,./A4| =2, U« Q,, and [U, Al < Z_,,.
Since Z,,, «V,, we getthat [4,U] = 1, and U induces transvections on
V.,/Z,.Now (1.7) and (7.7)(b) contradict () with «’ in place of « + 1.

Assume that Z_,, < V,.. Then our hypothesis is symmetric in « + 1
and «'. Thus, with the above argument, W. < G, ; for 7 € A(a’). Again
by (7.8) there exists x € G,,, such that for E=<(Z,,Z) and A =
(a + 2%,

(2,,G,NG,,,)=G,,, and W,/W,NG]=2.

Let p = (a + 3)*. Note that [Z,, Z,] # 1 since Z, is not normal in G, ;.

Suppose that Z, < G,. Then E, <<Z,,Q,) for k € A(uw) \ {a'}. On
the other hand, [W,, Z,1=[Z,, Z,1IW, N G,, Z,1< Z,,,Z, and, as above
for w and «a, |V /V. N V,.| = 2, which contradicts (9.7).
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Suppose that Z, « G,. Then Z, « Q,,. and, as above for «, by (7.8) and
(7.6)(d) there exists u' € A(a’) such that

W/W,NG,l=2, Z,«G,, and [Z,,Z,]+1.

n

Note that [W}, Z,, 1 < V., < W,. If Z,, < G,, then, as above for o and u,
V,/V,N V.1l =2 for pe A(N), which contradicts (9.7). If Z, £ G,,
then W, is normal in <G, N G,.,,Z,) =G, NG,.,Z,)=G,,,, a
contradiction.

(9.9 Suppose that Z,,, < V,.. Then b < 3.

Proof. Assume that b > 3. Then (9.8) with « + 1 and «’ interchanged
yields V. < Q.. In particular, V. <G, and [Z,,V,]=Z,,,, and Z,
induces transvections on V,./Z_ .. Hence, according to (1.7), there exists
V, < V,. such that

O W, Z1=2,,and[V},C; (ZIN<Z, 1 Z,.

Let « — 1€ Ala)\{a+ 1} and A be maximal in V,_, such that
(4 V]<Z,., Then A=V, NV, since <Q,_,,V;) contains E,.
From (9.7) we get that

@ v,_,/Al = 4.

Hence, (1) implies that V,_, « G, ..

Suppose that V,_ , < G,._,. Then |V,_,/V._, N G,|=2 and
v, .Z,1+1since Z,,_ =2, _, X Z,. We conclude that Z_, £« W,
since W, is abelian and (1) yields [V,_, N G,.,V,1=Z,.,. This contra-
dicts (2).

We have shown that V,_, « Q,._,. Hence (9.8) implies that Z,._, &
V._,. Since [Z,,V;]1=[Z,_,,V;]1# 1 and b =5 we also have Z,_, &
V,_, and thus V, _, £ Q,_,. By (7.8) and (7.6)(d) there exists p €
Ala’ —2)such that |V,_,/V, ;N Gl=2and[V,_, NG, Z,] = 1since
Z, _, %V, Hence, Z, induces transvections on V,_,/Z,_,. Moreover,
[V,-1,Z,, V1] = 1since b >3 and thus [V,_;,Z ] <V, . From (9.5) we
conclude that

(3) G, /0. 1 =SL\Cy, IV, | =25 and | Al = 22

Conjugation to G,. gives Z,,, <V,. N V,._,. Hence, there exists y €
Cs, (Z,,)) such that @ = a' — 2. Let X =N; (Z,,,Z,). By (3) ap-
plied to a' we get that X/Q, = SL,(2) X C, and X N G,,._, € Syl,(X).
Hence X7 has the same properties with «'’ replaced by o’ — 2. It follows
that |V,_,/V,_, N G, _,| =2.0Onthe otherhand,V,_, NG, _, <0, _,
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since Z,_, «V,_and[V,_ . NnQ, _,Vi1<Z,, ,sincelZ, .V, _;]1+1
However, now IVa_ /A| = 2, which contradicts (2).
(9100 b <3

Proof Assume that b > 3. By (9.8)and (9.9), Z, « V,,, and Z_,, &
; in particular, V. « Q, .. According to (7.8) and (7. 6)(d) there exists

w € Ala)such that |V, ., /V,., N G,l=2,({G, NG, V,,,) =G, and
[Z,,V 1]+ 1 Since Z, «V, we get that [V, ., N G,,Z,]1=1, and
since Z,., « V,  wegetthat Z, £ Q...

