A n A pplication of the A malgam M ethod:
 The 2-L ocal Structure of N-G roups of Characteristic 2 Type

Bernd Stellmacher

metadata, citation and similar papers at core.ac.uk

Communicated by Gernot Stroth
R eceived December 15, 1995

DEDICATED TO PROFESSOR B. FISCHER ON THE OCCASION OF HIS
60 th birthday

In [9] Thompson classified the finite (simple) groups H satisfying:
(N) Every p-local subgroup of H is solvable, for every prime p.
Later it turned out that his proof could be used as a pattern for the classification of the finite simple groups in general. In the course of this later classification Thompson's result was generalized in [5], [6], and [7] to finite (simple) groups H satisfying:

$\left(N_{2}\right)$ E very 2-local subgroup of H is solvable.

The proofs of both of the above results are subdivided as to whether the invariant $e(H)$ is small or large. Here $e(H)$ denotes the rank of a largest elementary abelian p-subgroup contained in a 2 -local subgroup of H, where p ranges over all odd primes. It is characteristic for those proofs that the general approach used fails if $e(H)$ is small.
In the last 10 years a new method in group theory-the amalgam method-has been developed which seems to be well suited to deal with groups (of characteristic 2 type) where $e(H)$ is small. In contrast to other methods in group theory it is a completely local method. That is, it focuses on the structure of finite (local) subgroups of a group rather than the structure of the group itself. In fact, usually neither simplicity nor finiteness of the group is required.

This paper can be seen as an attempt to explore the reaches of the amalgam method in general classification problems [with arbitrary $e(H)$] and how global properties of the group in question (finiteness, simplicity, etc.) can be used to facilitate the amalgam method. We thought that N_{2}-groups, i.e., finite groups satisfying (N_{2}), would be an interesting class of groups for studying these aspects.
The following two theorems will be proven in this paper.
Theorem 1. Let H be a finite group, $S_{0} \in \operatorname{Syl}_{2}(H)$, and $B=$ $C_{S_{0}}\left(\Omega_{1}\left(Z\left(J\left(S_{0}\right)\right)\right)\right)$. Suppose that
(i) every 2-local subgroup of H containing B is solvable and of characteristic 2 type and
(ii) there exist (at least) two maximal 2-local subgroups of H containing S_{0}.

Then H is type $L_{3}(2), S p_{4}(2), G_{2}(2)^{\prime},{ }^{2} F_{4}(2)^{\prime}, M_{12}, \Omega_{6}^{+}(2), \Omega_{6}^{-}(3)$, or $\Omega_{8}^{+}(3)$. In particular $\left|S_{0}\right| \leq 2^{15}$. Moreover, if H is of type $M_{12}, \Omega_{6}^{+}(2), \Omega_{6}^{-}(3)$, or $\Omega_{8}^{+}(3)$, then there exists a 2 -local subgroup of H which is not solvable.

In Theorem 1, " H is of type X " means that H contains a pair of subgroups P_{1} and P_{2} such that $O_{2}\left(\left\langle P_{1}, P_{2}\right\rangle\right)=1$ and $S_{0} \leq P_{1} \cap P_{2}$, and the structure of P_{1} and P_{2} is like that of a pair of maximal 2-local subgroups of X_{0}, where $X \leq X_{0} \leq \mathrm{A}$ ut (X). The precise definition for " H is of type $X^{\prime \prime}$ is given in Section 8 [for $X=L_{3}(2), S p_{4}(2), G_{2}(2)^{\prime}, \Omega_{6}^{-}(3)$, and $\left.\Omega_{8}^{+}(3)\right]$, Section 9 [for $X=\Omega_{6}^{+}(2)$], and Section 10 [for $X=M_{12}$ and $\left.{ }^{2} F_{4}(2){ }^{\prime}\right]$.

Theorem 2. Suppose that H is an N_{2}-group of even order and $S_{0} \in$ $\mathrm{Syl}_{2}(H)$. Then one of the following holds:
(a) H is of type $L_{3}(2), S p_{4}(2), G_{2}(2)^{\prime}$, or ${ }^{2} F_{4}(2)^{\prime}$.
(b) S_{0} is a dihedral or semidihedral group.
(c) $\left|S_{0}\right|=2^{5}$ and there exists a maximal 2-local subgroup isomorphic to $\mathrm{C}_{2} \times \mathrm{\Sigma}_{4}$ in H .
(d) H contains a strongly embedded subgroup.
(e) There exists a 2-local subgroup U of H such that $O_{2},(U) \neq 1$.

Some remarks about the proof of Theorem 1. The amalgam method works with a pair of subgroups P_{1} and P_{2} having the following property:
(1) $S_{0} \leq P_{1} \cap P_{2}, O_{2}\left(P_{i}\right) \neq 1, i=1,2$, and $O_{2}\left(\left\langle P_{1}, P_{2}\right)\right\rangle=1$.

By a nice argument of Gomi [see (4.4)], such a pair of subgroups exists with the additional property:
(2) S_{0} is contained in a unique maximal subgroup of $P_{i}, i=1,2$.

Property (2) yields a particularly transparent structure for $P_{i} / O_{2}\left(P_{i}\right)$; see (3.3). A refinement of Gomi's argument gives a pair of subgroups which, apart from (1) and (2), satisfies [see (4.7)]:
(3) E ither $O^{2}\left(P_{2}\right)$ is subnormal in $C_{H}\left(\Omega_{1}\left(Z\left(S_{0}\right)\right)\right)$ or $\Omega_{1}\left(Z\left(S_{0}\right)\right)$ is neither normal in P_{1} nor in P_{2}.

In the proof of (4.7) a pushing-up theorem for $S L_{2}(2)$ is used. This is a special case of Baumann's pushing-up theorem [1]. The subgroup B used in hypothesis (i) of Theorem 1-the B aumann subgroup-was first used in that paper. H owever, we decided to quote [8] rather than [1] [see (2.4) and (2.5)] because the proof in [8] is short, elementary and, more important, stays within the framework of this paper since its proof also uses the amalgam method.

It should be pointed out that, apart from [8] and textbook material the reader should be familiar with, the proof has been made self-contained.
The importance of (3) for the proof can only be appreciated by reading the proofs of Sections 7-10, but some evidence can be given here.

If $\Omega_{1}\left(Z\left(S_{0}\right)\right.$) is neither normal in P_{1} nor in P_{2}, then the normal subgroup $Z_{i}=\left\langle\Omega_{1}\left(Z\left(S_{0}\right)\right)^{P_{i}}\right\rangle$ is a noncentral $G F(2) P_{i}$-module with $C_{S_{0}}\left(Z_{i}\right)=O_{2}\left(P_{i}\right), i=1,2$. Hence, the structure of $P_{i} / O_{2}\left(P_{i}\right)$ can be investigated by its action on Z_{i}. That this, together with the amalgam method, is a very effective procedure can be seen in (8.2), where this entire case is treated.

If $\Omega_{1}\left(Z\left(S_{0}\right)\right)$ is normal in P_{2}, then P_{2} acts trivially on Z_{2}, and the action gives no further information about $P_{2} / O_{2}\left(P_{2}\right)$. This lack of information from the action is compensated by the subnormality of $O^{2}\left(P_{2}\right)$ in $C_{H}\left(\Omega_{1}\left(Z\left(S_{0}\right)\right)\right)$. Indeed, it is mainly here where the global structure of H facilitates the application of the amalgam method.
There is another aspect of the proof which should be mentioned. There is no subdivision of the proof according to the size of $e(H)$, but, of course, a priori, there is no bound on $e\left(P_{i}\right), i=1,2$. The easiest way to see how the proof treats larger values of $e\left(P_{i}\right)$ may be by referring to an example.

Let $H=\left(E_{1} \times E_{2}\right)\langle t\rangle$, where $E_{i} \cong L_{3}(2), E_{1}^{t}=E_{2}$, and $t^{2}=1$. Then $H \cong L_{3}(2) \backslash C_{2}$ and $e(H)=2$ [larger values of $e(H)$ can be produced by substituting $\langle t\rangle$ by a larger 2-group]. Let $S_{0} \in \operatorname{Syl}_{2}(H), t \in S_{0}$, and $T=S_{0} \cap F^{*}(H)$, and let $L_{1}, L_{2} \leq E_{1} T$ such that $T=L_{1} \cap L_{2}$ and $O^{2}\left(L_{i}\right) \cong A_{4}, i=1,2$. Then $P_{1}=\left\langle L_{1}, t\right\rangle$ and $P_{2}=\left\langle L_{2}, t\right\rangle$ are the only maximal 2-local subgroups of H containing S_{0}. They both are solvable and satisfy (1)-(3).

We now forget about the global structure of H and only use the structure of P_{1} and P_{2}. M ore precisely, we only use the following properties:

$$
\begin{array}{ll}
\text { (*) } & {\left[\Omega_{1}\left(Z\left(S_{0}\right)\right), O^{2}\left(L_{i}\right), O^{2}\left(L_{i}^{t}\right)\right]=1 \text { for } i=1,2 .} \\
(* *) & C_{Z\left(O_{2}\left(P_{1}\right)\right)}\left(O^{2}\left(L_{1}^{t}\right)\right) \cap C_{Z\left(O_{2}\left(P_{2}\right)\right)}\left(O^{2}\left(L_{2}^{t}\right)\right) \cap Z(T) \neq 1 .
\end{array}
$$

Then $\left\langle L_{1}^{t}, L_{2}^{t}\right\rangle \leq C_{H}(x)$ for suitable $1 \neq x \in Z(T)$, and it is fairly easy to see that $C_{H}(x)$ is not solvable [if we assume the global information, we get that $\left.E_{2} \leq C_{H}(x)\right]$. Hence, H is not an N_{2}-group.

The crucial observation is that the Bauman subgroup B (of S_{0}) is contained in L_{1} and L_{2}; in fact $B=T$ in our example. In general, property ($*$) can be established if $B \leq L_{1} \cap L_{2}$ and B is neither normal in L_{1} nor L_{2}; see (3.10). This then allows one to use the above argument in fairly general situations. U sually the element x can be found in

$$
\left[\Omega_{1}\left(Z\left(S_{0}\right)\right), O^{2}\left(L_{1}\right)\right] \cap\left[\Omega_{1}\left(Z\left(S_{0}\right)\right), O^{2}\left(L_{2}\right)\right] \cap Z(T)
$$

but often the argument also works if $\left[\Omega_{1}\left(Z\left(S_{0}\right)\right), O^{2}\left(L_{i}\right)\right]=1$ for some i.
M ost of the notation used in this paper is standard or will be defined in the section where it occurs for the first time. Modules will be written multiplicatively since they usually arise as normal subgroups or sections of groups.

Let Y be a group and V be a $G F(2) Y$-module. Then Y operates quadratically on V if $[V, Y, Y]=1$. An element t of Y induces a transvection on V if $\left|V / C_{V}(t)\right|=2$, and Y induces transvections on V if $[V, Y] \neq 1$ and every element of $Y \backslash C_{Y}(V)$ induces a transvection on V.

1.

In this section G is a finite solvable group of even order and V is a finite $G F(2) G$-module such that $C_{G}(V)=O_{2}(G)=1$.

We will use the following
Notation. $\quad S \in \operatorname{Syl}_{2}(G), \quad W=O_{2^{\prime}}(G)$, and $m(Y)=|V|\left(\left|C_{V}(Y)\right||Y|\right)^{-1}$ for $Y \leq S$.

$$
\begin{aligned}
\mathscr{A}(V, S) & =\{A \leq S \mid A \text { is elementary abelian and } m(A) \leq 1\} . \\
J(V, S) & =\langle A \mid A \in \mathscr{A}(V, S)\rangle . \\
B & =C_{S}\left(C_{V}(J(V, S))\right) . \\
E & =\left\langle J(V, S)^{G}\right\rangle .
\end{aligned}
$$

$\mathscr{G}(S)$ is the set of all subgroups A of S such that $m(A) \leq m(S)$, $C_{S}\left(\left[C_{W}(A), N_{S}(A)\right]\right)=A$, and $C_{S}\left(C_{V}(A)\right)=A$.
$\Omega(W)$ is the set of all subgroups D in W such that $|D|=3$ and $[\mid V, D]=4$.

The first lemma is well known and will be used in this paper without any further reference.
(1.1) The following hold:
(a) $W=[W, S] C_{W}(S)$.
(b) $W=\left\langle C_{W}(a) \mid a \in S^{\#}\right\rangle$ if S is noncyclic and abelian.
(c) $\left.W=\left\langle C_{W}\left(S_{0}\right)\right|\left|S / S_{0}\right|=2\right\rangle$ if S is elementary abelian.
(d) S is elementary abelian if $[V, S, S]=1$.
(1.2) Let $G=W S$. Suppose that S is quadratic on V and $V=\left\langle C_{V}(S)^{G}\right\rangle$. Then

$$
\left.V=\left\langle C_{V}\left(S_{0}\right)\right|\left|S / S_{0}\right|=2\right\rangle .
$$

Proof. We have

$$
\left.G=C_{G}(S)\left\langle\left[C_{W}\left(S_{0}\right), S\right]\right|\left|S / S_{0}\right|=2\right\rangle .
$$

Let H be a fixed subgroup of index 2 in $S, N=C_{W}(H)$ and $V_{0}=$ $\left.\left\langle C_{V}\left(S_{0}\right)\right|\left|S / S_{0}\right|=2\right\rangle$. It suffices to show that [N, S] normalizes V_{0}.

Let S_{0} be any subgroup of index 2 in S. Then the quadratic action of S on V gives

$$
\left[S, C_{V}\left(S_{0}\right), N\right] \leq C_{V}(H) \quad \text { and } \quad\left[C_{V}\left(S_{0}\right), N, S\right] \leq C_{V}(H)
$$

Hence the 3 -subgroup lemma implies $\left[N, S, C_{V}\left(S_{0}\right)\right] \leq C_{V}(H) \leq V_{0}$.
(1.3) Let x be an involution of G and $F=[W, x]$. Suppose that F is a p-group and $\left|V / C_{V}(x)\right| \leq 4$. Then one of the following holds:
(a) $\|[V, F]=4$ and $F \cong C_{3}$.
(b) $|[V, F]|=2^{4},\left|V / C_{V}(x)\right|=4$, and $F \cong C_{3}, C_{5}$, or $C_{3} \times C_{3}$.
(c) $|[V, F]|=2^{6},\left|V / C_{V}(x)\right|=4,[Z(F), x]=1$, and F is extra special of order 3^{3}.

Proof. We proceed by induction on $|F \| V|$. Then $G=F\langle x\rangle$ and $V=$ [$V, F]$; in particular $C_{V}(F)=1$. N ote that $\left|V / C_{V}(x)\right|=\|[V, x]$.
A ssume first that there exists $1 \neq a \in Z(F)$ such that $a^{x}=a^{-1}$ and $\| V, a]=2^{4}$. Then $[V, x] \leq[V, a]$, and $F=[F, x]$ implies $V=[V, a]$. Hence, F is a subgroup of $G L_{4}(2)\left(\cong A_{8}\right)$, and (a) or (b) follows.

A ssume next that there exists $1 \neq a \in Z(F)$ such that $a^{x}=a^{-1}$ and $\| V, a]=4$. Note that $C_{F}(V /[V, a])=\langle a\rangle$ since $C_{G}(V)=1$. Set $\bar{V}=$ $V /[V, a]$ and $\bar{G}=G /\langle a\rangle$. By induction either $F=\langle a\rangle$ or $\bar{F} \cong C_{3}$ and $F=Z(F)$ since $\left|\bar{V} / C_{\bar{V}}(x)\right| \leq 2$. The first case gives (a). In the second case there exists $b \in Z(F)$ such that $b^{x}=b^{-1}$ and $\left.\| V, b\right]=2^{4}$, and the above argument applies.
We may assume now that $[Z(F), x]=1$. Let $z \in Z(F)$. If $[V, x, z]=1$, then $[V, F, x] \leq C_{V}(z)$ and $[V, x, F] \leq C_{V}(z)$. Hence also

$$
[F, x, V]=[F, V]=V \leq C_{V}(z)
$$

and $z=1$. This shows that $\| V, x]=4, Z(F) \cong C_{3}$, and $V=[V, Z(F)]$. In particular, V can be regarded as a $G F(4) G$-module via the action of $Z(F)$.
A ssume next that $F=\langle a, b\rangle$, where $a^{x}=a^{-1}$ and $b^{x}=b^{-1}$. Then $V=[V, a][V, b]$ and $|V| \leq 2^{6}$ since $\left.\left.\| V, a\right]=\| V, b\right] \|=2^{4}$ and $[V, x] \leq$ $[V, a] \cap[V, b]$. Hence, G is a subgroup of $S L_{3}(4)$ and (c) follows.

A ssume finally that there exist $a, b \in F$ so that $a^{x}=a^{-1}, b^{x}=b^{-1}$, $[a, b] \neq 1$, and $F \neq\langle a, b\rangle$. Set $F_{0}=\langle a, b\rangle$ and $V_{0}=\left[V, F_{0}\right]$. By induction $\left|V_{0}\right|=2^{6}$ and F_{0} is extra special of order 3^{3}. Note that the structure of $S L_{3}(4)$ gives $V_{0} \neq V$ and $C_{F}\left(Z\left(F_{0}\right)\right) \neq F$. Let $F_{1}=C_{F}\left(Z\left(F_{0}\right)\right)$ and $F_{2}=$ $N_{F}\left(F_{1}\right)$. A gain by induction $F_{1}=C_{F_{1}}(x) F_{0}$ and $\left[Z\left(F_{1}\right), x\right]=1$. It follows that $\left[F_{2}, x\right] \neq F_{0}$ and so $\left[F_{2}, x, Z\left(F_{1}\right)\right] \neq 1$. On the other hand, $\left[x, Z\left(F_{1}\right), F_{2}\right]=\left[Z\left(F_{1}\right), F_{2}, x\right]=1$ which contradicts the 3 -subgroup lemma.
(1.4) Let $\Omega(W)=\left\{F_{1}, \ldots, F_{r}\right\}$ and $W_{0}=\left\langle F_{1}, \ldots, F_{r}\right\rangle \leq O_{3}(G)$. Then
(a) $W_{0}=F_{1} \times \cdots \times F_{r}$ and
(b) $V=V_{0} \times V_{1} \times \cdots \times V_{r}$, where $V_{0}=C_{V}\left(W_{0}\right)$ and $V_{i}=\left[V, F_{i}\right]$.

Proof. Note that $\left.\| V,\left\langle F_{1}, F_{2}\right\rangle\right] \leq 2^{4}$. Hence, the structure of $G L_{4}(2)$ gives (a) and (b).
(1.5) Let U be a subgroup of S. Then
(a) $\left|C_{V}(U) / C_{V}(S)\right|=m(S) m(U)^{-1}|S / U|$.

Moreover, if S is elementary abelian, then
(b) $S=\langle A| A \in \mathscr{G}(S),|A|=2\rangle$,
(c) $\left.W=\left\langle C_{W}(A)\right| A \in \mathscr{G}(S),|S / A|=2\right\rangle$,
(d) $\left.W=\left\langle C_{W}(A)\right| A \in \mathscr{G}(S),|A|=2\right\rangle$ if $|S| \geq 4$,
(e) $m(S) \geq 1$.

Proof. Claim (a) is obvious. Let S be elementary abelian and A be any subgroup of index 2 in S. From (a) we get

$$
\left|C_{V}(A) / C_{V}(S)\right|=2 m(S) m(A)^{-1}
$$

Hence either $C_{V}(A)=C_{V}(S)$ or $m(A) \leq m(S)$.
Let $Y=\left[C_{W}(A), S\right]$. A ssume that $C_{V}(A)=C_{V}(S)$. Then Y centralizes $C_{V}(S)$ and $V=C_{V}(Y) \times[V, Y]$. Since [V, Y] is S-invariant and $C_{V}(S) \leq$ $C_{V}(Y)$ we get that $[V, Y]=1$ and $C_{W}(A)=C_{W}(S)$. Note further that $C_{S}(Y) \neq A$ also implies $C_{W}(A)=C_{W}(S)$. Hence (c) follows.