Let A={AeAla+DIG NG,;1,Z,)=G,,,} Pick A € A. Then
[Z,, Z,] # 1since Z, is not normal in G, ,. Hence Z, « G, and

(1) (A, a’)is a critical pair for every A € A.
Again by (7.8) and (7.6)(d) there exists x € G,,, such that for A =
(a+2*and E=(Z, Z)),
(i) xe€Eand[O*E),V, NGl<0,, .,
(i) reAand[Z,,Z,]*1,
Giy 1vV,./V,. NG| =2
Since Z,,, £V, wegetthat[Z,,V,, N G,]=1,andsince Z, <V, .,
we get that Z, « Q,.. Hence, we may assume that A = «. We have shown:
(2) Z, induces transvectionson V., /Z,, ..

LetV, =V,./Z, and E,. =E_Q,./Q,.. Then (1), (1.7), and (7.7)(b)
show:

3) E, =E, x ><E,., E = C, and

@ vV, =V,x I71>< X V,V,=1[V,,E] and |V} = 4 for i > 1, and
Vo=Cy (E,)

Let R=[Z,,V, ] Thenwe may assumethat R <V, and Z, < V,Z, _,.

Let « — 1= (a+ 3% x asin ().
Assume first that [V,_,, Z,._,]1 = 1. Then by (7.7)(b), V,_, < G, and

V1.2, =V, 1.V] <RZ,.

Hence, there exists a subgroup 4 <V, _, such that |V,_,/Al =2 and
[4,Z,] <R.Now (9.4) (with p=a +3and r € Z,\ Q,,,) implies that
A <V, ,, which contradicts (9 7.

We have shown that [V,_,, Z,._,] # 1. Hence, either Z,._, < Q,_, or
(e’ =1, a—1) is a critical pair. The first case gives Z, , <V, _,
and [Z,_,,V,]1=1 since b >5 However, Z,=Z, _, X Z,,,. Hence
[Z,,Z,] =1, which contradicts (ii). We have shown:

(5) (o' — 1, @ — 1) is a critical pair.
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Set Ry=1[V,_,,Z, _.]. By 84, R, <V, ., NV, _,. Hence, possibly
after substituting (a, a’) by (o’ — 1, @« — 1), we may assume that R <
V., NnV,._, Now(9.5), (9.6), and (9.7) give

6) G, /Q. =SL,2)\C,, [V, | =2%and |V, NV, _,| =2

Moreover, there exists y € C;  (R) such that " = a’ — 2. Let X =
Ng (RZ,). Then, as in the proof of (9.9), we get from (4) that X/Q,,.
SL, N2 X C,and X N G, _, € Syl,(X). Hence X” has the same proper—
ties with «’ replaced by a'—2.Since b>3and W, ., <G, _, we get
that W, , < XY and

) |W+1/ w1 NG, '71|=2-

Assume that b > 5. Then W, , is abelian. Note that by (7), |V,_,/
V,..NG, 41 <2 and that by (5) and (9.8), Z,._, £ Ry; ie, V,_, N
G, ,<0,_,=<G,.Hence

[Vafl N Ga’fl’Z,u] = [I/;fl N Ga’fl’Vl] = RZCV"

Suppose that Z, <[V,_., NG, _,, Z,] Then Z, <W, , and
[Z,,V,_1]=1since W, is abelian. Thus, by (6), V,_, < C;  (Z, _y)

<G, _,and V,_; < G,. In particular, there exists a subgroup A <V, _,
such that

(*) [4.2,] =R and |V, ,/4|=2.

Suppose that Z,. «[V,_, N G,._,,Z,]. Then, for A=V, , NG, _,,
property (=) is satisfied. Hence, a subgroup A with (=) exists in both
cases. Now (9.4) gives 4 < V., which contradicts (9.7). We have shown:

(8 b=5.
According to (6) there exists A € A such
(**) I/prwI/at+lr]I/LH—3=Z¢J(+1 foreverypEA(/\)\{a+l}.

We fix A with this property and pick p € A()\ {a + 1}. Then [V, V, ;]
V N Vo1 NVyis =2, and (6) gives [V, V, ;] =1 Hence W, <
and since Z, < V,Z,._, we get

(9) W, 2,] < RZ,..

Let O = O(E, ) and Qg = Cp  (V,.y NV, ). Then |Q, . ,/Ql = 4

and Q,., = [Qa+2,Ea+z]Qo Now (7.6)b) gives [0, 0, ,] £ Qp; in par-
ticular, [ON Q. ., V., NV, . 31# LFrom[W,  ,,V,., NV, ,]=1and
(6) we conclude

(10) (Q N Qa+2)Qa+3 a+2 N G
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Let C be the largest normal subgroup of G, ; in W, ; such that
[C,E, 1<V, , Then(CnV,_)V, . ,=(CNV,)V,, bythe action
of E ;. Hence [(Cn Va,l)VaH, Z,]1 =R and (9.4) yields

1) CcnV,_, <V, .4

Set W= [W, ,,QIC. Assume that W < C. Then by (11), [V, 5,0 N
Q...1 <V, . 1NV, butthis contradicts (6) and (10). Thus, we have

2) W Vs & Visr

Assume that Z_ < W. Then by ), W, Z,]<W and W, , = WW
since A € A. Hence also W, = W, ,W, and (8) shows that [}, Z,] = R
<V, 8ince Z, <V,Z,., and [ a+4,Wa+2] = 1. This gives [WaH,Q] <

V.. 1, Which contradicts (10) and (11).

Assume finally that Z_. ¢ W. Then (W, N W)C is normal in G, , and

W <V, ., which contradicts (12).

10.

In this section we finish the discussion started in Section 9. More
precisely, in this section we assume Hypothesis 2, [Z,,Z, ]=1, and
b=3.

Recall from (9.3) that G,,,/0,.,=SL,(2), |Z,,,l=4,and Z,,, =
Z,.1XZ, =Q,2(0,,,). Since G,,, is 2-transitive on A(a + 2) the
path (e + 1, a + 2, a") is a G, ,-conjugate of (a’, @ + 2, @ + 1). Hence,
we have symmetry in e + 1 and a';ie, V,,, £« Q, and V. £ O, ;.

Note further that by (7.7)(b), C; (V) < Q,.. We use the following
notation: ‘

I7a' = I/a'/Zoz’ and Ga' = Ga’/Qa'

(10.1) Let W = (V,;1 N Q)%2) and Wy = (N ,caiasn@,) N
W,,,. Then

Woia=Ver 0V, Wo/Wl=2, and W, ,/WI|=2°

and one of the following holds:
@ 2°<IS1<2"and G,,1/Qus1 = G,ip/Qusr = SLy(2), and
(@) Z,,,=Wand O,E,, ,) =C, X C,,
(@, V..l =2%and OLE,, ) is extra special of order 2°, and

(az) there exists an involution a € Q,,,\ Z,,., such that C;(a) is not
solvable.
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(b) 2% <|SI < 2%, Goip/Quiy = SLyQ2), and G,,1/Q,.q =
Fb(20), Fb(20) being the Frobenius group of order 20, and

(b)) Wos1/Zyiil =OLE, )/ V1l =2% and OE, ) =V,
and

(bz) |Za+2| |W/ +1mV| = W, +2/Wo| |02(Ea+2) ys
Weial=dand |V, ., NV, /Z, 5l =2

Proof.  Since Q. is transitive on A(a + 2)\ {a + 1} we get that
Vet NQ, =V, NQ, for p € Ala + 2)\ {a + 1}. It follows that

o

D W=<N,ca@2C
Since [V,., NQ,,V, NQ,,.,1<Z,.,NZ, =1we conclude that
2 o) =1

Assume that OXE,,,) <V, ,. Then by (7.6)b), V, ., £Q,,, and
b = 2, a contradiction. Thus, we have:

(3) There exists a noncentral chief factor of E, ; in O,(E,,)/V,, .