From (c) we get that $S=\langle A| A \in \mathscr{G}(S),|S / A|=2\rangle$. If $\mathscr{G}(A) \subseteq \mathscr{G}(S)$ for every $A \in \mathscr{G}(S)$ with $|S / A|=2$, then (b) and (d) follow by induction on $|S|$. Hence, to prove (b) and (d), it suffices to prove the above inclusion $\mathscr{G}(A) \subseteq \mathscr{E}(S)$.

Let $A \in \mathscr{G}(S)$ with $|S / A|=2$ and $A_{0} \in \mathscr{G}(A)$. Set $Y_{0}=\left[C_{W}\left(A_{0}\right), S\right]$ and $V_{0}=C_{V}\left(A_{0}\right)$. Since $Y \leq Y_{0}$ and $C_{V}(A) \leq V_{0}$ we get that $C_{S}\left(Y_{0}\right) \leq$ $C_{S}(Y)=A \quad$ and $C_{S}\left(V_{0}\right) \leq C_{S}\left(C_{V}(A)\right)=A$; i.e., $C_{S}\left(Y_{0}\right)=C_{A}\left(Y_{0}\right)$ and $C_{S}\left(V_{0}\right)=C_{A}\left(V_{0}\right)$. Now $A_{0} \in \mathscr{G}(A)$ implies that $A_{0} \in \mathscr{G}(S)$.
To prove (e), let $A \in \mathscr{G}(S)$ and $|A|=2$. Then (a) implies that $m(A) \geq 1$ and thus $m(S) \geq 1$.
1.6 Let $V^{*}=[V, W]$. Suppose that S is elementary abelian, $W=[W, S]$, and $m(S) \leq m(Y)$ for every subgroup $Y \neq 1$ of S. Then one of the following holds:
(a) $|S|=2$ and $m(S)>1$.
(b) $m(S)=2, G \cong S L_{2}(2) \times S L_{2}(2),\left|V^{*}\right|=2^{4}$, and $\left[V^{*}, S, S\right] \neq 1$.
(c) $W=F_{1} \times \cdots \times F_{r}$, where $F_{i} \in \Omega(W),[V, S, S]=1$, and $\left|V^{*} / C_{V^{*}}(S)\right|=2|S|$.
(d) $W S=E_{1} \times \cdots \times E_{r}$, where $E_{i} \cong S L_{2}(2)$ and $E_{i}^{\prime} \in \Omega(W),[V, S, S]$ $=1$, and $\left|V^{*} / C_{V^{*}}(S)\right|=|S|$.

Proof. If $|S|=2$, then (a) resp. (d) follows easily. Hence, we may assume that $|S| \geq 4$.

Let $\mathscr{G}_{2}(S)=\{A \in \mathscr{G}(S)| | A \mid=2\}$ and $A \in \mathscr{G}_{2}(S)$, and let $V_{A}=C_{V}(A)$ and $W_{A}=\left[C_{W}(A), S\right]$. Note that $m(A)=m(S)$ and that $C_{W_{A}}\left(V_{A}\right)=1$ by the $P \times Q$ lemma. From (1.5)(a) we get

$$
\left|V_{A} / C_{V_{A}}(S)\right|=|S / A|=\left|S / C_{S}\left(V_{A}\right)\right| .
$$

Hence, by induction on $|S|$ we may assume that $W_{A} S / A=\bar{E}_{1} \times \cdots \times \bar{E}_{s}$ and $V_{A}=U_{0} \times U_{1} \times \cdots \times U_{s}$, where $\bar{E}_{i} \cong S L_{2}(2), U_{0}=C_{V_{A}}\left(W_{A} S\right), U_{i}=$ [V_{A}, E_{i}], and $\left|U_{i}\right|=4$. In particular, W_{A} is a 3-group. Since W is solvable and $[W, S]=W,(1.5)(d)$ implies that W is a 3-group.

Suppose that there exists E_{i} such that $\left[V, E_{i}^{\prime}\right] \nless V_{A}$. Let $A_{i}=S \cap E_{i}$, $U=\left[V, E_{i}\right]$, and $S_{0}=C_{S}(U)$. Then $\left[U, A_{i}, A_{i}\right] \neq 1$ and $\left|A_{i}\right|=4$. M oreover, $\left|V_{A} / C_{V_{A}}\left(A_{i}\right)\right|=2$ and so for $a \in A_{i}^{\#}$ either $C_{V}(a) \leq V_{A}$ or $\left|C_{V}(a) / C_{V_{A}}(a)\right|=2$ since $m(\langle a\rangle) \geq m(S)=m(A)$. Since $U \nless V_{A}$ we get

$$
\left|C_{V}(a) / C_{V_{A}}(a)\right|=\left|[V, a] /\left[V_{A}, a\right]\right|=2 \quad \text { for } a \in A_{i} \backslash A .
$$

It follows that $|U|=2^{4}$ and $\left.\| U, a\right] \mid=4$ for $a \in S \backslash S_{0}$. In particular, $[U, a, s]=[U, a, A]$ for $a \in A_{i} \backslash A$ and $s \in C_{S}\left(E_{i}\right) \backslash S_{0}$. This gives $[U, s]=[U, A]$ by the action of E_{i}, and $C_{S}\left(E_{i}\right)=A$. Hence $S=A_{i} S_{0}$.

A ssume that $S_{0} \neq 1$. Then by (1.5)(a),

$$
\left|C_{V}\left(S_{0}\right) / C_{V}(S)\right|=4 m(S) m\left(S_{0}\right)^{-1}
$$

while $\left|U / C_{U}(S)\right|=8$, a contradiction. Hence $S_{0}=1$ and $|S|=4$.
Let $W_{1}=C_{W}(U)$. Then $W_{1} \leq C_{W}(S)$ since $[V, S] \leq U$. A s shown above $\left[C_{W}(X), S\right] \cong C_{3}$ for $X \in \mathscr{G}_{2}(S)$. Hence $\left[C_{W}(X), S, W_{1}\right]=1$ and $W_{1} \leq$ $Z(W)$ by (1.5)(d). It follows that $\left[V, W_{1}, W\right]=1$ since $\left[V, W_{1}, S\right]=1$ and $W=[W, S]$. This implies that $W_{1}=1$ and $W \cong C_{3} \times C_{3}$. Now (b) is easy to verify.

Suppose now that for every $A \in \mathscr{G}_{2}(S),\left[V, E_{i}^{\prime}\right] \leq V_{A}$ for $i=1, \ldots, s$. Together with (1.4) and (1.5)(d) this shows that $W=F_{1} \times \cdots \times F_{r}, F_{i} \in$ $\Omega(W)$, and $S \leq N_{G}\left(F_{i}\right)$. Hence $\left[V^{*}, S, S\right]=1$. We now choose $A \in \mathscr{G}_{2}(S)$ with the additional property the s is maximal; i.e., $[[W, A]$ is minimal.

As above, for $i=1, \ldots, s$ there exists $A \leq A_{i} \leq S$ such that $\left|A_{i}\right|=4$, $\left|V_{A} / C_{V_{A}}\left(A_{i}\right)\right|=2$, and $\left[W_{A}, A_{i}\right]=F_{i}$. Let i be fixed and $A=\langle a\rangle$. A mong all subgroups of order 2 in A_{i} we choose B_{i} such that $B_{i} \neq A$ and $\left[W, B_{i}\right]$ is minimal with that property. Let $B_{i}=\langle x\rangle$. Since a inverts [W, A] the minimality of $[W, x]$ gives $C_{[W, A]}(x) \neq 1$. Hence, there exists $F_{k} \in \Omega(W)$ such that $\left[F_{k}, x\right]=1$ and $\left[F_{k}, A\right]=F_{k}$. It follows that $\left[V, F_{k}\right] \leq C_{V}(x) \nless$ V_{A} and $m\left(B_{i}\right) \leq m(A)$; in particular $B_{i} \in \mathscr{G}_{2}(S)$. Thus, the minimality of $[W, A]$ gives $\| W, A]=\|[W, B]=3$ or 9 . Let $B_{0}=A$ and $V_{0}=C_{V}(W)$, and note that $S=\left\langle B_{0}, \ldots, B_{s}\right\rangle$.
A ssume that $|[W, A]|=3$. Then $W S \simeq S L_{2}(2) \times \cdots \times S L_{2}(2),|S|=2^{r}$, $\left|V^{*} / C_{V^{*}}(S)\right|=|S|$, and $\left|V^{*} / C_{V^{*}}\left(B_{i}\right)\right|=2$. It follows that

$$
\left|V / C_{V}(S)\right|=|S|\left|V_{0} / C_{V_{0}}(S)\right|=|S| m(S)
$$

and

$$
\left|V / C_{V}\left(B_{i}\right)\right|=2\left|V_{0} / C_{V_{0}}\left(B_{i}\right)\right|=2 m\left(B_{i}\right)
$$

Hence $C_{V_{0}}(S)=C_{V_{0}}\left(B_{i}\right)$ and $[V, S, S]=1$ since $m\left(B_{i}\right)=m(S)$, and (d) follows.

Assume now that $\| W, A] \mid=9$. Then $|S|=2^{r-1}$ since $W_{A} S / A \simeq$ $S L_{2}(2) \times \cdots \times S L_{2}(2)$ and $\left|V^{*} / C_{V^{*}}\left(B_{i}\right)\right|=4$. Now as above $C_{V_{0}}(S)=$ $C_{V_{0}}\left(B_{i}\right)$ and $[V, S, S]=1$, and (c) follows.
(1.7) Suppose that $J(V, S) \neq 1$. Then the following hold:
(a) $W=E^{\prime} \times C_{W}(E)$.
(b) $B=J(V, S)$ and $J(V, S) \in \mathscr{A}(V, S)$.
(c) $E=E_{1} \times \cdots \times E_{n}$ and $V=V_{0} \times V_{1} \cdots \times V_{n}$, where $V_{0}=C_{V}(E)$, $E_{i} \cong \mathrm{SL}_{2}(2), V_{i}=\left[V, E_{i}\right]$, and $\left|V_{i}\right|=4$ for $i=1, \ldots, n$.

Proof. Let $A \in \mathscr{A}(V, S)$. Then $m(A) \leq 1$, and (1.5)(e) gives $m(A)=1$. Now (1.6)(d) and again (1.5)(e) imply that [W, A] $A=E_{1} \times \cdots \times E_{s}$ and $V=C_{V}([W, A] A) \times V_{1} \times \cdots \times V_{s}$, where $E_{i} \cong S L_{2}(2), V_{i}=\left[V, E_{i}\right]$, and $\left|V_{i}\right|=4$. Since $E_{i}=\left[W, E_{i} \cap A\right]\left(E_{i} \cap A\right)$ each of the subgroups E_{i} is normal in $W A$.

Let Ω^{*} be the set of all subgroups F of G such that $F \cong S L_{2}(2)$, $\| V, F]=4$, and F is normal in $W F$, and let $E_{0}=\left\langle F \mid F \in \Omega^{*}\right\rangle$. Then $E_{0}=E_{1} \times \cdots \times E_{r}$, where $\Omega^{*}=\left\{E_{1}, \ldots, E_{r}\right\}$. Note that E_{0} is normal in G.

Let $S_{0}=S \cap E_{0}$. A s we have seen above $J(V, S) \leq S_{0}$. On the other hand, $\left|V / C_{V}\left(S_{0}\right)\right| \leq\left|S_{0}\right|$ and thus $S_{0} \in \mathscr{A}(V, S)$; in particular $S_{0}=J(V, S)$ and $E_{0}=E$.

It remains to prove $B=S_{0}$. Clearly, B normalizes every $E_{i} \in \Omega^{*}$. Hence $B=S_{0} C_{B}(E)$. However, $C_{B}(E)$ centralizes V and thus $B=S_{0}$.

2.

In this section G is a finite solvable group of even order and $C_{G}\left(O_{2}(G)\right)$ $\leq O_{2}(G)$.

Notation. $\quad S \in \operatorname{Syl}_{2}(G), Z=\Omega_{1}(Z(S)), V=\left\langle Z^{G}\right\rangle$, and $\bar{G}=G / C_{G}(V)$. $\mathscr{A}(S)$ is the set of all elementary abelian subgroups of maximal order of S, $J(S)=\langle A \mid A \in \mathscr{A}(S)\rangle, \tilde{Z}=\Omega_{1}(Z(J(S))), B=C_{S}(\tilde{Z})$, and $L=\left\langle B^{G}\right\rangle$.
(2.1) $\quad O_{2}(\bar{G})=1$.

Proof. This follows directly from the definition of V.
(2.2) Let $\bar{E}=\left[O_{2},(\bar{G}), \overline{J(S)}\right] \overline{J(S)}$. Suppose that $\overline{J(S)} \neq 1$. Then the following hold:
(a) \bar{E} is a normal subgroup of \bar{G}.
(b) $\overline{J(S)}=\bar{B}$.
(c) $\bar{E}=\bar{E}_{1} \times \cdots \times \bar{E}_{n}$, where $\bar{E}_{i} \cong S L_{2}(2)$.
(d) $V=V_{0} \times \cdots \times V_{n}$, where $V_{0}=C_{V}(\bar{E}), V_{i}=\left[V, E_{i}\right]$, and $\left|V_{i}\right|=4$ for $i=1, \ldots, n$.

Proof. Let $A \in \mathscr{A}(S)$. Then the maximality of $|A|$ yields

$$
\left|V C_{A}(V)\right|=|V|\left|C_{A}(V)\right||V \cap A|^{-1} \leq|A| .
$$

It follows that $\left|V / C_{V}(A)\right| \leq|\bar{A}|$ and $\bar{A} \in \mathscr{A}(V, \bar{S})$ (for definition see Section 1); in particular $\overline{J(S)} \leq J(V, \bar{S})$. Now (1.6)(d) and (1.7) applied to \bar{G} and V give (c), (d), and, together with an easy Frattini argument, also (a).

Note that \bar{B} normalizes \bar{E}_{i} for $i=1, \ldots, n$ and centralizes V_{0} since $V_{0} \leq \tilde{Z}$. It follows that $C_{\bar{B}}\left(\bar{E}^{\prime}\right)=C_{\bar{B}}(V)=1$. Hence $\overline{J(S)} \leq \bar{B}$ implies that $\overline{J(S)}=\bar{B}$.
(2.3) Suppose that $O_{2}(G)=C_{S}(V)$. Then $B \in \operatorname{Syl}_{2}(L)$.

Proof. A ssume first that $[V, J(S)]=1$. Then $V \leq \tilde{Z}$ and thus $B \leq$ $C_{S}(V)=O_{2}(G)$. Hence, B is normal in G.
A ssume now that $[V, J(S)] \neq 1$. Let $E=\left\langle J(S)^{G}\right\rangle$. We apply (2.2). Then $\overline{J_{\sim}(S)}=\bar{B}$ and $L=E B$. Hence, it suffices to show that $O_{2}(E) \leq B$. Let $Z_{0}=\Omega_{1}\left(Z\left(J\left(O_{2}(E)\right)\right)\right)$ and $A \in \mathscr{A}(S)$. Note that by (1.5)(e) $), C_{A}(V) V \in$ $\mathscr{A}(S)$. Hence $\tilde{Z} \leq Z_{0}$ and $\tilde{Z}_{0} \in C_{\tilde{Z}_{0}}(A) V$. It follows that $\left[\tilde{Z}_{0}, E\right] \leq V$; in particular, $Z V$ is normal in E. Now the structure of \bar{E} and its operation on $\underset{\sim}{V}$ shows that there exists $x \in E$ so that $E={ }_{\tilde{Z}}\left\langle J(S), J(S)^{x}\right\rangle C_{E}(V)$ and $\tilde{Z} V=Z^{*} V$, where $Z^{*}=\tilde{Z} \cap \tilde{Z}^{x}$ and $\tilde{Z}=Z^{*}(\tilde{Z} \cap V)$. M oreover, $C_{E}(V)$ centralizes $\tilde{Z} V / V$ and so $C_{E}(V)=C_{E}\left(Z^{*} V\right) O_{2}(E)$. Since $O_{2}(E)$ normalizes Z^{*} we conclude that Z^{*} is normal in E. However, now $\left[Z^{*}, J(S)\right]=1$ implies $\left[Z^{*}, E\right]=1$, and $O_{2}(E) \leq C_{S}(\tilde{Z})=B$.
(2.4) Suppose that the following hold:
(i) No nontrivial characteristic subgroup of S is normal in G.
(ii) S is contained in a unique maximal subgroup of G.

Then $\left[O_{2}(G), O^{2}(G)\right] \leq V$.
Proof. By (i) neither Z nor $J(S)$ is normal in G; i.e., $[V, J(S)] \neq 1$. M oreover, (ii) implies that $C_{S}(V)=O_{2}(G)$. We apply (2.2) and (2.3).

Let $B \leq L_{1} \leq L$ so that $\bar{L}_{1} / O_{2}\left(\bar{L}_{1}\right) \cong S L_{2}(2)$ and $\left|L_{1}\right|$ is minimal with that property. Then $B \in \operatorname{Syl}_{2}\left(L_{1}\right)$ and $L_{1} / O_{2}\left(L_{1}\right) \cong D_{2 \cdot 3^{n}}$. M oreover, by (ii), $\left\langle L_{1}, S\right\rangle=G$ and thus no nontrivial characteristic subgroup of B is normal in L_{1}. Hence, [8] implies that $\left[O_{2}\left(L_{1}\right), O^{2}\left(L_{1}\right)\right] \leq V$. Let T be a H all 2'-subgroup of $C_{L}\left(O_{2}(L) / V\right)$. Then $L_{1} \leq T S$ and $T S=G$. It follows that $\left[O_{2}(G), O^{2}(G)\right] \leq V$.
(2.5) Suppose that G satisfies the hypothesis of (2.4) and $\bar{G} \cong S L_{2}(2)$. Let T be a subgroup of $\mathrm{Aut}(S)$ of odd order. Then $\langle V \tau \mid \tau \in T\rangle$ is a normal subgroup of G in $O_{2}(G)$.

Proof. This is [8, 3.5].

3.

In this section G is a finite group of even order, S is a nontrivial 2-subgroup of G, and U is a subgroup of G containing S.
Notation. $\mathscr{L}(U, S)=\left\{E \leq U \mid S \in \operatorname{Syl}_{2}(E), O_{2}(E) \neq 1\right.$, and $S \neq$ $\left.O_{2}(E)\right\} ; \mathscr{P}(U, S)=\{E \in \mathscr{L}(U, S) \mid S$ is contained in a unique maximal subgroup of $E\} ; \mathscr{P}^{*}(U, S)=\left\{E \in \mathscr{P}(U, S) \mid O^{2}(E)\right.$ is subnormal in L for some maximal element $L \in \mathscr{L}(U, S)\}$. $\Phi_{2}(U)$ is the inverse image of $\Phi\left(U / O_{2}(U)\right)$ in U. If $U=G$, we also write $\mathscr{L}(S), \mathscr{P}(S)$, and $\mathscr{P}^{*}(S)$ instead of $\mathscr{L}(G, S), \mathscr{P}(G, S)$, and $\mathscr{P}^{*}(G, S)$, respectively.
(3.1) Let $S \in \operatorname{Syl}_{2}(G)$ and \mathscr{S} be the set of all subgroups U of G such that $S \leq U$ and
(*) $S \neq O_{2}(U)$ and S is contained in a unique maximal subgroup of U.
Then either $\mathscr{S}=\varnothing$ and $S=O_{2}(G)$, or $O^{2^{\prime}}(G)=\langle P \mid P \in \mathscr{S}\rangle$.
Proof. Let G be a minimal counterexample and $G_{0}=\langle P \mid P \in \mathscr{S}\rangle$, and let M be any maximal subgroup of G containing S. Then either $M=N_{G}(S)$ or, by induction, $M=N_{M}(S)\left(M \cap G_{0}\right)$. Since $N_{G}(S)$ normalizes G_{0} we conclude that $G_{0} N_{G}(S)$ is the unique maximal subgroup of G containing S, but now $G \in \mathscr{S}$. Since $G=O^{2^{\prime}}(G) N_{G}(S)=O^{2^{\prime}}(G) M$ it follows that $G=O^{2^{\prime}}(G)$, and G is not a counterexample.
(3.2) Let $L \in \mathscr{L}(S)$. Then $O^{2^{\prime}}(L)=\langle P \mid P \in \mathscr{P}(L, S)\rangle$.