V.. operates quadratically on V,_,/Z,_ ... Hence, by (1.2) there exists
te VH\Q and 4 <V, suchthat |V, /A|=2and [A4,t]< Z,, ,. We
get that

@ [V, tl=2or [V, tl=4and Z,,, <[V, t].

Suppose that there exists a € V., \ Q, such that [V, a]l = 2. Since
V,,al<V, ., NV, wegetfrom (9.5 that either

B G,/0, =SL,\C,, |V, |=2%and [V, ., NV, |=2%0r
® G, /0, =SL,(2) and |V, |= 23

Assume that (5) holds. Then (@) is not normal in Q,,, and so
V., =4 ad V,,,nQ, =V,.,NV,. It follows that [Q, N
Qui2:Vyi1l <= V,. Since 10,./0, N Q,,,|l =2 this contradicts (3) and
V1l =4

Assume that (6) holds. We will show (a). Since |V, ,| = 8 we get that
Zyiy=W=V, 1NV, and I/Voc/+2 = Z,,- Moreover, it W, +2/Za+2|
4, then W, , is abelian which contradicts b = 3. Thus, we have
|W +2/Za+2| =2,

It follows that [O,(E, ), W, ,1V,./V.,. 1= 2 and thus |O,(E,)/V, | = 4.
Now O,(E,)/Z, is abelian and so [O,(E,), ®(O,(E,))] = 1. Hence
Oy(E,) = Qg Y Q.

Note that [Q, ,, O,(E, )]l < W, ., and thus by (7.6)(b), OE,.,) =
(W, .2, Eoy» ] Now the structure of O,(E, ) gives (a,). Let C = C, (D),
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where D € Syl,(G, . ,). Note that Z(G,,,) = 1l and thus CAOLNE, ) =
1. By (@), [C,O(E, )1 =Z,,, and Cy, 5 () =Z,,, for1l+ceC.
This gives |C| < 4 and |S] < 2.

It remains to prove (a,). We will apply (a,) and (a,) without reference.
Let T=G,., NG, and W*=C, (W,). Then either W* =W, or
|S| =27 and |[W*| = 2% Since [W*, Ea+2] Z,., and Z(G,,,) =1 we
get in both cases that W* is an elementary abelian normal subgroup of
Ga+2‘

Let N=Cy(Z,.,) and Ny = O,(N). Then N,(Z,,,)=G,,,N and
Q.. € SYl,(N). Clearly Cy(N,/Z,.,) <N, since N is of characteristic
2 type. Moreover, N, <Q,,, and Q,,,/Z,., is abelian. Hence N, =
Qusz and N < Ny(Q,. ).

Assume that W, = W*. Then 1Q,,.,,/Z, ., =2%and N,(Q,.,,)/0..»
is a solvable subgroup of L,(2) containing 3,. This gives N,(Q,.,) =
Ga+2‘

Assume that W, # W*. Note that V. is a maximal elementary abelian
subgroup of Q. ,. Hence, W* is the only elementary abelian subgroup of
order 2% in Q, ,, and W* is normal in N,(Q, . ,). Let ¢ be an element of
odd order in Cy(Q,,,/W*). Then Q,.,=W*C, (c) and Z,,, =
D(Cy,_ (). The 3-subgroup lemma gives [W*, <c), CQ (c)] = 1 and thus
w*{cH <z .+2- Since ¢ has odd order this ylelds ‘W* cl=1 and
[0,.,, c] =1 We conclude that C,(Q,,,/W™)is a 2-group and G, ,

N, (Q,.,). This implies

(M Ny(Z,3) = Goir
Assume that W=+ W,. Suppose that [W*Tl<Z, ,. Then [W*,
OLE N <Z,.,<V, and thus W* < Q,.. This gives [W*, O,(E,)] <

Z, and [W*/C,,(O,(E,) N O,(E,,,)| < 2. However, the action of D
on W* and O,(E,., ,) implies

CW*(OZ(Ea’) N OZ(Ea+2)) = CW*(OZ(Ea+2)) =Zyi2

This contradicts |W*/Z_, ,| = 4. We have shown:
(8) Either W* = W, or T/O,(E,.,) = Ds.