Proof. This is a direct consequence of (3.1).
(3.3) Let $P \in \mathscr{P}(S)$ and B be the maximal subgroup of P containing S, and let P_{0} be the largest normal subgroup of P contained in B. Suppose that P is solvable. Then
(a) $O^{2}\left(P / O_{2}(P)\right)$ is a p-group for some odd prime p,
(b) $O^{2}\left(P / P_{0}\right)$ is an irreducible S-module,
(c) $P_{0} / O_{2}(P)=\Phi\left(O^{2}\left(P / O_{2}(P)\right)\right)$.

Proof. Let $\bar{P}=P / O_{2}(P)$. The existence of H all subgroups in \bar{P} shows that \bar{P} is a $\{2, p\}$-group, where p is some odd prime, and the Frattini argument shows that \bar{P}_{0} is a p-group.

Clearly, $\Phi\left(O^{2}(\bar{P})\right) \leq \bar{P}_{0}$, and M aschke's theorem gives $\bar{P}_{0}=\Phi\left(O^{2}(\bar{P})\right)$ and (b).
(3.4) Let $P \in \mathscr{P}(S)$ and T be a normal subgroup of S. Suppose that P is solvable. Then either $T \leq O_{2}(P)$ or $\left[O^{2}(P), T\right]=O^{2}(P)$.

Proof. Since $\left[O^{2}(P), T\right]$ is normal in P, the claim follows from (3.3).
(3.5) Let $P \in \mathscr{P}(S)$ and N be a normal subgroup of P in $O_{2}(P)$. Suppose that P is solvable and $\left[N, O_{2}(P) \cap O^{2}(P)\right]=1$. Then either $\left[Z(S), O^{2}(P)\right]$ $\neq 1$ or $\left[N, O^{2}(P)\right]=1$.

Proof. Note that $\left[N, O^{2}(P)\right] \leq Z\left(O_{2}\left(O^{2}(P)\right)\right)$ and that $\left[N, O^{2}(P)\right.$, $\left.O^{2}(P)\right]=1$ implies $\left[N, O^{2}(P)\right]=1$. Hence we may assume that $N \leq$ $O^{2}(P)$ and N is abelian. By Maschke's theorem $N=C_{N}\left(O^{2}(P)\right) \times$ [$N, O^{2}(P)$. Since $\left[N, O^{2}(P)\right.$] is S-invariant, the claim follows.
(3.6) Let $P \in \mathscr{P}(S), \bar{P}=P / O_{2}(P)$, and Z and T be two normal subgroups of S, and let A be a subgroup of S satisfying $\Phi(A) \leq O_{2}(P)$ and $a \in A \backslash O_{2}(P)$. Suppose that P is solvable, $Z \leq O_{2}(P)$, and $T \nless O_{2}(P)$. Then there exists $x \in P$ so that for $L=\left\langle A, A^{x}\right\rangle$ the following hold:
(a) $\bar{L}=\bar{E} \times \overline{A_{0}}$, where $\bar{E} \cong D_{2 p^{n}}$ and $A=\langle a\rangle A_{0}$.
(b) $O^{2}(L) \nless \Phi_{2}\left(O^{2}(P)\right)$.
(c) Any two elements in Z^{L} are interchanged by an involution of L.
(d) $O^{2}(L) \leq\left[O^{2}(L), T\right]$.

Proof. Let $F=\left[O^{2}(P), a\right]$. If $F \leq \Phi_{2}\left(O^{2}(P)\right)$, then $a \in O_{2}(P)$ which is not the case. H ence $F \not \Phi_{2}\left(O^{2}(P)\right)$. Let $F_{0} \leq F$ such that
(*) $\quad F_{0}$ is A-invariant and $F_{0} \not \Phi_{2}\left(O^{2}(P)\right)$.
A mong all such F_{0} satisfying $(*)$ we choose F_{0} such that first $\left|F_{0}\left[F_{0}, T\right]\right|$ and then $\left|F_{0}\right|$ is minimal. Since $\left.\bar{F}=\left\langle C_{\bar{F}}\left(\overline{A_{0}}\right)\right|\left|\overline{A^{\prime}} / \overline{A_{0}}\right|=2\right\rangle$ there exists $\underline{A}_{0} \leq A$ such that $\left|\bar{A} / \bar{A}_{0}\right|=2$ and $\bar{F}_{0} \leqq C_{\bar{F}}\left(\overline{A_{0}}\right)$ by the minimal choice of \bar{F}_{0}. N ote that $\bar{F}_{0} \nless \Phi(\bar{F})$ and so $\bar{a} \notin \bar{A}_{0}$.

Choose $\bar{e} \in \bar{F}_{0} \backslash \Phi\left(O^{2}(\bar{P})\right)$ such that $\bar{e}^{\bar{a}}=\bar{e}^{-1}$. The minimality of \bar{F}_{0} gives $\bar{F}_{0}=\langle\bar{e}\rangle$. Set $L=\left\langle A, A^{e}\right\rangle$. Then (a) and (b) hold. Since $O_{2}(L)$ normalizes every element in Z^{L}, the structure of $L / O_{2}(L)$ also gives (c).

By (3.4), $\bar{F}_{0} \leq\left[\bar{F}_{0}, \bar{T}\right] \Phi\left(O^{2}(\bar{P})\right)$. Hence $F_{1}:=\left[F_{0}, T, a\right] \nless \Phi_{2}\left(O^{2}(P)\right)$. N ow the minimality of $F_{0}\left[F_{0}, T\right]$ gives $F_{0} \leq\left[F_{0}, T\right]$, and (d) follows.
(3.7) Let $L \in \mathscr{L}(S)$ and $\bar{L}=L / O_{2}(L)$. Suppose that L is solvable. Then

$$
[F(\bar{L}), \bar{S}]=\left\langle O^{2}(\bar{P}) \mid P \in \mathscr{P}^{*}(L, S)\right\rangle
$$

Proof. Let F be the inverse image of $[F(\bar{L}), \bar{S}]$ in L. By (3.2), $F S=$ $\langle P \mid P \in \mathscr{P}(F S, S)\rangle$. M oreover, $O^{2}(P)$ is subnormal in L for every $P \in$ $\mathscr{P}(F S, S)$; i.e., $P \in \mathscr{P} *(L, S)$.

Now let $P \in \mathscr{P}^{*}(L, S)$. Then $O^{2}(P)$ is subnormal in L since L is the unique maximal element of $\mathscr{L}(L, S)$. It follows that $O^{2}(\bar{P}) \leq F(\bar{L})$ and so $P \in \mathscr{P}(F S, S)$ and $\mathscr{P}^{*}(L, S)=\mathscr{P}(F S, S)$.
(3.8) Let $P_{1}, P_{2} \in \mathscr{P}(S)$ and $H=\left\langle P_{1}, P_{2}\right\rangle$, and let N be a normal subgroup of H which is maximal (with respect to inclusion) such that $O^{2}\left(P_{i}\right) \nless N$ for $i=1,2$. Suppose that P_{1} and P_{2} are solvable. Then there exists a normal series $Q \leq N \leq H_{0} \leq H_{1} \leq H$ such that
(a) $Q=S \cap N$ and Q is the largest subgroup of S which is normal in H,
(b) H_{0} / N is a minimal normal subgroup of H / N and $O^{2}\left(P_{j}\right) \leq H_{0}$ for some $j \in\{1,2\}$,
(c) $H_{1}=H_{0}$ or $H_{1}=H_{0} O^{2}\left(P_{k}\right)$, where $O^{2}\left(P_{k}\right) \nless H_{0}$.
(d) $H=S H_{1}$.

Proof. Let $Q^{*}=S \cap O_{2}(H)$. Clearly, Q^{*} is the largest normal subgroup of H in S. Hence $Q^{*} \leq N$ by the maximality of N; i.e., $Q^{*} \leq S \cap$ $N=Q$. On the other hand, by (3.4), $Q=O_{2}\left(P_{i}\right) \cap N$ since $O^{2}\left(P_{i}\right) \nless N$. Hence $Q=Q^{*}$.

Let H_{0} be the inverse image of a minimal normal subgroup of H / N. Then there exists $j \in\{1,2\}$ such that $O^{2}\left(P_{j}\right) \leq H_{0}$. Let $\{1,2\}=\{j, k\}$. If $O^{2}\left(P_{k}\right) \leq H_{0}$, then $H_{0} S=H$. If $O^{2}\left(P_{k}\right) \nless H_{0}$, then $H_{0} O^{2}\left(P_{k}\right) S=H$.
(3.9) Let P_{1}, P_{2} and H be as in (3.8), and let $S \leq T \in \operatorname{Syl}_{2}(H)$ and $Q=S \cap O_{2}(H)$. Suppose that H is solvable, $\Omega_{1}(Z(S)) \leq Q$, and $J(S)=$ $J(T)$. Then one of the following holds:
(a) $\left[\Omega_{1}(Z(S)), O^{2}\left(P_{i}\right), O^{2}\left(P_{j}\right)\right]=1$ for $i \neq j$, or
(b) $C_{S}\left(\Omega_{1}(Z(J(S)))\right) \leq O_{2}\left(P_{i}\right)$ for some $i \in\{1,2\}$, or
(c) $\left[\Omega_{1}(Z(S)), O^{2}\left(P_{1}\right)\right]=\left[\Omega_{1}(Z(S)), O^{2}\left(P_{2}\right)\right]$.

Proof. Let $Z=\Omega_{1}(Z(S)), \quad V=\left\langle Z^{H}\right\rangle, \quad \bar{H}=H / C_{H}(V)$, and $B=$ $C_{S}\left(\Omega_{1}(Z(J(S)))\right)$. We may assume that $B \nless O_{2}(P)$, and $O^{2}\left(P_{i}\right) \nless C_{H}(V)$ for $i=1,2$. We apply (3.8) with $C_{H}(V) \leq N$.

A ssume that $J(S) \leq C_{H}(V)$. Then $J(S) \leq Q$ and $V \leq Z(J(S))$. Hence $B \leq C_{H}(V)$ and so $B \leq Q \leq O_{2}\left(P_{i}\right), i=1,2$, a contradiction.

A ssume now that $J(S) \nless C_{H}(V)$. Then there exists $i \in\{1,2\}$ such that $J(S) \not O_{2}\left(P_{j}\right)$; i.e., $O^{2}\left(P_{i}\right) \leq\left\langle J(S)^{P_{i}}\right\rangle$ by (3.4). Let $\bar{F}=O_{2^{\prime}}(F(\bar{H}))$. $O^{2}\left(\bar{P}_{i}\right) J(\bar{S})$.

Since $J(S)=J(T)$ and $\bar{S} \cap O_{2}(\bar{H})=1$ we get $\left[\overline{J(S)}, O_{2}(\bar{H})\right]=1$ and thus $\left[\bar{F}, O_{2}(\bar{H})\right]=1$. It follows that

$$
O_{2}(\bar{F}) \leq C_{\bar{S}}(F(\bar{H}))=\bar{S} \cap O_{2}(\bar{H})=1
$$

Hence, (1.7) applied to \bar{F} and V gives $O^{2}\left(\bar{P}_{i}\right) \leq O_{3}(\bar{H})$; in particular, $\bar{H}=O_{3}(\bar{H}) \bar{P}_{j}$, where $\{1,2\}=\{i, j\}$, and $\bar{S} \in \operatorname{Syl}_{2}(\bar{H})$.

Assume that $J(S) \neq O_{2}\left(P_{j}\right)$. Then by the same argument, $O^{2}\left(\bar{P}_{j}\right) \leq$ $O_{3}(\bar{H})$ and $\bar{H}=O_{3}(\bar{H}) \bar{S}$. If $\bar{P}_{1} \neq \bar{P}_{2}$, then again (1.7) gives (a). In the other case, (c) follows.
A ssume that $J(S) \leq O_{2}\left(P_{j}\right)$. Since $B \nless O_{2}\left(P_{j}\right)$ we get that $\left[\Omega_{1}(Z(J(S))), O^{2}\left(P_{j}\right)\right]=1$. However, now (1.7) applied to \bar{H} and V shows that $\left[V, O^{2}\left(P_{i}\right), O^{2}\left(P_{j}\right)\right]=1$, and again (a) holds.

4.

In this section G is a finite group of even order, $S \in \operatorname{Syl}_{2}(G)$, and the following hold:
(a) Every 2-local subgroup of G containing S is solvable and of characteristic 2 type.
(b) S is contained in two different maximal 2-local subgroups of G.

Notation. $\quad Z=\Omega_{1}(Z(S)), \quad C=C_{G}(Z), \quad D=\cap_{P \in \mathscr{P}(S)} O_{2}(P), \quad M=$ $N_{G}(D), B=C_{S}\left(\Omega_{1}(Z(J(S)))\right)$,

$$
\begin{aligned}
\mathscr{P}_{0}(S) & =\mathscr{P}^{*}(C, S) \cup\left(\mathscr{P}^{*}(S) \backslash \mathscr{P}(C, S)\right), \\
\mathscr{P}_{1}(S) & =\mathscr{P}^{*}(M, S) \cup\left(\mathscr{P}^{*}(S) \backslash \mathscr{P}(M, S)\right), \\
\Lambda & =\left\{\left(P_{1}, P_{2}\right) \mid P_{i} \in \mathscr{P}(S), O_{2}\left(\left\langle P_{1}, P_{2}\right\rangle\right)=1\right\} .
\end{aligned}
$$

Remark. A subgroup similar to D was used in [3].
(4.1) The following hold:
(a) $\mathscr{L}(S) \neq \varnothing \neq \mathscr{P}(S)$.
(b) $O_{2}(M) \neq 1$.
(c) $N_{G}(S) \leq M$.

Proof. $N_{G}(S)$ is not the only 2-local subgroup of G containing S. Hence (3.2) implies (a).
Claim (b) holds since $Z \leq D \leq O_{2}(M)$, and (c) holds since $N_{G}(S)$ operates on the elements of $\mathscr{P}(S)$ by conjugation.
(4.2) Let $L \in \mathscr{L}(S), \quad D_{L}=\cap_{P \in \mathscr{P}(L, S)} O_{2}(P)$, and $D_{L}^{*}=$ $\cap_{P \in \mathscr{P}^{*}(L, S)} O_{2}(P)$. Then $D_{L}=D_{L}^{*}=O_{2}(L)$ and $D=\cap_{L \in \mathbb{M}(S)} O_{2}(L)$, where $\mathscr{M} \mathscr{L}(S)$ is the set of maximal elements of $\mathscr{L}(S)$.

Proof. Let F_{0} be the inverse image of $F\left(L / O_{2}(L)\right)$ in L and $F=$ [F_{0}, S]. By (3.7), $F S=\left\langle P \mid P \in \mathscr{P}^{*}(L, S)\right\rangle$. It follows that $\left[F_{0}, D_{L}^{*}\right] \leq F$ and $\left[F, D_{L}^{*}\right] \leq O_{2}(L)$. We conclude that

$$
O_{2}(L) \leq D_{L} \leq D_{L}^{*} \leq O_{2}(L) .
$$

and the claim follows.
(4.3) $D=\bigcap_{P \in \mathscr{P}_{i}(S)} O_{2}(P)$ for $i=0,1$.

Proof. For $\varnothing \neq \mathscr{X} \subseteq \mathscr{L}(S)$ define $O_{2}(\mathscr{X})=\cap_{P \in \mathscr{A} O_{2}(P) \text {. Let } M_{0}=C}$ and $M_{1}=M$. By (4.2) it suffices to show that $\left.O_{2} \mathscr{P}_{i}(S)\right) \leq O_{2}(L)$ for every maximal element $L \in \mathscr{L}(S)$.
We have $\mathscr{P}^{*}(L, S) \subseteq \mathscr{P}\left(M_{i}, S\right) \cup\left(\mathscr{P}^{*}(S) \backslash \mathscr{P}\left(M_{i}, S\right)\right.$), and by (4.2),

$$
O_{2}\left(\mathscr{P}^{*}\left(M_{i}, S\right)\right)=O_{2}\left(\mathscr{P}\left(M_{i}, S\right)\right)=O_{2}\left(M_{i}\right)
$$

Hence

$$
\begin{aligned}
O_{2}\left(\mathscr{P}_{i}(S)\right) & =O_{2}\left(\mathscr{P}\left(M_{i}, S\right)\right) \cap O_{2}\left(\mathscr{P}^{*}(S) \backslash \mathscr{P}\left(M_{i}, S\right)\right) \\
& \leq O_{2}\left(\mathscr{P}^{*}(L, S)\right)=O_{2}(L) .
\end{aligned}
$$

(4.4) Let $P \in \mathscr{P}(S) \backslash \mathscr{P}(M, S)$ and $k \in\{0,1\}$. Then there exists $P^{*} \in$ $\mathscr{P}_{k}(S)$ such that $\left(P, P^{*}\right) \in \Lambda$.

Proof. Let $\mathscr{P}_{k}(S)=\left\{P_{1}, \ldots, P_{n}\right\}$ and $H_{i}=\left\langle P, P_{i}\right\rangle, i=1, \ldots, n$. We may assume that $O_{2}\left(H_{i}\right) \neq 1$ for $i=1, \ldots, n$. H ence by (4.2) and (4.3),

$$
D \leq \bigcap_{i=1}^{n} O_{2}\left(H_{i}\right) \leq \bigcap_{i=1}^{n} O_{2}\left(P_{i}\right)=D
$$

and $D=\bigcap_{i=1}^{n} O_{2}\left(H_{i}\right)$. However, now $P \leq M$, a contradiction.
(4.5) Let $\mathscr{P}(S)=\mathscr{P}(M, S) \cup \mathscr{P}(C, S)$ and $P \in \mathscr{P}(S) \backslash \mathscr{P}(M, S)$. Then there exists $P^{*} \in \mathscr{P}^{*}(M, S)$ so that $\left(P, P^{*}\right) \in \Lambda$. If in addition $\mathscr{P}^{*}(C, S) \subseteq$ $\mathscr{P}(M, S)$, then $O_{2}(M) \leq O_{2}(C)$ and $O_{2}(C) \in \operatorname{Syl}_{2}\left(O^{2}\left(P^{*}\right) O_{2}(C)\right)$.

Proof. By (4.4) there exists $P^{*} \in \mathscr{P}_{1}(S)$ such that $\left(P, P^{*}\right) \in \Lambda$. Since $P \leq C$, we have $P^{*} \nless C$ and thus $P^{*} \in \mathscr{P}^{*}(M, S)$.

Suppose that $\mathscr{P}^{*}(C, S) \subseteq \mathscr{P}(M, S)$. Then (4.2) implies that $O_{2}(M) \leq$ $O_{2}(C)$. Since $O_{2}\left(O^{2}\left(P^{*}\right)\right) \leq O_{2}(M)$, we conclude that $O_{2}(C) \in$ $\mathrm{Syl}_{2}\left(O^{2}\left(P^{*}\right) O_{2}(C)\right)$.
(4.6) Suppose that $\mathscr{P}(S)=\mathscr{P}(C, S) \cup \mathscr{P}(M, S)$. Then $\mathscr{P}^{*}(C, S) \nsubseteq$ $\mathscr{P}(M, S)$.

Proof. A ssume that $\mathscr{P}^{*}(C, S) \subseteq \mathscr{P}(M, S)$. By (4.5) there exist $P \in$ $\mathscr{P}(C, S)$ and $P^{*} \in \mathscr{P}^{*}(M, S)$ such that $\left(P, P^{*}\right) \in \Lambda$ and $O_{2}(C) \in$ $\mathrm{Syl}_{2}\left(O^{2}\left(P^{*}\right) O_{2}(C)\right)$.

Let $B_{0}=C_{O_{2}(C)}\left(\Omega_{1}\left(Z\left(J\left(O_{2}(C)\right)\right)\right)\right), L=\left\langle B_{0}^{P^{*}}\right\rangle, V=\left\langle Z^{P^{*}}\right\rangle$, and $\bar{L}=$ $L / C_{L}(V)$. N ote that B_{0} is normal in P and thus not normal in P^{*}. Hence by (3.4), $O^{2}\left(P^{*}\right) \leq L$, and by (3.3), $O_{2}(L) \in \operatorname{Syl}_{2}\left(C_{L}(V)\right)$ since $P^{*} \nless C$. Thus (2.3) gives $B_{0} \in \operatorname{Syl}_{2}(L)$. M oreover, since $\left(P, P^{*}\right) \in \Lambda$ there is no nontrivial characteristic subgroup of B_{0} which is normal in L. Hence $L S=P^{*}$ and (2.2) imply
(i) $\bar{L}=\bar{E}_{1} \times \cdots \times \bar{E}_{n}$,
(ii) $V=V_{0} \times \cdots \times V_{n}$,
where the notation is as in (2.2). Since $V_{0} \cap Z$ is normalized by P and P^{*}, we get $V_{0} \cap Z=1$ and thus $V_{0}=1$.

Let T be a Sylow 3-subgroup of P^{*}. Then by (2.4), $\left[O_{2}\left(P^{*}\right), T\right]=V$ and $O_{2}\left(P^{*}\right)=V C_{O_{2}\left(P^{*}\right)}(T)$. The Frattini argument shows that $C_{O_{2}\left(P^{*}\right)}(T)$ is normal in S, and $V_{0}=1$ gives $C_{O_{2}\left(P^{*}\right)}(T)=1$ and $O_{2}\left(P^{*}\right)=V_{1} \times \cdots \times V_{n}$; in particular, $O_{2}\left(P^{*}\right)=O_{2}(M)$.

Let $R_{i}=\left[V_{i}, B_{0}\right]$ and $\Omega=\left\{R_{i} \mid i=1, \ldots, n\right\}$. N ote that $\Omega=\left\{R_{1}^{s} \mid s \in\right.$ $S\}$ since $P^{*} \in \mathscr{P}(S)$. Choose $\alpha \in \mathrm{Aut}\left(B_{0}\right)$. If $\left[V_{i} \alpha, V_{j}\right] \neq 1$, then $R_{j}=$ $\left[V_{i} \alpha, V_{i}\right]=\left[V_{i} \alpha, B_{0}\right]=R_{i} \alpha$. If $V_{i} \alpha \leq V$, then there exists \bar{E}_{j} so that [$V_{i} \alpha, \bar{E}_{j} \cap \bar{B}_{0}$] $=R_{j}=R_{i} \alpha$. We conclude that $\mathrm{A} u t\left(B_{0}\right)$ operates on Ω. Since $C \leq N_{G}\left(B_{0}\right)$ we get that $C=S C_{0}$, where $C_{0}=N_{C}\left(R_{1}\right)$.

Let U be a Hall 2'-subgroup of C_{0} and $u \in U$. By (2.5), $\left[V_{1}, V_{1}^{u}\right]=1$, and $\left[V_{i}, V_{1}^{u}\right] \leq R_{1} \cap R_{i}=1$ for $2 \leq i$. It follows that $\left\langle V_{1}^{U}\right\rangle \leq O_{2}\left(P^{*}\right)$. Hence also

$$
\left\langle\left\langle V_{1}^{U}\right\rangle^{S}\right\rangle=\left\langle V_{1}^{U S}\right\rangle \leq O_{2}\left(P^{*}\right) .
$$

However, $U S=C$ and $\left\langle V_{1}^{S}\right\rangle=O_{2}\left(P^{*}\right)$. Now $O_{2}\left(P^{*}\right)=O_{2}(M)$ implies that $C \leq M$, and M is the unique maximal 2-local subgroup containing S. a contradiction.
(4.7) There exists $\left(P, P^{*}\right) \in \Lambda$ such that $P \nless C$ and $P^{*} \in \mathscr{P}_{0}(S)$.

Proof. Assume that $\mathscr{P}(S) \neq \mathscr{P}(C, S) \cup \mathscr{P}(M, S)$. Then (4.4) yields the assertion. A ssume that $\mathscr{P}(S)=\mathscr{P}(C, S) \cup \mathscr{P}(M, S)$. Then (4.6) implies that $\mathscr{P}^{*}(C, S) \nsubseteq \mathscr{P}(M, S)$. Now (4.7) follows from (4.5) for $P^{*} \in$ $\mathscr{P}^{*}(C, S) \backslash \mathscr{P}(M, S)$.

5.

In this section we assume

H ypothesis 1. H is a finite group of even order, $S_{0} \in \operatorname{Syl}_{2}(H)$, and the following hold:
(i) Every 2-local subgroup of H containing S_{0} is solvable and of characteristic 2 type.
(ii) $O_{2}(H)=1$ and H does not contain a strongly embedded subgroup.
(5.1) There exists a nontrivial subgroup S of S_{0} and $P_{1}, P_{2} \in \mathscr{P}(S)$ such that $O_{2}\left(\left\langle P_{1}, P_{2}\right\rangle\right)=1$ and one of the following holds:
(a) $S=S_{0}$ and $\Omega_{1}(Z(S))$ is neither normal in P_{1} nor in P_{2}.
(b) $S=S_{0}$ and $P_{2} \in \mathscr{P}^{*}\left(C_{H}\left(\Omega_{1}(Z(S))\right), S\right)$.
(c) $S \neq S_{0}, S_{0}$ is contained in a unique maximal 2-local subgroup M of H, and
$\left(\mathrm{c}_{1}\right) \quad \Omega_{1}(Z(S))$ and $J(S)$ are neither normal in P_{1} nor in P_{2},
(c 2_{2}) $P_{i} 太 M$ and $S \in \operatorname{Syl}_{2}\left(N_{H}\left(O_{2}\left(P_{i}\right)\right)\right.$ for $i=1,2$, and
(c_{3}) if $J(S) \leq T \leq S_{0}, P_{1}^{*}, P_{2}^{*} \in \mathscr{P}(T)$, and $O_{2}\left(\left\langle P_{1}^{*}, P_{2}^{*}\right\rangle\right) \neq 1$, then either $\left\langle P_{1}^{*}, P_{2}^{*}\right\rangle \leq M$ or $J(S)=J\left(S_{1}\right)$ for $T \leq S_{1} \in \operatorname{Syl}_{2}\left(\left\langle P_{1}^{*}, P_{2}^{*}\right\rangle\right)$.

Proof. Assume first that S_{0} is contained in two different maximal 2-local subgroups of H. Then (a) or (b) follows from (4.7).
A ssume now that there exists a unique maximal 2-local subgroup M of H containing S_{0}. Since M is not strongly embedded in H there exists $1 \neq Q \leq S_{0}$ such that $N_{H}(Q) \nless M$. A mong all 2-local subgroups which are not in M we choose N such that for $S \in \operatorname{Syl}_{2}(N \cap M)$ consecutively
(i) $|J(S)|$ is maximal,
(ii) $|S|$ is maximal.

A fter conjugation in M we may assume that $S \leq S_{0}$. Since $S \neq S_{0}$ we have that
(*) $\quad N_{H}(J(S)) \leq M$ and $C_{H}\left(\Omega_{1}(Z(S))\right) \leq M$;
in particular $S \in \operatorname{Syl}_{2}(N)$. Hence by (3.2), $\mathscr{P}(N, S) \nsubseteq \mathscr{P}(M, S)$.
Let $P \in \mathscr{P}(N, S) \backslash \mathscr{P}(M, S)$ and let $x \in N_{S_{0}}(S) \backslash S$ with $x^{2} \in S$. Set $P_{1}=P, P_{2}=P_{1}^{x}$, and $H_{0}=\left\langle P_{1}, P_{2}\right\rangle$. Since $x \in N_{H}\left(O_{2}\left(H_{0}\right)\right)$ and $H_{0} \nless M$ the maximality of S implies that $O_{2}\left(H_{0}\right)=1$; and similarly $S \in$ $\mathrm{Syl}_{2}\left(N_{H}\left(O_{2}\left(P_{i}\right)\right)\right.$. Together with ($*$), (C_{1}) and (c_{2}) follow.

Now let P_{1}^{*} and P_{2}^{*} be as in $\left(\mathrm{C}_{3}\right)$ and let $H^{*}=\left\langle P_{1}^{*}, P_{2}^{*}\right\rangle$ and $T \leq S_{1} \in$ $\operatorname{Syl}_{2}\left(H^{*}\right)$. A ssume that $J\left(S_{1}\right) \neq J(S)$. Then the maximality of $J(S)$ gives $H^{*} \leq M$. Hence (c_{3}) holds.
(5.2) Let $Z_{0}=\Omega_{1}\left(Z\left(S_{0}\right)\right), \quad B_{0}=C_{S_{0}}\left(\Omega_{1}\left(Z\left(J\left(S_{0}\right)\right)\right)\right), C=C_{H}\left(Z_{0}\right)$, and $P \in \mathscr{P}^{*}\left(C, S_{0}\right)$, and let K be a subgroup of P. Suppose that the following hold:
(i) Every 2-local subgroup of H containing B_{0} is solvable and of characteristic 2 type, and
(ii) $K=\left[K, B_{0}\right]$.

Then K is subnormal in every 2-local subgroup of H containing $B_{0} K$.
Proof. Let D be a 2 -subgroup of H which is normalized by $K B_{0}$. Note that B_{0} is normal in $D B_{0}$ and by (ii), $K=O^{2}(K)$. Hence $\left[D, B_{0}\right] \leq D \cap B_{0}$ and

$$
\left[D, K B_{0}\right]=\left[D,\left\langle B_{0}^{K}\right\rangle\right] \leq\left\langle\left(D \cap B_{0}\right)^{K}\right\rangle \leq K B_{0} .
$$

It follows that $D \in N_{H}\left(K B_{0}\right)$, and $K=O^{2}\left(K B_{0}\right)$ yields $D \leq N_{H}(K)$. We have shown:
(1) Let D be a 2-subgroup of H and $K B_{0} \leq N_{H}(D)$. Then $D \leq N_{H}(K)$.

From (1) we get that K is normal in $K O_{2}(P)$ and from (3.3) that $\mathrm{KO}_{2}(P)$ is subnormal in P. Hence
(2) K is subnormal in $O^{2}(P)$.

A ssume now that K is a counterexample such that $|K|$ is maximal. Set $N=N_{H}(K)$. By (1) there exists $T \in \operatorname{Syl}_{2}(N)$ such that $O_{2}(C) B_{0} \leq T$. Let $g \in H$ such that $T \leq S_{\delta}^{g}$. Then $g \in N_{H}\left(B_{0}\right)$ and $Z_{\delta}^{g} \leq Z\left(O_{2}(C)\right)$. On the other hand, the subnormality of $O^{2}(P)$ in C gives $O_{2}\left(O^{2}(P)\right) \leq O_{2}(C)$ and by (3.5), $\left[\Omega_{1}\left(Z\left(O_{2}(C)\right)\right), O^{2}(P)\right]=1$. Hence $O^{2}(P) \leq C^{g}$.
If $K \neq O^{2}(P)$, then the maximality of K implies that $O^{2}(P)$ and thus by (2) also K is subnormal in C^{g}. If $K=O^{2}(P)$, then $S_{0} \in \operatorname{Syl}_{2}(N)$ and by (2), K is subnormal in C. Hence, we have shown:
(3) There exists $h \in N_{H}\left(B_{0}\right)$ such that $S_{0}^{h} \cap N \in \operatorname{Syl}_{2}(N)$ and K is subnormal in C^{h}.
We set $T_{0}=S_{0}^{h}$ and $\hat{Z}_{0}=Z_{0}^{h}$, where h and S_{0} are as in (3). Since K is a counterexample there exists a subgroup M such that the following hold:
(4) $C_{H}\left(O_{2}(M)\right) \leq O_{2}(M)$ and $K B_{0} \leq M$.
(5) K is not subnormal in M.
(6) K is subnormal in every proper subgroup of M containing $\mathrm{KB}_{0} \mathrm{O}_{2}(\mathrm{M})$.

By (1), $O_{2}(M) \leq N$ and thus by (3), $O_{2}(M) B_{0} \leq T_{0}^{g}$ for some $g \in N$. Then $B_{0}^{g}=B_{0}$ and we may assume that $T_{0}=T_{0}^{g}$. Now (4) implies that $\hat{Z}_{0} \leq Z\left(O_{2}(M)\right)$.

Let $V=\left\langle\hat{Z}_{0}^{M}\right\rangle$ and $C_{0}=C_{M}(V)$. If $K \leq C_{0}$, then by (3), K is subnormal in C_{0} since $C_{0} \leq C^{h}$, and thus K is subnormal in M which contradicts (5).

Suppose that $O_{2}(K) \leq C_{0}$. Then $[V, K] \leq Z\left(O_{2}(K)\right)$ by (1) and thus $\left[Z\left(O_{2}(K)\right), K\right] \neq 1$ since $K \nless C_{0}$. This contradicts (3.5). We have shown:
(7) $O_{2}(K) \nless C_{0}$.

Let $\bar{M}=M / C_{0}$ and $\bar{W}=O_{2}(\bar{M})$. Then as above in the proof of (1), $\left[\bar{W}, \bar{B}_{0}\right] \leq \bar{W} \cap \bar{B}_{0}$ and $\bar{W} \leq N_{\bar{M}}(\bar{K})$, i.e., $W \leq N_{M}\left(K C_{0}\right)$. On the other hand, K is subnormal in $K C_{0}$ and thus $O_{2}(K) \leq O_{2}\left(K C_{0}\right)$. Hence

$$
O_{2}(K) \cap W \leq O_{2}(W) \leq O_{2}(M) \leq C_{0} .
$$

Since $K / O_{2}(K)$ is a p-subgroup we get that $[\bar{W}, \bar{K}]=O_{2}(\bar{K}) \cap \bar{W}=1$. In particular,

$$
\left[O_{2^{\prime}}(F(\bar{M})), O_{2}(\bar{K})\right] \neq 1
$$

by (7). Now (6) implies that $\bar{M}=O_{2}(F(\bar{M})) \overline{K B_{0}}$ and $\bar{W} \leq \overline{T_{0} \cap M}$. The definition of V implies that $\bar{W}=1$. Since by (7), $V \nless Z\left(B_{0}\right)$ we get $J\left(T_{0}\right) \nless C_{0}$. Hence (2.2) gives $\bar{K} \leq O_{3}(\bar{M})$ and $O_{2}(\bar{K})=1$, a contradiction to (7).

We now have set the stage for the amalgam method, which will deal with a triple (P_{1}, P_{2}, S) as in (5.1). In case (5.1)(c), P_{1} and P_{2} need not be solvable or of characteristic 2 type. To get these properties we will make a further hypothesis which will be used in most of the following sections.

Hypothesis 2. Hypothesis 1 holds, S, P_{1}, and P_{2} are as in (5.1), and $B=C_{S}\left(\Omega_{1}(Z(J(S)))\right.$). In addition:
(iii) Every 2-local subgroup of H containing B is solvable and of characteristic 2 type.
(5.3) Assume Hypothesis 2. Then P_{1} and P_{2} are solvable and of characteristic 2 type.

Proof. Let $N=N_{H}\left(O_{2}\left(P_{i}\right)\right)$. By (5.1), $S \in \operatorname{Syl}_{2}(N)$, and by Hypothesis 2, N is solvable and of characteristic 2 type.
(5.4) Assume Hypothesis 2. Let $B \leq T \leq S, F_{1}, F_{2} \in \mathscr{P}(T)$, and $H_{0}=$ $\left\langle F_{1}, F_{2}\right\rangle$, and let M be a maximal 2-local subgroup of H containing S_{0}. Suppose that $O_{2}\left(H_{0}\right) \neq 1$ and either $S=S_{0}$ or $H_{0} 太 M$. Then $\Omega_{1}(Z(S)) \leq$ $O_{2}\left(H_{0}\right)$.

Proof. Let $T_{0}=T \cap O_{2}\left(H_{0}\right), N=N_{H}\left(T_{0}\right)$, and $T \leq S_{1} \in \operatorname{Syl}_{2}\left(H_{0}\right)$. If $S=S_{0}$, then obviously $J(S)=J\left(S_{1}\right)$; and if $S \neq S_{0}$, then (5.1)(c) shows
that $J(S)=J\left(S_{1}\right)$. Hence $\left[O_{2}\left(H_{0}\right), J(S)\right] \leq J(S) \cap O_{2}\left(H_{0}\right) \leq T_{0}$ and $T_{0} \neq$ 1 since $\Omega_{1}\left(C_{S_{1}}(J(S))\right) \leq J(S)$.

We have shown that N is a 2-local subgroup of H. By (3.8), $H_{0} \leq N$. Thus, N is of characteristic 2 type. Let $Z=\Omega_{1}(Z(S))$ and $W=\left\langle Z^{N}\right\rangle$. As above $J(S)=J\left(S_{2}\right)$ for $T \leq S_{2} \in \operatorname{Syl}_{2}(N)$. Since $Z \leq J(S)$ we get that $\left[O_{2}(N), W\right] \leq T_{0}$ and $\left[T_{0}, W\right]=1$. It follows that $\left[O^{2}(W), O_{2}(N)\right]=1$ and thus $Z \leq W \leq O_{2}(N)$. We conclude that $Z \leq O_{2}\left(H_{0}\right)$.

6.

In this section we assume H ypothesis 2 .
Notation. $\quad Q_{i}=O_{2}\left(P_{i}\right), \quad L_{i}=\left\langle B^{P_{i}}\right\rangle, \quad Z_{i}=\left\langle\Omega_{1}(Z(B))^{P_{i}}\right\rangle, \quad V=$ $\left\langle\Omega_{1}(Z(S))^{P_{1}}\right\rangle, \bar{P}_{1}=P_{1} / C_{P_{1}}(V)$, and $J(V, \bar{S})$ is defined as in Section 1.
(6.1) $B \nless Q_{2}$.

Proof. A ssume first that $J(S) \leq Q_{1}$. Then $J(S) \nless Q_{2}$ since $O_{2}\left(\left\langle P_{1}, P_{2}\right\rangle\right)=1$. Hence $B \nless Q_{2}$.

A ssume now that $J(S) \nless Q_{1}$. By (5.3) and (3.3), $C_{S}(V)=Q_{1}$ and by (2.3), $B \in \operatorname{Syl}_{2}\left(L_{1}\right)$. A ssume that $B \leq Q_{2}$. Then $J(S)$ is normal in P_{2}. In particular (5.1)(a) or (b) holds and $S=S_{0}$ According to (2.2) there exists $E_{1} \in \mathscr{P}\left(L_{1}, B\right)$ such that $E_{1} / C_{E_{1}}\left(\left[V, E_{1}\right]\right) \cong S L_{2}(2)$ and $\left\langle E_{1}, S\right\rangle=P_{1}$. Since $\left\langle E_{1}, P_{2}\right\rangle=\left\langle P_{1}, P_{2}\right\rangle$ there is no nontrivial characteristic subgroup of B which is normal in E_{1}. Hence (2.4) gives $\|\left[O_{2}\left(E_{1}\right), O^{2}\left(E_{1}\right)\right]=4$.

Let $W_{1}=\left[O_{2}\left(E_{1}\right), O^{2}\left(E_{1}\right)\right]$ and $W=\left\langle W_{1}^{u} \mid u \in U\right\rangle$, where U is a H all 2'-subgroup of P_{2}. Then by (2.5), W is normal in $\left\langle E_{1}, U\right\rangle$. Let $u \in U$ and $H_{0}=\left\langle E_{1}, E_{1}^{u}\right\rangle$. Clearly $J(B)=J\left(S_{1}\right)$ for $B \leq S_{1} \in \operatorname{Syl}_{2}\left(H_{0}\right)$ since $S=S_{0}$. M oreover, by (5.4), $\Omega_{1}(Z(S)) \leq B \cap O_{2}\left(H_{0}\right)$. Hence (3.9) gives $O^{2}\left(E_{1}^{u}\right) \leq$ $N_{H}\left(W_{1}\right)$ and $O^{2}\left(E_{1}\right) \leq N_{H}\left(W_{1}^{u}\right)$; i.e., by (2.2), $\left\langle L_{1}, E_{1}^{u} \mid u \in U\right\rangle \leq N_{H}\left(W_{1}\right)$. In particular, $O_{2}\left(\left\langle E_{1}^{s}, E_{1}^{u}\right\rangle\right) \neq 1$ for $s \in S$. Now the same argument with $E_{1}^{s}, s \in S$, in place of E_{1} gives $O^{2}\left(E_{1}^{s}\right) \leq N_{H}\left(W_{1}^{u}\right)$. It follows that $\left\langle L_{1}, U\right\rangle$ $\leq N_{H}(W)$.
Set $W^{*}=\left\langle W^{S}\right\rangle$. Then W^{*} is a normal subgroup of P_{1} in Q_{1}. Since $P_{2}=S U=U S$ we get that $U \leq N_{H}\left(W^{*}\right)$ and thus $\left\langle P_{1}, U\right\rangle=\left\langle P_{1}, P_{2}\right\rangle \leq$ $N_{H}\left(W^{*}\right)$, a contradiction.
(6.2) Suppose that $\left[P_{2}, \Omega_{1}(Z(S))\right] \neq 1$. Then $J(S) \nless Q_{i}, i=1,2$.