Let M = Ny,(W*) and set U = O, ,.(M)T and W, = (ZY). By (1.2),

Wy = (Cy, (DNNQqs2/Al = 2)
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since O, , is quadratic on W,. Let A be any subgroup of index 2 in Q,, .,
and a € Cy(A4). Then G,,, =0,.,Cq (@) and [a,Q,.,ll < 2. This
gives a € Z_ . ,, a contradiction.

We have shown that W, = Z__ ,, and (7) implies

@ N,(W* =G,,,.

Leta e W*\ Z,,, and v € Z*_,. Note that C,,(v) is of characteristic
2 type. Set C, = Cy(a), Cy = 0,(C,), and C; = O,(C,). Then

Co=(Cc(v)IveE Zr. )

and the P X Q lemma applied to C.(v) X {a) and O,(Cy(v)) gives
C, =1

To prove (a;) we may assume that C. (C;) < C;. According to (9) and
the structure of G,,, we have NC(W*) < Ww* and thus C; = W*. This
yields, together with (9),

(100 Cua) <G,,, foreverya e W*\ Z,.,

Next pick u € C, such that {u) is conjugate to Z .. If u € W*, then
(10) implies that u € Z_, ,.

Assume that u is not in W*. Then u & Q_,, since C, N Q, ., = W*,
and by (8), a € W,. We may assume that u € G,.. If u & Q,., then
v,,ulz, =Z,., and u<Q,,,, a contradiction. Thus u € Q,. and
therefore u € O,(E, ) since C, (a) < O,(E, ). Now u is conjugate in G,
to an involution in al/,.. On the other hand, every involution in al/,. is in
aZ,., = aCy (a). Hence, there exists a conjugate of u in W*\ Z
which is impossible as we have seen above. We have shown:

a+2

(11) Every conjugate of Z,. in Cy(a) is contained in Z__ ,

Let (a +1,. ,a+9) be a path of length 8 and let u
Z(a,Z, )" Then ue C < G,,,. Assume that u is conjugate in H to
an element of Z_.. Then by (1), u € Z,,., and thus {u) = Z, for some
p € A(a + 2). On the other hand, Z; < G,,s and Z; £ Q, . for 6 =
a + 2, @+ 9. This implies that [Z,, Z,,, ;] # 1, a contradiction.

Assume that u is not conjugate to an element of Z_.. Then, as in step
(11), conjugation in G, shows that u is conjugate to an element of
W*\ Z,,,. Hence, by (10), C;;(u) < G, for some u € a, but then by
1D, Z,,<Z,,and {a,Z,,4) is abelian since u & Z,. It follows, again
by (11), that Z,., < Z,,,. Now Z, 4 fixes « +4 and «a + 6 and so
Z,.9 < Q.5 a contradiction. This last contradiction shows that (a,)
holds. We may assume now:

(12) No involution in V., \ Q, induces a transvection on V/,..
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In particular, by (4) there exists t € V., \ Q,, such that [V, t] = 4
and Z,, , <[V, t]. According to (3.6) there exists a subgroup E in E_.
such that for A4, = C; (E):

(i) E(%) is dihedral and E = O%E),
(i) V, ., =<i)A4, and
(i) (E,G,.,NnG,)=0G,.

Set V, = [V, Eland V;, = C), (E). Note that [V}, A,] < Z,. since V.,
is quadraticon V.. Let y € Q,,, and t' = ¢’.

Assume that t' € A,. Then [V, ., t'] < [V, t']1Z,.. It follows that Z, , <
V, and [Z,,,, E] = 1. Now (iii) shows that Z_ ., is normal in G, a
contradiction.

We have shown that t' & A,; ie., Cp (1) = Cy(¢) and [V, t1Z, =
[V,,t'1Z,. Hence, either [V,,t1=Z,,, or [V, ,t1=[V,,t1Z,, and
[V, t] =1V, t']. Inthe first case |V/;| = 4, and by (1.4), E,,. is elementary

[e3

abelian. Since Z,,, <V, we conclude that V, = V., a contradiction to

(12). Hence, we are in the second case and t =1t". It follows that <{#) is
normal in Q. ,. Together with (3.4) we get

13 E,=I[E,,tland [V, ¢t]1Z,,, isnormal in G_,,.
We now apply £1.3). If Ea, = (C,, then |I7a,| < 23, which contradicts (12).
Assume that E . is extra special of order 3° Let (&) = Z(E,) and

R =1[V,,t]. Note that [¢,7] = 1. Hence by (13), RZ,,, is normal in
(G,,,, e, and it is easy to see that

NGg(RZ,.,)/Cc(RZ,,,) = Ly(2),

which contradicts Hypothesis 2. From (1.3) we conclude:

(14) E, =CyxXCyor Gy, IV, |=2%and |V,,, NV, [=IC, (V)=
23,

By (3) there exists a noncentral chief factor of G,. in O,(E,)/V,., and
by (13) and (14), ¢ does not induce a transvection on that chief factor.
Hence [O,(E,) N Q,.,. V, .11 £ V,. and thus

15 V,.,/V,.1 N OL(E, )l = 2;in particular, W < O,(E,).
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Set Y = Cy (V,)Q(Z(W, ;). By (14), [Cy, (V,),V, .11 <V, and thus
[Y,E,1<V,.Let D e Syl,(E,). Then

YV, =YV,  forY,=Cy, (D).
On the other hand, by (7.6)(b), |O,(E,)/O,(E,) N Q,.,l =2 and
[Y’OZ(Ea') mro+2] SZ(I/VaerZ) mI/az'SI/oc+1mI/az"

Thus [y, O,(E)IZ, /Z,| < 23 for y € Y, and (14) gives [Y, O,(E, )]
< Z,; in particular, Y, is normal in E_. Now (12) shows that Y, <
Q(zw,, ,)) < Y. It follows that

Y=Y(Vos1 NV,) and Y =0(Z(W,,,))

Again from [Y, O,(E, )] < Z,. and from (7.6)(b) we get that [Y, E_,,] =
Z,.,- Assume that there exists y € Y\ Z,.. Then Cg (y) is transitive on
A(8) for § = a + 2, a’, and (7.2) yields a contradiction. We have shown
that Y, = Z,. and thus

(16) Cyp (V) = QZW, ) =V, .1 NV,

Note that [W, O,(E, )] < C,,(V, ) since [V,., O,(E, )] < Z,.. Hence (16)
gives

an w/v,,nV,l=4and[W,G,.,NG,1<V,.

Let U= (WE). Then U/V, is elementary abelian. Note that
[OE, ), tIWV,./V,.| < 4. Hence (3) and (14) show that U = O,(E,.) and

18) |OLE,)/V,| = 2"

Assume now that E,, = C; X C,. Let D = D, X D, [€ Syl,(E, )], such
that D; = Cyand W, == Cy, (D;) # Z,.. ThenV,, = WW, W, N W, = Z,,,
and [W, Dj]Za, = W.

Suppose that [O,(E, ), D,] = O,(E,.). Then the 3-subgroup lemma gives
[O,(E,),W;] = 1 and thus [O,(E, ), V,.] = 1, which contradicts (16).

Hence O,(E,) = 0,0,, where Q; = C,,_ (D). Note that [Q,, D;1Z,,
= ;. Hence, another application of the 3-subgroup lemma yields [Q,, O, ]
<W,nWw,=2Z,.Since |Q,/W,]| = 4 we conclude that Q; < Z_. and thus
O,(E,) < Z,.However, by (7.6)b), O,(E,) ¢« Q.. , and so [W, O,(E, )]
% Z,.,. This contradicts (15). Together with (14) we have shown that
E, =C,.

Note that |O,(E,)/O,(E,) N Q,. ., =2 and [O,(E,)NQ, .V, . 4]
<V, NQ, <W.Byan, W/ wnv,l=2andso O,(E,) N Q,,, £
V, Q.1 This implies:

(19) Goy1/Qa1 = Fb(20).
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Since V., does not induce transvections on O,(E,.)/V,. we also have
W,.,/W|=2% Let W< W <W,,, such that [W, 0%E,,,)] < W and
IW/WI = 2. Then [W,0,(E, )]V /V..l <2 and thus W< Q.. Hence
W= W,.