Proof. The hypothesis is symmetric in P_{1} and P_{2} since also $\left[P_{1}, \Omega_{1}(Z(S))\right] \neq 1$. Hence (6.1) implies $B \nless Q_{i}, i=1,2$. Now (3.4) gives $\left[O^{2}\left(P_{i}\right), B\right]=O^{2}\left(P_{i}\right)$. A ssume that $J(S) \leq Q_{i}$. Then $\Omega_{1}\left(Z\left(Q_{i}\right)\right) \leq Z(B)$ and $\left[\Omega_{1}\left(Z\left(Q_{i}\right)\right), O^{2}\left(P_{i}\right)\right]=1$. Thus (5.3) yields $\left[P_{i}, \Omega_{1}(Z(S))\right]=1$, a contradiction.
(6.3) Suppose that $\left[P_{2}, \Omega_{1}(Z(S))\right] \neq 1$. Then $P_{i} / Q_{i} \cong D_{2 \cdot 3^{n i}}, i=1,2$.

Proof. From (6.2) we get that $J(S) \nless Q_{i}, i=1,2$. Hence $B \in \operatorname{Syl}_{2}\left(L_{i}\right)$ by (3.3) and (2.3). We apply (2.2).
There exists $E_{i} \in \mathscr{P}\left(L_{i}, B\right)$ such that

$$
\begin{gathered}
\left\langle E_{i}, S\right\rangle=P_{i}, \quad\left|\left[Z_{i}, O^{2}\left(E_{i}\right)\right]\right|=4, \quad \text { and } \\
E_{i} / C_{E_{i}}\left(\left[Z_{i}, O^{2}\left(E_{i}\right)\right]\right) \cong S L_{2}(2) .
\end{gathered}
$$

A ssume first that $O^{2}\left(E_{2}\right)$ normalizes $\left[Z_{1}, O^{2}\left(E_{1}^{s}\right)\right]$ for every $s \in S$. Then E_{2} normalizes $\left[Z_{1}, O^{2}\left(L_{1}\right)\right]$ and $\left\langle P_{1}, P_{2}\right\rangle \leq N_{H}\left(\left[Z_{1}, L_{1}\right]\right)$, a contradiction.

We may assume now that E_{1} and E_{2} are chosen such that $O^{2}\left(E_{2}\right) \nless$ $N_{H}\left(\left[Z_{1}, O^{2}\left(E_{1}\right)\right]\right)$. Let $H_{0}=\left\langle E_{1}, E_{2}\right\rangle$. Suppose that $O_{2}\left(H_{0}\right) \neq 1$. If (5.1)(c) holds, then $H_{0} \nless M$ [M as in (5.1)(c)] since $P_{i} \nless M$. Thus $J(S)=J\left(S_{1}\right)$ for $B \leq S_{1} \in \operatorname{Syl}_{2}\left(H_{0}\right)$ in any case. M oreover, (5.4) yields $\Omega_{1}(Z(S)) \leq O_{2}\left(H_{0}\right)$, and H_{0} satisfies the hypothesis of (3.9). Hence $O^{2}\left(E_{2}\right) \leq N_{H}\left(\left[Z_{1}, O^{2}\left(E_{1}\right)\right]\right)$, a contradiction.

Suppose now that $O_{2}\left(H_{0}\right)=1$. Let $Z_{0}=C_{\Omega_{1}(Z(B))}\left(E_{1}\right)$. Then $C_{Z_{0}}\left(E_{2}\right)=$ 1. Since by (2.2),

$$
\left|\Omega_{1}(Z(B)) / \Omega_{1}(Z(B)) \cap C_{H}\left(E_{i}\right)\right|=2,
$$

we conclude that $\left|Z_{0}\right| \leq 2$ and $\left|\Omega_{1}(Z(B))\right| \leq 4$; in particular $\left[\Omega_{1}(Z(B)), S\right]$ $\leq \Omega_{1}(Z(S))$.
A ssume first that $L_{1}=E_{1} C_{L_{1}}\left(Z_{1}\right)$. Then $S=B Q_{1}$ and $Z_{0} \leq Z\left(L_{1}\right)$. Since L_{1} is normal in P_{1} and $\left[\Omega_{1}(Z(S)), P_{1}\right] \neq 1$ we get that $\left[Z_{0}, Q_{1}\right]=1$ and $\Omega_{1}(Z(B))=\Omega_{1}(Z(S))$. Hence also $L_{2}=E_{2} C_{L_{2}}\left(Z_{2}\right)$, and the assertion follows with (3.3).

A ssume now that $L_{1} / C_{L_{1}}\left(Z_{1}\right) \cong S L_{2}(2) \times S L_{2}(2)$ and by symmetry also $L_{2} / C_{L_{2}}\left(Z_{2}\right) \cong S L_{2}(2) \times S L_{2}(2)$. Then $\Omega_{1}(Z(B))=Z_{0} \times Z_{0}^{s}$ and $\left[Z_{0}, E_{2}^{s}\right]=1$, where $s \in S \backslash B$. The above argument applied to $\left\langle E_{1}, E_{2}^{s}\right\rangle$ shows that $E_{2}^{s} \leq N_{H}\left(\left[Z_{1}, O^{2}\left(E_{1}\right)\right]\right)$. Since $L_{1} \leq N_{H}\left(\left[Z_{1}, O^{2}\left(E_{1}\right)\right]\right)$ we conclude that $O_{2}\left(\left\langle E_{1}^{s}, E_{2}^{s}\right\rangle\right)=O_{2}\left(H_{0}^{s}\right) \neq 1$. This contradicts $O_{2}\left(H_{0}\right)=1$.
(6.4) Suppose that $\left[P_{2}, \Omega_{1}(Z(S))\right]=1$ and $J(V, \bar{S}) \neq 1$. Then $P_{2} \neq$ $\left\langle C_{P_{2}}(w), S\right\rangle$ for every $w \in C_{V}(J(V, \bar{S})) \backslash \Omega_{1}(Z(S))$.
Proof. Let $Z_{0}=C_{V}(J(V, \bar{S}))$ and $\bar{E}=O^{2}\left(\bar{P}_{1}\right) J(V, \bar{S})$. We apply (2.2). Then
(1) $\bar{B} \leq J(V, \bar{S})$,
(2) $\bar{E}=\bar{E}_{1} \times \cdots \times \bar{E}_{r}, \bar{E}_{i} \cong S L_{2}$ (2), and
(3) $V=V_{0} \times V_{1} \times \cdots \times V_{r}, V_{0}=C_{V}(\bar{E}), V_{i}=\left[V, \bar{E}_{i}\right]$, and $\left|V_{i}\right|=4$ for $i=1, \ldots, r$.

Note that $\left[P_{2}, \Omega_{1}(Z(S))\right]=1$ and (5.3) imply that $\Omega_{1}\left(Z\left(P_{1}\right)\right)=1$. If $r=1$, then $Z_{0}=\Omega_{1}(Z(S))$ and there is nothing to prove.

Let $r>1, w \in Z_{0} \backslash \Omega_{1}(Z(S))$, and $T=C_{S}(w)$. By (1), $B \leq T$, and by (2) and (3) there exists $j \in\{1, \ldots, r\}$ such that $\left[w, \bar{E}_{j}\right]=1$. Let $F_{1} \in$ $\mathscr{P}(E T, T)$ such that $\left[w, F_{1}\right]=1$ and $\bar{E}_{j} \leq \bar{F}_{1}$.

A ssume that $\left\langle C_{P_{2}}(w), S\right\rangle=P_{2}$. By (6.1) and (3.4), T is not normal in $O^{2}\left(C_{P_{2}}(w)\right) T$. H ence, there exists $F_{2} \in \mathscr{P}\left(C_{P_{2}}(w), T\right)$ such that $\left\langle F_{2}, S\right\rangle=$ P_{2}. Let $L=\left\langle F_{1}, F_{2}\right\rangle$ and $Q=T \cap O_{2}(L)$. N ote that $w \in O_{2}(L)$ and thus $O_{2}(L) \neq 1$.

A gain (6.1) and (3.4) imply that $\left[O^{2}\left(F_{2}\right), B\right]=O^{2}\left(F_{2}\right)$. Let $C=$ $C_{H}\left(\Omega_{1}(Z(S))\right)$. Then $O^{2}\left(P_{2}\right)$ is subnormal in C. Since $O^{2}\left(F_{2}\right)$ is subnormal in $O^{2}\left(P_{2}\right)$ we get
(4) $O^{2}\left(F_{2}\right)$ is subnormal in C and $\left[O^{2}\left(F_{2}\right), B\right]=O^{2}\left(F_{2}\right)$.

By (5.2), $O^{2}\left(F_{2}\right)$ is subnormal in L and by (5.4), $\Omega_{1}(Z(S)) \leq Z(Q)$. M oreover, by (3.8), Q is normal in L. Let $W=O_{2}\left(O^{2}\left(F_{2}\right)\right)$ and $U=$ $\left[\Omega_{1}(Z(S)), O^{2}\left(F_{1}\right)\right]$. Then $W \leq Q$ and $U \leq Z(Q)$; in particular, $[U, W]=1$. It follows that $\left[U, O^{2}\left(F_{2}\right)\right] \leq Z(W)$.

Suppose that $\left[U, O^{2}\left(F_{2}\right)\right] \neq 1$. Then (4) and the $P \times Q$ lemma yield $\left[Z\left(O_{2}(C)\right), O^{2}\left(F_{2}\right)\right] \neq 1$ and thus $\left[Z\left(O_{2}(C)\right), O^{2}\left(P_{2}\right)\right] \neq 1$. Now (3.5) gives $\left[\Omega_{1}(Z(S)), O^{2}\left(P_{2}\right)\right] \neq 1$, a contradiction.

We have shown that $\left[U, O^{2}\left(F_{2}\right)\right]=1$ and thus $\left[V_{j}, O^{2}\left(F_{2}\right)\right]=1$ since $V_{j} \leq U$. Now

$$
\left\langle O^{2}\left(P_{1}\right) B, F_{2} B\right\rangle \leq N_{H}\left(V_{j}\right),
$$

and the above argument with $V=\left[\Omega_{1}(Z(S)), O^{2}\left(P_{1}\right)\right]$ in place of U yields [$V, O^{2}\left(F_{2}\right)$] $=1$ and $\left\langle P_{1}, F_{2}\right\rangle=\left\langle P_{1}, P_{2}\right\rangle \leq N_{H}(V)$, a contradiction.
7.

In this section G is a finite group and S a is nontrivial 2-subgroup of G such that the following hold:
(i) There exist $P_{1}, P_{2} \in \mathscr{P}(S)$ with $G=\left\langle P_{1}, P_{2}\right\rangle$.
(ii) P_{1} and P_{2} are solvable and of characteristic 2 type.
(iii) $O_{2}(G)=1$.

Definition. Let $\Gamma=\Gamma\left(G, P_{1}, P_{2}\right)$ be the graph whose vertices are the right cosets of P_{1} and P_{2} in G and whose edges are the unordered pairs $\left\{P_{1} g, P_{2} h\right\}$ with $P_{1} g \cap P_{2} h \neq \varnothing$.
Γ is called the coset graph of G with respect to P_{1} and P_{2}, and G operates on Γ by right multiplication. We identify Γ with its set of vertices.

For $\delta \in \Gamma$ we define:

$$
G_{\delta} \text { is the stabilizer of } \delta \text { in } G,
$$

$d($,$) is the usual distance metric on \Gamma$,

$$
\begin{aligned}
\Delta(\delta) & =\{\lambda \in \Gamma \mid d(\lambda, \delta)=1\}, \\
Q_{\delta} & =O_{2}\left(G_{\delta}\right), \\
E_{\delta} & =O^{2}\left(G_{\delta}\right), \\
Z_{\delta} & =\left\langle\Omega_{1}(Z(T)) \mid T \in \operatorname{Syl}_{2}\left(G_{\delta}\right)\right\rangle, \\
V_{\delta} & =\left\langle Z_{\lambda} \mid \lambda \in \Delta(\delta)\right\rangle .
\end{aligned}
$$

The properties collected in (7.1) are elementary and independent from the structure of P_{1} and P_{2}. They will be used without reference.
(7.1) The following hold:
(a) Γ is connected.
(b) G operates edge- but not vertex-transitively on Γ.
(c) There exists an edge $\{\alpha, \beta\}$ such that that $G_{\alpha}=P_{1}$ and $G_{\beta}=P_{2}$; i.e., the vertex stabilizers are conjugate to P_{1} or P_{2}, and the edge stabilizers are conjugate to $P_{1} \cap P_{2}$.
(d) G_{δ} operates transitively on $\Delta(\delta)$.

Remark. A ccording to (7.1)(b) and (c) any statement about $G_{\delta}, \delta \in \Gamma$, is, after conjugation, also a statement about P_{1} and P_{2}, respectively. This fact will be used freely. One particular application used frequently is the following:

Let $\{\delta, \lambda\}$ be an edge of Γ and let N be a subgroup of Q_{δ} which is normal in G_{δ} and G_{λ}. Then a suitable conjugate of N in S is normal in P_{1} and P_{2} and thus contained in $O_{2}\left(\left\langle P_{1}, P_{2}\right\rangle\right)=O_{2}(G)=1$. Hence $N=1$.
(7.2) The kernel of the operation of G on Γ is trivial.

Proof. Let K be the kernel of the operation of G on Γ. Then K is a normal subgroup of G contained in P_{1}. Since P_{1} is of characteristic 2 type, either $K=1$ or $O_{2}(K) \neq 1$. The latter case contradicts $O_{2}(G)=1$.
(7.3) Let $\delta \in \Gamma, \lambda \in \Delta(\delta)$, and $T \in \operatorname{Syl}_{2}\left(G_{\delta} \cap G_{\lambda}\right)$. Then the following hold:
(a) $T \in \operatorname{Syl}_{2}\left(G_{\delta}\right) \cap \operatorname{Syl}_{2}\left(G_{\lambda}\right)$; in particular, $Q_{\delta} \leq G_{\lambda}$.
(b) $Z_{\delta} \leq \Omega_{1}\left(Z\left(Q_{\delta}\right)\right)$.
(c) Either $C_{T}\left(Z_{\delta}\right)=Q_{\delta}$ or $Z_{\delta}=\Omega_{1}\left(Z\left(G_{\delta}\right)\right)=\Omega_{1}(Z(T))$.
(d) If $Z_{\delta}=\Omega_{1}\left(Z\left(G_{\delta}\right)\right)$, then $Z\left(G_{\lambda}\right)=1$.

Proof. We may assume that $\left\{G_{\delta}, G_{\lambda}\right\}=\left\{P_{1}, P_{2}\right\}$ and $T=S$. Now (a) is obvious and (b) follows since P_{1} and P_{2} are of characteristic 2 type.

Let $S_{0}=C_{S}\left(Z_{\delta}\right)$. Then $Q_{\delta} \leq S_{0}$ by (b). A ssume that $S_{0} \nless Q_{\delta}$. Then $E_{\delta} \leq\left\langle S_{0}^{G_{\delta}}\right\rangle$ by (3.4); i.e., $G_{\delta}=G_{G_{\delta}}\left(Z_{\delta}\right) S$. Now the definition of Z_{δ} gives (c).

Suppose that $Z_{\delta}=\Omega_{1}\left(Z\left(G_{\delta}\right)\right)$. N ote that $\Omega_{1}\left(Z\left(G_{\lambda}\right)\right) \leq \Omega_{1}(Z(S))=Z_{\delta}$ and so $\Omega_{1}\left(Z\left(G_{\lambda}\right)\right)$ is central in $\left\langle G_{\delta}, G_{\lambda}\right\rangle=G$. Now $O_{2}(G)=1$ yields $Z\left(G_{\lambda}\right)=1$.
Definition.

$$
b=\min \left\{d\left(\delta, \delta^{\prime}\right) \mid \delta, \delta^{\prime} \in \Gamma, Z_{\delta} \nless Q_{\delta^{\prime}}\right\} .
$$

A ccording to (7.2) and (7.3)(b), b is a well-defined integer larger than zero. A pair $\left(\alpha, \alpha^{\prime}\right)$ is called a critical pair if $d\left(\alpha, \alpha^{\prime}\right)=b$ and $Z_{\alpha} \nless Q_{\alpha^{\prime}}$. In the following let (α, α^{\prime}) be a critical pair and γ be a path of length b from α to α^{\prime}. We denote γ by $(\alpha, \alpha+1, \ldots, \alpha+b)=\left(\alpha^{\prime}-b, \ldots, \alpha^{\prime}\right)$; i.e., $\alpha+b=\alpha^{\prime}$ and $\alpha^{\prime}-b=\alpha$. Without loss of generality we may assume that $S \leq G_{\alpha} \cap G_{\alpha+1}$ and $\left\{G_{\alpha}, G_{\alpha+1}\right\}=\left\{P_{1}, P_{2}\right\}$.
(7.4) The following hold:
(a) $Z_{\alpha} \leq V_{\alpha+1} \leq G_{\alpha^{\prime}}$.
(b) $Z_{\alpha^{\prime}} \leq G_{\alpha}$ and $V_{\alpha^{\prime}} \leq G_{\alpha+1}$.
(c) $C_{S}\left(Z_{\alpha}\right)=Q_{\alpha}$.
(d) If $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$, then $C_{T}\left(Z_{\alpha^{\prime}}\right)=Q_{\alpha^{\prime}}$ for $T \in \operatorname{Syl}_{2}\left(G_{\alpha^{\prime}}\right)$ and (α^{\prime}, α) is also a critical pair.
(e) Z_{α} is quadratic on $Z_{\alpha^{\prime}}$ and vice versa.

Proof. (a) and (b) follow from (7.3)(a) and the minimality of b.
To (c). Suppose that $C_{S}\left(Z_{\alpha}\right) \neq Q_{\alpha}$. Then by (7.3)(c), $Z_{\alpha}=\Omega_{1}(Z(S))$. Hence $Z_{\alpha} \leq Z_{\alpha+1} \nless Q_{\alpha^{\prime}}$, which contradicts the minimality of b.
To (d). Suppose that $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$. By (b), $Z_{\alpha^{\prime}} \leq G_{\alpha}$ and by (c), $Z_{\alpha^{\prime}} \nless$ Q_{α}. Hence, ($\left.\alpha^{\prime}, \alpha\right)$ is also a critical pair and (d) follows from (c).
To (e). Z_{α} and $Z_{\alpha^{\prime}}$ normalize each other by (a) and (b), and they are abelian by (7.3)(b). Hence (e) follows.
(7.5) Suppose that $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]=1$. Then the following hold:
(a) b is odd; i.e., $\alpha^{\prime} \in(\alpha+1)^{G}$.
(b) $Z_{\alpha+1}=\Omega_{1}(Z(S))=\Omega_{1}\left(Z\left(G_{\alpha+1}\right)\right)$.
(c) $C_{Q_{\alpha}}\left(E_{\alpha}\right)=1$; in particular, $Z\left(G_{\alpha}\right)=1$.
(d) If $b>1$, then $V_{\alpha+1}$ is elementary abelian and $V_{\alpha+1}$ is quadratic on $V_{\alpha^{\prime}}$, and vice versa.

Proof. By (7.3)(c), $Z_{\alpha^{\prime}}=\Omega_{1}\left(Z\left(G_{\alpha^{\prime}}\right)\right)$, and (7.4)(c) implies that $\alpha^{\prime} \notin \alpha^{G}$, i.e., $\alpha^{\prime} \in(\alpha+1)^{G}$ and b is odd. Hence (a) and (b) follow.

To (c). $Z(S) \cap C_{Q_{\alpha}}\left(E_{\alpha}\right) \leq Z\left(G_{\alpha}\right)$. Hence, (7.3)(d) implies (c).
To (d). By (7.4)(a) and (b), $V_{\alpha+1}$ and $V_{\alpha^{\prime}}$ normalizes each other, and if $b>1$, then $b \geq 3$ by (a), and both subgroups are abelian. Now (d) follows.

Remark. A ssume Hypothesis 2. Then (7.4)(c) and (5.1) lead to the following two cases:

Case I. $\Omega_{1}(Z(S))$ is neither normal in P_{1} nor in P_{2}. Hence $Z_{\alpha+1} \not \approx$ $Z\left(G_{\alpha+1}\right)$ and $\left[Z_{\alpha}, Z_{\alpha}{ }^{\prime}\right] \neq 1$ by (7.5)(b). This case will be treated in (8.2).

Case II. $\Omega_{1}\left(Z(S)\right.$) is normal in P_{2}; i.e., (5.1)(b) holds. It follows that $P_{1}=G_{\alpha}$ and $P_{2}=G_{\alpha+1}$; in particular, $Z_{\alpha+1} \leq Z\left(G_{\alpha+1}\right)$ and most importantly,

$$
E_{\alpha+1} \text { is subnormal in } C_{H}\left(Z_{\alpha+1}\right) .
$$

This case will be treated in (8.6) and in Sections 9 and 10.
(7.6) The following hold:
(a) $Q_{\alpha} \cap Q_{\alpha+1}$ is not normal in $G_{\alpha+1}$.
(b) $O_{2}\left(E_{\alpha+1}\right) \nless Q_{\alpha}$; in particular, $E_{\alpha} \leq\left\langle O_{2}\left(E_{\alpha+1}\right)^{G_{\alpha}}\right\rangle$.
(c) $Q_{\alpha} \cap Q_{\alpha+1} \nless Q_{\mu}$ for every $\mu \in \Delta(\alpha+1)$ with $\left\langle Q_{\mu}, G_{\alpha} \cap G_{\alpha+1}\right\rangle$ $=G_{\alpha+1}$.
(d) $\left\langle C_{G_{\alpha+1}}\left(Z_{\alpha}\right), G_{\alpha} \cap G_{\alpha+1}\right\rangle \neq G_{\alpha+1}$.

Proof. Suppose that $Q_{\alpha} \cap Q_{\alpha+1}$ is normal in $G_{\alpha+1}$. Then $Q_{\alpha} \cap$ $Q_{\alpha+1}=Q_{\alpha+1} \cap Q_{\mu}$ for every $\mu \in \Delta(\alpha+1)$.
A ssume that $b=1$. Then $E_{\alpha+1} \leq\left\langle Z_{\alpha}^{G_{\alpha+1}}\right\rangle$ by (3.4). However, $\left[Q_{\alpha+1}, Z_{\alpha}\right] \leq Q_{\alpha} \cap Q_{\alpha+1}$ and $\left[Q_{\alpha} \cap Q_{\alpha+1}, Z_{\alpha}\right]=1$. Hence $\left[Q_{\alpha+1}, E_{\alpha+1}\right.$] $=1$ and $G_{\alpha+1}$ is not of characteristic 2 type, a contradiction.
A ssume that $b>1$ and choose $\mu=\alpha+2$. Then $Z_{\alpha^{\prime}} \leq Q_{\alpha+2} \cap Q_{\alpha+1}$ $\leq Q_{\alpha}$ and $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]=1$. Hence by (7.5), $\alpha^{\prime} \in(\alpha+1)^{G}, \alpha^{\prime}-1 \in \alpha^{G}$, and $Z_{\alpha+1}=\Omega_{1}\left(Z\left(G_{\alpha+1}\right)\right)$. Since $Z_{\alpha} \leq Q_{\alpha^{\prime}-1}$ but $Z_{\alpha} \nless Q_{\alpha^{\prime}}$ we conclude that $Q_{\alpha} \nless Q_{\alpha+1}$. Thus (3.4) gives $O_{2}\left(E_{\alpha+1}\right) \leq Q_{\alpha} \cap Q_{\alpha+1}$. Now (3.5) yields [$Z_{\alpha}, E_{\alpha+1}$] = 1 and $Z_{\alpha} \leq O_{2}(G)=1$, a contradiction. This shows (a).
Suppose that $O_{2}\left(E_{\alpha+1}\right) \leq Q_{\alpha}$. Then $Q_{\alpha} \cap Q_{\alpha+1}$ is normal in $G_{\alpha+1}$ which contradicts (a). Hence $O_{2}\left(E_{\alpha+1}\right) \nless Q_{\alpha}$ and (3.4) gives (b).
Suppose that $Q_{\alpha} \cap Q_{\alpha+1} \leq Q_{\mu}$ for some $\mu \in \Delta(\alpha+1)$ with $\left\langle Q_{\mu}, G_{\alpha} \cap\right.$ $\left.G_{\alpha+1}\right\rangle=G_{\alpha+1}$. Then $Q_{\alpha} \cap Q_{\alpha+1}=Q_{\mu} \cap Q_{\alpha+1}$ since $\mu \in \alpha^{G_{\alpha+1}}$. Hence $Q_{\alpha} \cap Q_{\alpha+1}$ is normal in $G_{\alpha+1}$ which contradicts (a).

Note that $Q_{\alpha} \cap Q_{\alpha+1}=C_{Q_{\alpha+1}}\left(Z_{\alpha}\right)$ by (7.4)(c). Hence (a) implies (d).
(7.7) Let $C=C_{G}\left(\Omega_{1}(Z(S))\right)$. Suppose that $E_{\alpha+1}$ is subnormal in C, $O_{2}(C) \leq S$, and C is of characteristic 2 type. Then the following hold:
(a) $\left[C_{G}\left(Z_{\alpha}\right), E_{\alpha} O_{2}\left(E_{\alpha+1}\right)\right] \leq Q_{\alpha}$.
(b) $C_{G}\left(V_{\alpha+1}\right)$ is a 2-group.
(c) $E_{\alpha^{\prime}} \not \subset C$ if $b>1$; in particular, $Z_{\alpha^{\prime}} \neq Z_{\alpha+1}$ if $b>1$.

Proof. Note that $Z_{\alpha+1}=\Omega_{1}(Z(S))$ since $E_{\alpha+1} \leq C$. M oreover, $O_{2}\left(E_{\alpha+1}\right) \leq O_{2}(C)$ by the subnormality of $E_{\alpha+1}$. This gives $\left[C_{G}\left(Z_{\alpha}\right), O_{2}\left(E_{\alpha+1}\right)\right] \leq O_{2}(C) \cap C_{G}\left(Z_{\alpha}\right) \leq C_{S}\left(Z_{\alpha}\right)$. Hence (7.4)(c) gives $\left[C_{G}\left(Z_{\alpha}\right), O_{2}\left(E_{\alpha+1}\right)\right] \leq Q_{\alpha}$, and (7.6)(b) and (3.4) yield (a).

Let $E=O^{2}\left(C_{G}\left(V_{\alpha+1}\right)\right)$. By (a), $\left[E, E_{\alpha}\right] \leq E Q_{\alpha}$. Since $E=O^{2}\left(E Q_{\alpha}\right)$ we conclude that E is normal in $\left\langle E_{\alpha}, G_{\alpha+1}\right\rangle=G$, and $O_{2}(E)=1$. On the other hand, $C_{G}\left(V_{\alpha+1}\right)$ is of characteristic 2 type since $C_{G}\left(V_{\alpha+1}\right) \leq C$. Hence $E=1$ and $C_{G}\left(V_{\alpha+1}\right)$ is a 2-group.

Suppose that $b>1$ and $E_{\alpha^{\prime}} \leq C$. Since $E_{\alpha+1}$ is transitive on $\Delta(\alpha+1)$ we get that $Z_{\alpha} \leq Z_{\alpha+2} O_{2}\left(E_{\alpha+1}\right)$. M oreover $O_{2}\left(E_{\alpha+1}\right) \leq O_{2}(C)$ since $E_{\alpha+1}$ is subnormal in C, and $Z_{\alpha+2} \leq Q_{\alpha}$, by the minimality of b. Hence $Z_{\alpha} \leq\left(C \cap Q_{\alpha^{\prime}}\right) O_{2}(C)$ and $\left[Z_{\alpha}, E_{\alpha^{\prime}}\right] \leq O_{2}\left(E_{\alpha^{\prime}}\right)$. Now (3.3) gives $Z_{\alpha} \leq Q_{\alpha^{\prime}}$, a contradiction.
(7.8) Let $\delta \in \Gamma, \lambda \in \Delta(\delta)$, and $\bar{G}_{\delta}=G_{\delta} / Q_{\delta}$, and let A be a subgroup of Q_{λ} with $A \nless Q_{\delta}$ and $\Phi(A) \leq Q_{\delta}$. Then there exists $x \in G_{\delta}$ and $A_{0} \leq A$ such that for $L=\left\langle A, A^{x}\right\rangle$ the following hold:
(a) $\left|A / A_{0}\right|=2, x \in L, x^{2} \in Q_{\delta}$, and $A_{0}=A \cap O_{2}(L)$.
(b) $\left\langle L, G_{\lambda} \cap G_{\delta}\right\rangle=G_{\delta}$ and $\bar{L} \cong D_{2 p^{n}} \times \overline{A_{0}}$.
(c) Any two elements in Z_{λ}^{L} are interchanged by an involution of L.
(d) $L=\left\langle a, A^{x}\right\rangle$ for every $a \in A \backslash A_{0}$.
(e) For $T \in \operatorname{Syl}_{2}\left(G_{\delta} \cap G_{\lambda}\right)$ either $B(T) \leq Q_{\delta}$ or $O^{2}(L) \leq$ [$\left.O^{2}(L), B(T)\right]$.

Proof. A pply (3.6).
8.

In this section we assume Hypothesis 2 and set $G=\left\langle P_{1}, P_{2}\right\rangle$. We use the notation concerning $\Gamma=\Gamma\left(G, P_{1}, P_{2}\right)$ as it was introduced in Section 7; in particular, $S \leq G_{\alpha} \cap G_{\alpha+1}$. The additional hypothesis for this section is $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$.

Notation. $R=\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right], \bar{G}_{\delta}=G_{\delta} / C_{G_{\delta}}\left(Z_{\delta}\right)$, and $J\left(Z_{\alpha}, \bar{S}\right)$ is defined as in Section 1.
(8.1) The following hold:
(a) $\left|Z_{\alpha} / Z_{\alpha} \cap Q_{\alpha^{\prime}}\right|=\left|Z_{\alpha^{\prime}} / Z_{\alpha^{\prime}} \cap Q_{\alpha}\right|$.
(b) $\bar{E}_{\alpha} J\left(Z_{\alpha}, \bar{S}\right)=E_{1} \times \cdots \times E_{r}$ and $Z_{\alpha}=V_{0} \times \cdots \times V_{r}$, where $V_{0}=$ $C_{Z_{\alpha}}\left(\bar{E}_{\alpha} J\left(Z_{\alpha}, \bar{S}\right)\right), E_{i} \cong S L_{2}(2), V_{i}=\left[Z_{\alpha}, E_{i}\right]$, and $\left|V_{i}\right|=4$, for $i \geq 1$.
(c) $R=\left(R \cap V_{1}\right) \times \cdots \times\left(R \cap V_{r}\right)$.

Proof. We apply (7.4)(c) and (d). Since the configuration is symmetric in α and α^{\prime} we may assume that

$$
\begin{equation*}
\left|Z_{\alpha^{\prime}} / Z_{\alpha^{\prime}} \cap Q_{\alpha}\right| \geq\left|Z_{\alpha} / Z_{\alpha} \cap Q_{\alpha^{\prime}}\right| \tag{*}
\end{equation*}
$$

Hence $\bar{Z}_{\alpha^{\prime}} \leq J\left(Z_{\alpha}, \bar{S}\right)$ and (1.5)(e) implies equality in (*). Thus (a) holds.
Claim (b) is a consequence of (1.7), and (b) implies (c).
(8.2) Suppose that $Z_{\alpha+1} \nless Z\left(G_{\alpha+1}\right)$. Then $G_{\delta} \cong \Sigma_{4}$ or $G_{\delta} \cong C_{2} \times \Sigma_{4}$ for every $\delta \in \Gamma$.

Proof. By (7.3)(c), $Z_{\delta} 太 Z\left(G_{\delta}\right)$ for every $\delta \in \Gamma$. Hence $\left[P_{i}, \Omega_{1}(Z(S))\right] \neq$ 1 for $i=1,2$. Now (6.3) yields $G_{\delta} / Q_{\delta} \cong D_{2 \cdot 3^{n} \delta}$ and $\bar{G}_{\delta} \cong S L_{2}(2)$.

Pick $\alpha-1 \in \Delta(\alpha)$ such that $\left\langle G_{\alpha-1} \cap G_{\alpha}, Z_{\alpha^{\prime}}\right\rangle=G_{\alpha}$. A ssume first that $Z_{\alpha-1} \leq G_{\alpha^{\prime}}$. Then (7.1)(b) and (7.4) give $b>1$; in particular, $V_{\alpha+1} \leq$ $Q_{\alpha+1}$.

Since $Z_{\alpha-1} \leq Z_{\alpha} Q_{\alpha^{\prime}}$, we get that $\left[Z_{\alpha-1}, Z_{\alpha^{\prime}}\right] \leq R$, and $Z_{\alpha-1} Z_{\alpha}$ is normal in G_{α}. $\operatorname{By}(7.3)(\mathrm{c}), C_{S}\left(Z_{\alpha-1} Z_{\alpha}\right)=Q_{\alpha} \cap Q_{\alpha-1}$ and thus also $Q_{\alpha} \cap Q_{\alpha-1}$ is normal in G_{α}. It follows that $Q_{\alpha+1} \in \operatorname{Syl}_{2}\left(E_{\alpha} Q_{\alpha+1}\right)$. Since $O_{2}\left(\left\langle G_{\alpha}, G_{\alpha+1}\right\rangle\right)=1$ no nontrivial characteristic subgroup of $Q_{\alpha+1}$ is normal in $E_{\alpha} Q_{\alpha+1}$. Let U be a Hall 2'-subgroup of $G_{\alpha+1}$. Then $V_{\alpha+1}=\left\langle Z_{\alpha}^{U}\right\rangle$, and (2.5) implies that $V_{\alpha+1}$ is normal in G_{α}, which contradicts $O_{2}\left(\left\langle G_{\alpha}, G_{\alpha+1}\right\rangle\right)=1$.

A ssume now that $Z_{\alpha-1} \nless G_{\alpha^{\prime}}$. Then $\left(\alpha-1, \alpha^{\prime}-1\right)$ is also a critical pair. With the same argument as above there exists $\alpha-2 \in \Delta(\alpha-1)$ such that $\left\langle G_{\alpha-2} \cap G_{\alpha-1}, Z_{\alpha^{\prime}-1}\right\rangle=G_{\alpha-1}$ and $\left(\alpha-2, \alpha^{\prime}-2\right)$ is a critical pair (here $\alpha^{\prime}-2=\alpha-1$ if $b=1$).

Set $R_{i}=\left[Z_{\alpha-i}, Z_{\alpha^{\prime}-i}\right], i=1,2$, and assume that $b>1$. Then $R_{2} \leq$ $Z\left(G_{\alpha-1}\right)$ since R_{2} centralizes $Z_{\alpha^{\prime}-1}$ and $G_{\alpha-2} \cap G_{\alpha-1}$, and similarly $R_{1} \leq Z\left(G_{\alpha}\right)$. If $b>2$, then $R_{2} \leq Z_{\alpha^{\prime}-2} \leq Q_{\alpha^{\prime}}$, and so R_{2} is centralized by G_{α}. Hence $R_{2} \leq O_{2}\left(\left\langle G_{\alpha}, G_{\alpha-1}\right\rangle\right)$, a contradiction.

A ssume $b=2$. Let $V_{0}=V_{\alpha} \cap Q_{\alpha-1} \cap Q_{\alpha+1}$. Then $V_{\alpha}=Z_{\alpha-1} Z_{\alpha+1} V_{0}$ and $\left|V_{\alpha} / V_{0}\right|=4$. In addition, $\left[V_{0}, Z_{\alpha+2}\right]=R \leq Z_{\alpha} \leq V_{0}$ and $\left[V_{0}, Z_{\alpha-2}\right] \leq$ $R_{2} \leq Z_{\alpha} \leq V_{0}$. Hence, V_{0} is normal in G_{α} and $V_{0} \leq Z\left(V_{\alpha}\right)$.

If V_{0} is elementary abelian, then $\left|V_{\alpha} / V_{0}\right|=4$ and the action of G_{α} on V_{α} / V_{0} imply that $V_{\alpha}^{\prime}=1$. However, this contradicts $\left[Z_{\alpha-1}, Z_{\alpha+1}\right] \neq 1$. Hence $\Phi\left(V_{0}\right) \neq 1$. Note that $\Phi\left(V_{0}\right) \leq Q_{\delta}$ for every $\delta \in \Delta(\alpha-1)$; i.e.,
$\left[\Phi\left(V_{0}\right), V_{\alpha-1}\right]=1$. On the other hand, with the above argument there exists $\alpha-3 \in \Delta(\alpha-2)$ such that ($\alpha-3, \alpha-1$) is a critical pair and $\left\langle G_{\alpha-1} \cap G_{\alpha-2}, Z_{\alpha+1}\right\rangle=G_{\alpha-1}$. Thus $V_{\alpha-2} \nless Q_{\alpha-1}$ and $\left\langle V_{\alpha-2}, Z_{\alpha+1}\right\rangle Q_{\alpha-1}$ $=G_{\alpha-1}$. Note that $V_{0}=Z_{\alpha}\left(V_{0} \cap Q_{\kappa}\right)$ for $\kappa \in \Delta(\alpha-1)$ and thus $\Phi\left(V_{0}\right)$ $=\Phi\left(V_{0} \cap Q_{\kappa}\right) \leq Q_{\nu}$ for $\nu \in \Delta(\kappa)$. It follows that $\left[\Phi\left(V_{0}\right), V_{\alpha-2}\right]=1$ and $\Phi\left(V_{0}\right)$ is normal in ($\left.V_{\alpha-2}, G_{\alpha} \cap G_{\alpha-1}\right\rangle=G_{\alpha-1}$ and G_{α}, a contradiction.
A ssume finally that $b=1$. Let $\delta \in\{\alpha-1, \alpha\}$. Then $Q_{\delta}=\left(Q_{\alpha} \cap\right.$ $\left.Q_{\alpha-1}\right) Z_{\delta}$ and so $\Phi\left(Q_{\delta}\right)=\Phi\left(Q_{\alpha} \cap Q_{\alpha-1}\right)$. This gives $\Phi\left(Q_{\delta}\right)=1$ and $Q_{\delta}=$ $\left[Z_{\delta}, E_{\delta}\right] \times Z\left(G_{\delta}\right)$. By (8.1), $\left.\| Z_{\delta}, E_{\delta}\right]=4$ and so $G_{\delta} / Q_{\delta} \cong S L_{2}(2)$. Since $Z\left(G_{\alpha-1}\right) \leq Q_{\alpha}$, but $Z\left(G_{\alpha}\right) \cap Z\left(G_{\alpha-1}\right)=1$ we also get $\left|Z\left(G_{\alpha-1}\right)\right| \leq 2$ and with the same argument $\left|Z\left(G_{\alpha}\right)\right| \leq 2$. Now (8.2) follows.

Definition. Let H be a finite group. Then H is of type $L_{3}(2)$ resp. $S p_{4}(2)$ provided H contains two subgroups G_{α} and $G_{\alpha+1}$ such that $G_{\alpha} \cap$ $G_{\alpha+1}=S \in \operatorname{Syl}_{2}(H), \quad O_{2}\left(\left\langle G_{\alpha}, G_{\alpha+1}\right\rangle\right)=1$, and $G_{\alpha} \cong G_{\alpha+1} \cong \Sigma_{4}$ resp. $C_{2} \times \Sigma_{4}$.