To prove (b) it remains to show |Q,./O,(E,)l <2 since then
Qur2/Weiol < 2% and |0E, W, o/ W, ,| = 4 We apply (by) and (b,)
without reference.

Let C = C, (O,(E,)). Note that C < C; (W) < Q,,,.Since V,, £ C
we get that CNV, =2, and [C,V, ,]<CNV, ., =2Z,. Hence (12)
implies C < Cy (V1) and [C, Oz(Ea+1)] <V, ... On the other hand,
[C,O,E,. )N Qa+2] <CnV,.,=2Z, and so l[c,0,(E,, DIl <4 for
ceC. Thus [C,O,(E,, DI <Z,,, and [C,O,(E,.,) N Q,.,] = 1. Now
CZ,., is normal in G,,., and [CZ_,,,O,(E,,,)] = 1. From (7.5)c) we
get that

200 Cc=2,.

Let C, = Cy (V). Then Q. = C,0,(E,) and C; N O,(E,) =V,
Hence it suffices to prove that |C,/V,.| < 2. Since [V, NV, ,,,.C;] =11t
follows that C, <V, Q... Let (a =1, a,a+1,...,a’) be a path of
length 4 such that

Za’ \7{ Qa—l and Zafl ‘}(\ Qa"

andlet C,=C, nQ,_;.

Note that [C,,V,_,1 < V,,, and thus [E,, ;,C,
C, < Cy  (V, +1) and [C,, V.1 N Q] =
[CZ,OZ(E )] <Z,.

Assume that C, £ V,.. Then Cc, (O,(E,)) « Z, by (i) since
IC,V,./C,V,, N Q,_,| =4, a contradiction to (12).

Let Cy = C¢,, (D). Then [Cy, O,(E, )]l =1 and by (20), C,
Hence C, <V,, and |C,/V,|<2 since V,. NQ,., 0, and IC n
0,./(C, N Qa_l)Za | = 2. This proves (b).

1<V,,,. Itfollows that
1. This implies that

DeriniTION. Let H be a finite group which contains two subgroups
G,., and G,,, such that G,,, N G,,, =8 € Syl,(H) and
0,({G,.,,G,,,)) = 1. Then H is of type M,, and °F,(2)’, respectively, if
(10 1)(a) and (b), respectively, hold for G,., and G, _ ;.

Note that M,, and *F,(2)" are examples for such groups H.
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11.

In this section we prove Theorems 1 and 2. Let H be a finite group.
Suppose that

(i) H satisfies the hypothesis of Theorem 1 or

(ii) H satisfies the hypothesis of Theorem 2, but not (d) or (e) of its
conclusion.

Then in both cases H satisfies Hypothesis 2 of Section 5. If (i) holds,
then (8.2), (8.6), and (9.1), (9.10), and (10.1) prove Theorem 1. Hence, we
may assume that (ii) holds.

If H also satisfies the hypothesis of Theorem 1, then (a) of Theorem 2 is
a direct consequence of Theorem 1. Thus, we may assume, in addition,
that S, is contained in a unique maximal 2-local subgroup of H. In
particular, the subgroups S, P,, and P, of Hypothesis 2 are as in (5.1)(c).
Now (8.2) shows that either

() P,=P,=3,and S =Dy, or
ay P =P,=C,x3,and S =C, X D,.

Let O = O, P, and N = N,(Q). Then (5.1)c,) implies that § €
Syl,(N), and the solvability of N and C(Q) < Q gives N = P,.
Assume case (D). Let x € O\ Z(S,). Then Q = C;(x) and

4718, = |S0/Cso(x)| =|{[51 x]ls € So}|-

It follows that Sy = ®(S,) and [S,/P(S,)| = 4. Now [4, 5.4.5] shows that
(b) of Theorem 2 holds.

In case (1), S contains exactly two elementary abelian subgroups of
order 8 and [N, (S)/S| = 2. On the other hand, C,,(Z(P,)) is of character-
istic 2 type, and so C,(Z(P,)) = P;. It follows that J(S) = J(N,(S)) and
So = Ns(S). Now (c) of Theorem 2 holds.
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