Note that $L_{3}(2)$ and $S p_{4}(2)$ are examples for groups of type $L_{3}(2)$ and $S p_{4}(2)$, respectively.

(8.3) Suppose that $Z_{\alpha+1} \leq Z\left(G_{\alpha+1}\right)$. Then $O_{2}\left(E_{\alpha}\right) \nless Q_{\alpha+1}$.

Proof. A ssume that $O_{2}\left(E_{\alpha}\right) \leq Q_{\alpha+1}$. Then $Q_{\alpha+1} \in \operatorname{Syl}_{2}\left(E_{\alpha} Q_{\alpha+1}\right)$. By (3.2) and (3.3) there exists $F \in \mathscr{P}\left(E_{\alpha} Q_{\alpha+1}, Q_{\alpha+1}\right)$ such that $\left\langle F, G_{\alpha} \cap\right.$ $\left.G_{\alpha+1}\right\rangle=G_{\alpha}$. Hence, no nontrivial characteristic subgroup of $Q_{\alpha+1}$ is normal in F. Now (2.4) gives $\left[O_{2}\left(E_{\alpha}\right), O^{2}(F)\right] \leq Z_{\alpha}$. This implies that $O_{2}\left(E_{\alpha}\right) \leq Z_{\alpha}$ and then $O_{2}\left(E_{\alpha}\right)=Z_{\alpha}$ since by (7.3)(d), $Z\left(G_{\alpha}\right)=1$. However, now again $Z\left(G_{\alpha}\right)=1$ yields $Q_{\alpha}=Z_{\alpha}=O_{2}\left(E_{\alpha}\right)$.
An application of (2.2) and (8.1) to Z_{α} and $\bar{E}_{\alpha} \bar{J}\left(Q_{\alpha+1}\right)$ resp. $\bar{E}_{\alpha} \overline{J(S)}$ shows that $J(S)=J\left(Q_{\alpha+1}\right)=B$, but now $B \leq Q_{\alpha+1}$, which contradicts (6.1).
(8.4) Let $Z=C_{Z_{\alpha}}\left(J\left(Z_{\alpha}, \bar{S}\right)\right)$. Suppose that $Z_{\alpha+1} \leq Z\left(G_{\alpha+1}\right)$. Then Z is normal in $G_{\alpha+1}$.

Proof. Let $S_{1}=\left\langle Z_{\alpha^{\alpha+1}}^{G_{\alpha+1}}\right\rangle$ and $V_{\alpha+1}^{*}=\left\langle Z^{G_{\alpha+1}}\right\rangle$. We may assume that $V_{\alpha+1}^{*} \neq Z$. Note that $Z\left(G_{\alpha}\right)=1$ by (7.3)(d) and $\alpha^{\prime} \in \alpha^{G}$ by (7.4); in particular, b is even. We now apply (8.1). Then $\bar{S}_{1}=J\left(Z_{\alpha}, \bar{S}\right)$, and with the notation given in (8.1):
(1) $\bar{E}_{\alpha} \bar{S}_{1}=\bar{E}_{1} \times \cdots \times \bar{E}_{r}, \bar{E}_{i} \cong S L_{2}(2)$,
(2) $Z_{\alpha}=V_{1} \times \cdots \times V_{r}, V_{i}=\left[V, E_{i}\right]$, and $\left|V_{i}\right|=4$,
(3) $C_{Z_{\alpha}}\left(S_{1}\right)=Z$.

Since S_{1} is a normal subgroup of $G_{\alpha+1}$ in $Q_{\alpha+1}$ we get from (2) and (3) that $\left[V_{\alpha+1}, S_{1}\right]=V_{\alpha+1}^{*}$ and $\left[V_{\alpha+1}^{*}, S_{1}\right]=1$; in particular,
(4) $\quad V_{\alpha+1}^{*} \leq Q_{\alpha^{\prime}}$ and $V_{\alpha+1}^{*} \cap Z_{\alpha}=Z$.

A ccording to (1) and (2) we may assume that $\left[V_{1}, Z_{\alpha^{\prime}}\right] \neq 1$; i.e., $V_{1} \nless Q_{\alpha^{\prime}}$. We apply (7.8) with $\delta=\alpha^{\prime}, \lambda=\alpha^{\prime}-1$, and $A=V_{1}$:
(5) There exists $x \in G_{\alpha^{\prime}}$ and $L_{0} \leq G_{\alpha^{\prime}}$ such that for $\alpha^{\prime}+1=$ $\left(\alpha^{\prime}-1\right)^{x}$:
(i) $x \in L_{0}$ and $L_{0}=\left\langle V_{1}, V_{1}^{x}\right\rangle$ and
(ii) $\left\langle L_{0}, G_{\alpha^{\prime}} \cap G_{\alpha^{\prime}+1}\right\rangle=G_{\alpha^{\prime}}$.

Let $L=L_{0} Q_{\alpha^{\prime}}$ and $Q=O_{2}\left(O^{2}(L)\right)$. Note that $\left\langle Q^{h} \mid h \in G_{\alpha^{\prime}} \cap G_{\alpha^{\prime}+1}\right\rangle$ $=O_{2}\left(E_{\alpha^{\prime}}\right)$ and that by (8.3), $O_{2}\left(E_{\alpha^{\prime}}\right) \nless Q_{\alpha^{\prime}+1}$. It follows that $Q \nless Q_{\alpha^{\prime}+1}$. We now apply (7.8) with $\delta=\alpha^{\prime}+1$ and $\lambda=\alpha^{\prime}$:
(6) There exists $y \in G_{\alpha^{\prime}+1}$ and $\tilde{L} \leq G_{\alpha^{\prime}+1}$ such that for $\alpha^{\prime}+2=$ $\alpha^{\prime y}$:
(i) $y \in \tilde{L}$ and $\left\langle\tilde{L}, G_{\alpha^{\prime}+1} \cap G_{\alpha^{\prime}+2}\right\rangle=G_{\alpha^{\prime}+1}$ and
(ii) either $\tilde{L}=\left\langle V_{\alpha+1}^{*}, Q_{\alpha^{\prime}+2}\right\rangle$ and $\left|V_{\alpha+1}^{*} / V_{\alpha+1}^{*} \cap G_{\alpha^{\prime}+2}\right|=2$ or $\tilde{L}=\left\langle Q, Q_{\alpha^{\prime}+2}\right\rangle$ and $V_{\alpha+1}^{*} \leq G_{\alpha^{\prime}+2}^{\alpha+1}$.

Define $Z_{\alpha, \alpha+1}=Z$ and $Z_{\delta, \lambda}=Z_{\alpha, \alpha+1}^{x}$, where $(\alpha, \alpha+1)^{x}=(\delta, \lambda)$ and $V_{\delta}^{*}=\left\langle Z_{\lambda, \delta} \mid \lambda \in \Delta(\delta)\right\rangle$ for $\delta \in(\alpha+1)^{G}$. Let $D \leq Z_{\alpha^{\prime}+2, \alpha^{\prime}+1}$ such that [D, V_{1}] $\leq Z_{\alpha^{\prime}}$. Note that $D \leq V_{\alpha^{\prime}+1}^{*}$ and so $\left[D, V_{1}^{x}\right]=1$. It follows from (5) that $D \leq V_{\alpha^{\prime}-1}^{*} Z_{\alpha^{\prime}} \cap V_{\alpha^{\prime}+1}^{*} Z_{\alpha^{\prime}}$ and $\left[D, V_{\alpha+1}^{*}\right]=1$. Let $D^{*}=\left\langle D^{Q_{\alpha^{\prime}}}\right\rangle$. Then also $D^{*} \leq V_{\alpha^{\prime}-1}^{*} Z_{\alpha^{\prime}} \cap V_{\alpha^{\prime}+1}^{*} Z_{\alpha^{\prime}}$ and $\left[D^{*}, O^{2}(L)\right] \leq Z_{\alpha^{\prime}}$. This implies that $\left[D^{*}, Q\right] \leq V_{\alpha^{\prime}+1}^{*} \cap Z_{\alpha^{\prime}}=Z_{\alpha^{\prime} \alpha^{\prime}+1}$ by (4). On the other hand, $D^{*} Z_{\alpha^{\prime}}$ and thus also $\left[D^{*}, Q\right]$ is normal in L. Now $\left[D^{*}, Q\right] \leq V_{\alpha^{\prime}+1}^{*}$ and $\left[V_{\alpha^{\prime}+1}^{*}, V_{1}^{x}\right]=1$ imply that $\left[D^{*}, Q, O^{2}(L)\right]=1$, and the 3 -subgroup lemma gives $\left[D^{*}, Q\right]=1$. Hence by (4) and (6) $[D, \tilde{L}]=1$, and (6.4) and (6) yield $D \leq Z_{\alpha^{\prime}+1}$. We have shown:
(7) If $D \leq Z_{\alpha^{\prime}+2, \alpha^{\prime}+1}$ and $\left[D, V_{1}\right] \leq Z_{\alpha^{\prime}}$, then $D \leq Z_{\alpha^{\prime}+1}$.

Assume that $b=2$. Then, according to (1) and (2), there exists $\mu \in$ $\Delta\left(\alpha^{\prime}\right)$ such that $E_{\alpha^{\prime}} \leq\left\langle V_{\alpha+1}, V_{\mu}\right\rangle$. Since by (4), $\left[V_{\alpha+1}^{*}, V_{\mu}^{*}\right] \leq Z\left(V_{\alpha+1}\right) \cap$ $Z\left(V_{\mu}\right)$ we get that $\left[V_{\alpha+1}^{*}, V_{\mu}^{*}, E_{\alpha^{\prime}}\right]=1$, and $Z\left(G_{\alpha^{\prime}}\right)=1$ implies that [$V_{\alpha+1}^{*}, V_{\mu}^{*}$] $=1$. It follows that $V_{\mu}^{*} \leq Q_{\alpha+1}$ since $V_{\alpha+1}^{*} \neq Z$, and thus by (1) and (2), $\left[V_{\mu}^{*}, V_{1}\right] \leq Z_{\alpha^{\prime}}$. Hence, $V_{\mu}^{*} Z_{\alpha^{\prime}}$ is normal in $G_{\alpha^{\prime}}$. Now, as above for (7), $\left[V_{\mu}^{*}, O_{2}\left(E_{\alpha^{\prime}}\right)\right]=1$ which contradicts (8.3). We have shown:
(8) $b>2$.

In particular, (8) implies that $\left[Z_{\alpha^{\prime}}, Z_{\alpha^{\prime}+2}\right]=1$ and thus $\left[V_{1}, Z_{\alpha^{\prime}}, Z_{\alpha^{\prime}+2}\right.$] $=1$. Hence, by (1) and (2), $Z_{\alpha^{\prime}+2} \cap G_{\alpha}$ normalizes V_{1}. It follows that $\left[Z_{\alpha^{\prime}+2, \alpha^{\prime}+1} \cap G_{\alpha}, V_{1}\right] \leq Z_{\alpha^{\prime}}$, and (7) yields

$$
\text { (9) } Z_{\alpha^{\prime}+2, \alpha^{\prime}+1} \cap G_{\alpha}=Z_{\alpha^{\prime}+1} \text {; in particular, } Z_{\alpha^{\prime}+2} \nless G_{\alpha} \text {. }
$$

Let $R_{2}=\left[Z_{\alpha+2}, Z_{\alpha^{\prime}+2}\right]$. Then $R_{2} \leq Z_{\alpha^{\prime}+2, \alpha^{\prime}+1} \cap G_{\alpha}$ by (1), (2), (3), and (8). Hence, (9) gives $R_{2} \leq Z_{\alpha^{\prime}+1}$, and by (5), R_{2} centralizes $\left\langle G_{\alpha^{\prime}+1}, L\right\rangle=\left\langle G_{\alpha^{\prime}+1}, G_{\alpha^{\prime}}\right\rangle$. Thus $R_{2}=1$. We conclue that $Z_{\alpha^{\prime}+2} \leq Q_{\alpha+2}$ $\leq G_{\alpha+1}$. On the other hand, by (9), $Z_{\alpha^{\prime}+2} \nless Q_{\alpha+1}$ and thus [$V_{\alpha+1}^{*}, Z_{\alpha^{\prime}+2}$] $\neq 1$.
Let $R_{1}=\left[V_{\alpha+1}^{*} \cap G_{\alpha^{\prime}+2}, Z_{\alpha^{\prime}+2}\right] \cap Z_{\alpha^{\prime}+2, \alpha^{\prime}+1}$. As for R_{2} we get that $R_{1}=1$. Now (1), (2), and (3) imply that $\left[V_{\alpha+1}^{*} \cap G_{\alpha^{\prime}+2}, Z_{\alpha^{\prime}+2}\right]=1$. Since $\left[V_{\alpha+1}^{*}, Z_{\alpha^{\prime}+2}\right] \neq 1$ we conclude that $V_{\alpha+1}^{*} \nless G_{\alpha^{\prime}+2}$ and by (6), $\left|V_{\alpha+1}^{*} / C_{V_{+1}^{*}+1}\left(Z_{\alpha^{\prime}+2}\right)\right|=2$. Now (1.2) gives $\left|Z_{\alpha^{\prime}+2} / Z_{\alpha^{\prime}+2} \cap Q_{\alpha+1}\right|=2$. Together with (9) we get $\left|Z_{\alpha^{\prime}+2, \alpha^{\prime}+1}\right|=4$, and (1), (2), and (3) imply $\left|Z_{\alpha}\right|=4^{2}$ and $\bar{G}_{\alpha} \cong S L_{2}(2) \backslash C_{2}$.

A ssume that $\left[V_{\alpha+1}^{*}, Z_{\alpha^{\prime}+2} \cap Q_{\alpha+1}\right]=1$. Then by (6), $Z_{\alpha^{\prime}} \cap Z_{\alpha^{\prime}+2}=$ $Z_{\alpha^{\prime}+2} \cap Q_{\alpha+1}$. It follows that $Z_{\alpha^{\prime}+2, \alpha^{\prime}+1} \leq\left[Z_{\alpha^{\prime}+2}, Q_{\alpha^{\prime}+1}\right] \leq Z_{\alpha^{\prime}+2} \cap$ $Q_{\alpha+1}$ since $Q_{\alpha^{\prime}+1}$ normalizes $Z_{\alpha^{\prime}} \cap Z_{\alpha^{\prime}+2}$, but now (9) yields $Z_{\alpha^{\prime}+2, \alpha^{\prime}+1}$ $=Z_{\alpha^{\prime}+1}=V_{\alpha^{\prime}+1}^{*}$, a contradiction.
A ssume that $\left[V_{\alpha+1}^{*}, Z_{\alpha^{\prime}+2} \cap Q_{\alpha+1}\right] \neq 1$. Then $S=Q_{\alpha} Q_{\alpha+1}$. Let $\lambda \in$ $\Delta(\alpha+1)$ such that $Z_{\lambda, \alpha+1} \nless G_{\alpha^{\prime}+2}$ and let $U=C_{Z_{\alpha^{\prime}+2} \cap} Q_{\alpha+1}\left(Z_{\lambda, \alpha+1}\right)$. Then $4 \leq|U|$ and by (6), $U \leq Z_{\alpha^{\prime}} \cap Z_{\alpha^{\prime}+2}$. However, now $Z_{\alpha^{\prime}+2, \alpha^{\prime}+1} \leq\left[Z_{\alpha^{\prime}} \cap\right.$ $\left.Z_{\alpha^{\prime}+2}, Q_{\alpha^{\prime}+1}\right]$ or $Z_{\alpha^{\prime}} \cap Z_{\alpha^{\prime}+2}=Z_{\alpha^{\prime}+2, \alpha^{\prime}+1}$. Hence, in both cases $Z_{\alpha^{\prime}+2, \alpha^{\prime}+1} \leq Z_{\alpha^{\prime}} \cap Z_{\alpha^{\prime}+2} \leq Z_{\alpha^{\prime}+2} \cap Q_{\alpha+1}$ and $Z_{\alpha^{\prime}+2, \alpha^{\prime}+1}=Z_{\alpha^{\prime}+1}$, a contradiction
(8.5) Suppose that $Z_{\alpha+1} \leq Z\left(G_{\alpha+1}\right)$. Then $G_{\alpha} / Q_{\alpha} \cong S L_{2}(2)$ and $b=2$.

Proof. Let $Z=C_{Z_{\alpha}}\left(J\left(Z_{\alpha}, \bar{S}\right)\right.$). By (7.3)(d) and (8.1), $\left|Z_{\alpha}\right|=|Z|^{2}$, and (8.3) gives $Q_{\alpha} \nless Q_{\alpha+1}$. Hence, (8.4) yields $\left[Z, O^{2}\left(G_{\alpha+1}\right)\right]=1$, and (6.4) gives $Z=Z_{\alpha+1}$. From (8.1) we get that $\left|Z_{\alpha}\right|=4$ and $\bar{G}_{\alpha} \cong S L_{2}(2)$; in particular, by (3.3), $G_{\alpha} / Q_{\alpha} \cong D_{2.3^{n}}$. Now (7.7)(a) shows that either G_{α} / Q_{α} $\cong S L_{2}(2)$ or $O_{2}\left(E_{\alpha+1}\right) \leq Q_{\alpha}$. In the second case $Q_{\alpha} \cap Q_{\alpha+1}$ is normal in $G_{\alpha+1}$ which contradicts (7.6)(a). Thus, we have $G_{\alpha} / Q_{\alpha} \cong S L_{2}(2)$.

A ssume that $b>2$. Since $\bar{G}_{\alpha} \cong S L_{2}$ (2) we get from (8.1) that $R=Z=$ $Z_{\alpha+1}$. The same argument in $G_{\alpha^{\prime}}$ gives $R=Z_{\alpha^{\prime}-1}$. Hence $\left\langle G_{\alpha+1}, G_{\alpha^{\prime}-1}\right\rangle$ $\leq C_{H}(R)$, but $E_{\alpha+1}$ is subnormal in $C_{H}(R)$ and so $O_{2}\left(E_{\alpha+1}\right) \leq O_{2}\left(C_{H}(R)\right)$.
Let $\alpha-1 \in \Delta(\alpha) \backslash\{\alpha+1\}$. Note that $V_{\alpha-1} \leq Q_{\alpha+1}$ since $b>2$. Hence, conjugation in $G_{\alpha+1}$ shows that

$$
V_{\alpha-1} \leq V_{\mu} O_{2}\left(E_{\alpha+1}\right) \leq V_{\mu} O_{2}\left(C_{H}(R)\right)
$$

for suitable $\mu \in \Delta(\alpha+2)$. Since $d\left(\mu, \alpha^{\prime}-1\right) \leq b-1$ we have $V_{\mu} \leq G_{\alpha^{\prime}}$, and since $O_{2}\left(C_{H}(R)\right) \leq Q_{\alpha^{\prime}-1}$ we get $V_{\alpha-1} \leq G_{\alpha^{\prime}}$. Now $\left[Z_{\alpha^{\prime}}, V_{\alpha-1}\right]=R$ and $V_{\alpha-1}$ is normal in $G_{\alpha-1}$ and $\left\langle G_{\alpha-1} \cap G_{\alpha}, Z_{\alpha^{\prime}}\right\rangle=G_{\alpha}$, a contradiction.
(8.6) Suppose that $Z_{\alpha+1} \leq Z\left(G_{\alpha+1}\right)$. Let $\alpha-1 \in \Delta(\alpha) \backslash\{\alpha+1\}$, $D=Q_{\alpha-1} \cap Q_{\alpha+1}, L=\left\langle Q_{\alpha-1}^{G_{\alpha}}\right\rangle, Q=O_{2}(L)$, and $T \in \operatorname{Syl}_{3}\left(G_{\alpha}\right)$. Then $[D, L]=Z_{\alpha}, Q / D$ and D are elementary abelian and one of the following holds:
(a) $2^{5} \leq|S| \leq 2^{6}, G_{\delta} / Q_{\delta} \cong S L_{2}(2)$ for every $\delta \in \Gamma$, and
(a_{1}) $Q=Q_{\alpha}, O_{2}\left(E_{\alpha}\right) \cong C_{4} \times C_{4}$, and $Q=O_{2}\left(E_{\alpha}\right)\langle t\rangle$, where either $t=1$ or tinverts the elements in $O_{2}\left(E_{\alpha}\right)$,
(a_{2}) $\quad Q_{\alpha+1} \cong C_{4} \mathrm{Y} Q_{8}$ or $Q_{8} \mathrm{Y} Q_{8}$, and $Q_{\alpha+1} \cap E_{\alpha+1} \cong Q_{8}$.
(b) $2^{8} \leq|S| \leq 2^{10}, G_{\alpha} / Q_{\alpha} \cong S L_{2}(2)$, and $G_{\alpha+1} / Q_{\alpha+1} \cong S L_{2}$ (2) $\backslash C_{2}$, and
$\left(\mathrm{b}_{1}\right) \quad\left|Q / O_{2}\left(E_{\alpha}\right)\right| \leq 4$, and $O_{2}\left(E_{\alpha}\right)$ is special of order 2^{6} with $C_{O_{2}\left(E_{\alpha}\right)}(T)=1$.
$\left(\mathrm{b}_{2}\right) \quad V_{\alpha+1} \cong Q_{8} \mathrm{Y} Q_{8}$ and $\Phi\left(Q_{\alpha+1}\right)=Z_{\alpha+1}$,
$\left(b_{3}\right)$ there exists an elementary abelian normal subgroup W of order 2^{4} in L such that $N_{G}(W)$ is nonsolvable.
(c) $2^{14} \leq|S| \leq 2^{15}, G_{\alpha} / Q_{\alpha} \cong S L_{2}(2)$, and $E_{\alpha+1} / O_{2}\left(E_{\alpha+1}\right)$ is elementary abelian of order 3^{4}, and
(c_{1}) $|Q / D|=2^{6},|D|=2^{5},\left|Z_{\alpha}\right|=4$, and $D=C_{Q}(T) \times Z_{\alpha}$,
(C_{2}) $Q_{\alpha+1}$ is extra special of order 2^{9} and $Q / Q \cap Q_{\alpha+1}$ is elementary abelian of order 2^{3}.
(C_{3}) Every Q-invariant subgroup of order 3 in $E_{\alpha+1} / O_{2}\left(E_{\alpha+1}\right)$ operates fixed-point-freely on $Q_{\alpha+1} / Z_{\alpha+1}$, and every involution in $Q Q_{\alpha+1} / Q_{\alpha+1}$ centralizes a subgroup of order 2^{5} in $Q_{\alpha+1}$;
$\left(\mathrm{C}_{4}\right)$ there exists $\lambda \in \Delta(\alpha+1) \backslash\{\alpha\}$ such that $N_{G}\left(Z_{\lambda} Z_{\alpha}\right) / C_{G}\left(Z_{\lambda} Z_{\alpha}\right)$ $\cong L_{3}(2)$.
Proof. We apply (8.1) and (8.5). Then $b=2, G_{\alpha} / Q_{\alpha} \cong S L_{2}(2)$ and $\left|Z_{\alpha}\right|=4$; in particular, $Z\left(G_{\alpha}\right)=1$. We choose the following additional notation:

$$
A=V_{\alpha-1} \cap Q_{\alpha}, \quad \tilde{A}=V_{\alpha+1} \cap Q_{\alpha}, \quad V=V_{\alpha+1} / Z_{\alpha+1}
$$

Note that $E_{\alpha} \leq L$ and that D is normal in G_{α}. Note further that $L \cap S=V_{\alpha+1} Q$ since $V_{\alpha+1} \nless Q_{\alpha}$ and that $\left[V_{\alpha+1}, Q_{\alpha+1}\right]=Z_{\alpha+1}$. It follows that
(1) $\left[D, O^{2}(L)\right]=Z_{\alpha}, Q=A \tilde{A} D,\left[Q, Q_{\alpha+1}\right] D=\tilde{A} D$, and $\Phi(Q) \leq D$.

Let $D_{0} \leq C_{D}\left(V_{\alpha+1}\right)$ such that $\left[D_{0}, S\right] \leq Z_{\alpha+1}$. Then by (1), $D_{0} Z_{\alpha}$ is normal in G_{α}. On the other hand $\left[Q, D_{0} Z_{\alpha}\right] \leq Z_{\alpha+1}$ and so $D_{0} \leq Z(Q)$. Now $Z\left(G_{\alpha}\right)=1$ yields $D_{0} \leq Z_{\alpha}$ and then $D_{\ell} \leq Z_{\alpha+1}$. M oreover, $\left|V_{\alpha+1} / A\right|$ $=2$ and $\|\left[C_{D}(A), V_{\alpha+1}\right] \leq 2$ also gives $C_{D}(A)=Z_{\alpha}$. We have shown:
(2) $C_{D}\left(V_{\alpha+1}\right)=Z_{\alpha+1}$ and $C_{D}(\tilde{A})=Z_{\alpha}=C_{D}(A)$.

Since $\left[Q_{\alpha+1}, V_{\alpha+1}\right]=Z_{\alpha+1}$ we have $\left[\Phi(D), V_{\alpha+1}\right]=1$. Now (2) gives $\Phi(D) \leq Z_{\alpha+1}$. Since $\Phi(D)$ is normal in G_{α} we get
(3) $\Phi(D)=1$.

A n easy consequence of (1) is
(4) If $x \in Q_{\alpha+1} \backslash Q$ and $U \leq Q_{\alpha-1} \cap Q_{\alpha}$ such that $[U, x] \leq D$, then $U \leq D$.

A ssume that $A \leq D$. Then by (1), $O_{2}\left(E_{\alpha}\right)=Z_{\alpha}$ and $Z\left(G_{\alpha}\right)=1$ implies $Q_{\alpha}=Z_{\alpha}$. Now $b=2$ gives $Q_{\alpha} \leq Q_{\alpha+1}$ and $Q_{\alpha+1}=S$, a contradiction.

A ssume that there exists $A \cap D \leq A_{0} \leq A$ such that $A_{0} \nless D$ and A_{0} operates quadratically on V. Then by (1.2) there exists $x \in V_{\alpha+1} \backslash Q_{\alpha}$ and $A_{1} \leq A_{0}$ such that $\left[A_{1}, x\right] \leq Z_{\alpha+1}$ and $\left|A_{0} / A_{1}\right|=2$. Now (4) implies that $A_{1} \leq D$. We have shown:
(5) $A \nless Q_{\alpha+1}$, and no noncyclic subgroup of $A Q_{\alpha+1} / Q_{\alpha+1}$ operates quadratically on V.

Suppose that $|A / A \cap D|=2$. Then by (1), $|Q / D|=4$. M oreover, since $[D, A] \leq Z_{\alpha-1}$ and D is elementary abelian we get that $|D / D \cap Z(Q)| \leq$ 2. Now $Z\left(G_{\alpha}\right)=1$ gives $D \cap Z(Q)=Z_{\alpha}$ and $\left|D / Z_{\alpha}\right| \leq 2$.

Note that $S=Q_{\alpha} Q_{\alpha+1}$ and so $Q_{\alpha} / Q_{\alpha} \cap Q_{\alpha+1} \cong S / Q_{\alpha+1}=\bar{S}$. Since $|\bar{A}|=2$ we get $\bar{A} \leq Z(\bar{S})$. On the other hand,

$$
Q_{\alpha}=C_{Q_{\alpha}}(T) A\left(Q_{\alpha} \cap Q_{\alpha+1}\right) \quad \text { for } T \in \operatorname{Syl}_{3}\left(G_{\alpha}\right)
$$

and $\overline{G_{Q_{\alpha}}(T)} \cap \bar{A}=1$. By (3.4), $Z(\bar{S})$ is cyclic and thus $Q_{\alpha}=Q,\left|S / Q_{\alpha+1}\right|$ $=2$, and $|S|=2^{5}$, if $D=Z_{\alpha}$, and $|S|=2^{6}$, if $\left|D / Z_{\alpha}\right|=2$. A ssume that $\left|V_{\alpha+1}\right| \leq 2^{4}$. Then $G_{\alpha+1} / Q_{\alpha+1} \cong S L_{2}$ (2) and $V_{\alpha+1} \cong C_{4} Y Q_{8}$, and (a) is easy to check since $V_{\alpha+1} \cap Q_{\alpha} \cong C_{2} \times C_{4}$.

A ssume that $\left|V_{\alpha+1}\right|=2^{5}$. Then $V_{\alpha+1} \cong Q_{8} Y Q_{8}$ since D is elementary abelian of order 2^{3} in $V_{\alpha+1}$. In particular 5 does not divide $\left|G_{\alpha+1}\right|$ and so $G_{\alpha+1} / Q_{\alpha+1} \cong S L_{2}(2)$. H owever, now there are only three conjugates of Z_{α} in $V_{\alpha+1}$ and $\left|V_{\alpha+1}\right| \leq 2^{4}$, a contradiction. We have shown:
(6) If $|A / A \cap D|=2$, then (a) holds.

From now on we assume
(7) $|A / A \cap D| \geq 4$.

Choose $a \in A \backslash Q_{\alpha+1}$ such that $[V, a]$ is minimal. Then by (7.8) and (3.6) there exists $y \in G_{\alpha+1}$ and $E=\left\langle A, A^{y}\right\rangle$ such that for $\lambda=\alpha^{y}$:
(i) $y \in E$,
(ii) $\left|A / A \cap G_{\lambda}\right|=2$ and $a \notin A \cap G_{\lambda}$,
(iii) $\left\langle E, G_{\alpha} \cap G_{\alpha+1}\right\rangle=G_{\alpha+1}$,
(iv) $\left[A \cap G_{\lambda}, E\right] \leq Q_{\alpha+1}$.

Let $V_{1}=\left\langle Z_{\alpha}^{E}\right\rangle, V_{0}=C_{Q_{\alpha+1}}\left(O^{2}(E)\right.$, and $Y=\left[Q_{\alpha+1}, O^{2}(E)\right]$. Note that by (1), $Q_{\alpha+1}=V_{\alpha+1} D$ and that $[D, A] \leq Z_{\alpha-1} \leq V_{\alpha+1}$. Hence (5) gives
(8) $Y \leq\left[Q_{\alpha+1}, E_{\alpha+1}\right] \leq V_{\alpha+1}$.

Suppose that $V_{1} \nless Q_{\alpha}$. Then we may assume that $Z_{\lambda} \nless Q_{\alpha}$. Since $\left[A \cap G_{\lambda}, Z_{\lambda}\right] \leq Z_{\alpha+1} \leq D$ we get from (4) that $A \cap G_{\lambda} \leq D$. Hence $|A / A \cap D|=2$, which contradicts (7). We have shown:
(9) $V_{1} \leq Q_{\alpha}$.

Note that $\left[V_{0} \cap D, A\right] \leq Z_{\alpha-1} \cap V_{0}$. Since by (iii), Z_{α} is not normal in E we get that $Z_{\alpha-1} \not V_{0}$ and $\left[V_{0} \cap D, A\right]=1$. Now (1) and (3) yield $V_{0} \cap D \leq Z(Q)$ since $\left(V_{0} \cap D\right) Z_{\alpha}$ is normal in L, and $Z\left(G_{\alpha}\right)=1$ gives $V_{0} \cap D \leq Z_{\alpha}$. Hence, $Z_{\alpha-1} \nless V_{0}$ implies:
(10) $\quad V_{0} \cap D=Z_{\alpha+1}$.

Since $\left[V_{0} \cap Q_{\alpha}, A\right] \leq V_{0} \cap D$ we get from (10), $\left[V_{0} \cap Q_{\alpha}, A\right] \leq Z_{\alpha+1}$, and by (iv), $\left[V_{1}, A \cap G_{\lambda}\right] \leq Z_{\alpha+1}$. Thus, we have
(11) $\left[V_{1}\left(V_{0} \cap Q_{\alpha}\right), A \cap G_{\lambda}\right] \leq Z_{\alpha+1}$ and $\left[V_{0} \cap Q_{\alpha}, A\right] \leq Z_{\alpha+1}$.

From (11) we get that A acts as a cyclic group of order 2 on $V_{1} / Z_{\alpha+1}$; i.e., $\left[V_{1}, A, A\right] \leq Z_{\alpha+1}$. On the other hand, by (9), $\left[V_{1}, A, A\right] \leq Z_{\alpha-1}$. We conclude that

$$
\left[V_{1}, A, A\right] \leq Z_{\alpha-1} \cap Z_{\alpha+1}=1
$$

Hence (2) yields [$\left.V_{1}, A\right] Z_{\alpha+1}=Z_{\alpha}$. This gives
(12) $\left|V_{1}\right|=2^{3}$ and $V_{1} \leq Y$; in particular, $E / C_{E}\left(V_{1}\right) \cong S L_{2}(2)$.

Suppose that a induces a transvection on $V / C_{V}\left(O^{2}(E)\right)$. Then $Y=V_{1}$ and $V_{\alpha+1}=V_{1}\left(V_{0} \cap V_{\alpha+1}\right)$; in particular, by (9), $V_{0} \cap V_{\alpha+1} \nless Q_{\alpha}$. Hence (11) implies that [$\left.V_{\alpha+1} \cap Q_{\alpha}, A \cap G_{\lambda}\right] \leq Z_{\alpha+1}$, and by (7),

$$
\left|V / C_{V}\left(A \cap G_{\lambda}\right)\right|=2
$$

Now the minimality of $[V, a]$ shows that $\| V, a] \|=2$. Since $[Y, a] \nless Z_{\alpha+1}$ we get $\left[V_{0} \cap V_{\alpha+1}, a\right] \leq Z_{\alpha+1}$ which contradicts (4) since $a \notin D$. We have
shown:
(13) a does not induce a transvection on $V / C_{V}\left(O^{2}(E)\right)$.

A ssume that $V_{0} \nless Q_{\alpha}$. Then by (1), $\left[V_{0}, Q\right] \leq\left[V_{0}, A\right] D \leq V_{0} D$ and thus $Q_{\alpha+1}=V_{0} D$ and $\left[V_{\alpha+1}, A\right] \leq Z_{\alpha-1} V_{0}$. This contradicts (13). Hence we have:
(14) $V_{0} \leq Q_{\alpha}$ and $Y \nless Q_{\alpha}$.

Suppose that $\left|V / C_{V}(a)\right|=4$. From (12) and (13) we get

$$
\left|Y / V_{1}\right|=\left|V_{1} / Z_{\alpha+1}\right|=4 ;
$$

in particular, $|Y|=2^{5}$ and $E / O_{2}(E) \cong S L_{2}(2)$. Moreover, by (11) either $\left[Y, A \cap G_{\lambda}\right] \leq Z_{\alpha+1}$ or $\left[Y, A \cap G_{\lambda}\right] Z_{\alpha+1}=V_{1}$. The first case contradicts (4) and (7) since $Y \nless Q_{\alpha}$. Thus, we have $\left[Y, A \cap G_{\lambda}\right] Z_{\alpha+1}=V_{1}$. Now (11) and (14) show that $A \cap G_{\lambda}$ is quadratic on V, and (5) yields that $\left|A \cap G_{\lambda} / D\right|=2$ and $|A / A \cap D|=4$.

A gain by (11) and (14), $\left|V / C_{V}(A)\right|=8$ and $\left|V / C_{V}(x)\right|=4$ for $x \in$ $A \backslash Q_{\alpha+1}$. Hence (1.6) shows that $G_{\alpha+1} / Q_{\alpha+1} \cong S L_{2}(2) \backslash C_{2}$ and $V_{\alpha+1}=$ Y; in particular, $V_{\alpha+1} \cong Q_{8} \mathrm{Y} Q_{8}$.

Since $A \tilde{A}$ is normal in G_{α} we get that $A \tilde{A}=O_{2}\left(E_{\alpha}\right),\left|O_{2}\left(E_{\alpha}\right)\right|=2^{6}$, and $C_{A A}(T)=1$ for $T \in \operatorname{Syl}_{3}\left(G_{\alpha}\right)$. By (14), $V_{0} \leq Q_{\alpha}$, and by (1) and (10), $V_{0} \cap Q_{\alpha-1}=Z_{\alpha+1}$ and $V_{0} / Z_{\alpha+1}$ is elementary abelian. Since $V_{0} / Z_{\alpha+1}$ is isomorphic to a subgroup of D_{8} we conclude that $\left|V_{0} / Z_{\alpha+1}\right| \leq|A / A \cap D|$ $=4$. To prove (b) it remains to prove $\left(b_{3}\right)$.
Let $W=\left[V_{1}, E_{\alpha}\right]$. Since $\left|V_{1} / Z_{\alpha}\right|=2$ and $C_{W}(T)=1$ we get that W is elementary abelian of order 2^{4}. In addition, $E_{\alpha} / C_{E_{\alpha}}(W) \cong \Sigma_{4}$.

Since $\left[V_{1}, W\right]=1$ we have that $[W, E] \leq V_{\alpha+1}$ and $\left\langle W^{E}\right\rangle \cap V_{\alpha+1} \leq$ $C_{V_{\alpha+1}}\left(V_{1}\right)=V_{1}$. Hence $E \leq N_{G}(W)$ and $E / C_{E}(W) \cong \Sigma_{4}$. Now E fixes $Z_{\alpha+1}^{\alpha+1}$ in W while E_{α} operates fixed-point-freely on W, and $\left(\mathrm{b}_{3}\right)$ follows. We may assume now:
(15) $\left|V / C_{V}(x)\right| \geq 8$ for every $x \in A \backslash Q_{\alpha+1}$.

A ssume that $V_{1} \not \approx D$. Let $v \in V_{1} \backslash Q_{\alpha-1}$. By (12), $[v, A] \leq Z_{\alpha}$ and thus $\left.\llbracket v, V_{\alpha-1}\right] Z_{\alpha-1} / Z_{\alpha-1} \mid \leq 4$. This contradicts (15). Hence we have:
(16) $V_{1} \leq D$.

In particular, by (1), V_{1} is normal in L. Now (c_{4}) is easy to check.
Let $V_{2}=\left\langle(Y \cap D)^{E}\right\rangle$. Then [$\left.V_{2}, A \cap G_{\lambda}\right] \leq V_{1} \leq D$, and by (4) and (7), $V_{2} \leq Q_{\alpha}$. M oreover $\left[Y \cap Q_{\alpha}, A\right] \leq Y \cap D \leq V_{2}$, and A induces transvections on Y / V_{2}. We conclude that $\left|Y / V_{2}\right|=\left|V_{1} / Z_{\alpha+1}\right|=4$.

Let $\bar{Y}=Y Z_{\alpha+1} / Z_{\alpha+1}$ and $b \in\left(A \cap G_{\lambda}\right) \backslash Q_{\alpha+1}$. Since $\bar{Y} / C_{\bar{Y}}(b)$ is E-invariant we get from (5) that $\left|\bar{Y} / C_{\bar{Y}}(b)\right| \geq 2^{4}$. On the other hand,
$\|[\bar{Y}, b] /\left[\bar{V}_{2}, b\right] \leq 4$ and $\left[\bar{V}_{2}, b\right] \leq \bar{V}_{1}$. It follows that $\left.\| \bar{Y}, b\right] \leq 2^{4}$. Now $\left.\left|\bar{Y} / C_{\bar{Y}}(b)\right|=\| \bar{Y}, b\right]$ implies

$$
2^{4}=\left|\bar{Y} / C_{\bar{Y}}(b)\right|=|[\bar{Y}, b]|
$$

and $\mid\left[\bar{V}_{2}, b\right]=4$; in particular, $|\bar{Y}| \geq 2^{8}$.
From (11) we get that $[\bar{Y}, b]=[V, b]$ since by (14), $V_{0} \leq Q_{\alpha}$ and by (10), $V_{0} \cap D=Z_{\alpha+1}$. Hence, the minimality of $[V, a]$ and the fixed-point-free action of $O^{2}(E)$ on Y give
(17) $|Y|=2^{9}$ and $\left.|[V, a]|=\| Y, a\right] \mid=2^{4}$.

By (10), $V_{0} \cap D=Z_{\alpha+1}$. Hence $\left[A, V_{0}\right] \leq Z_{\alpha+1}$ and $\|\left[V_{\alpha-1}, w\right]$ $Z_{\alpha-1} / Z_{\alpha-1} \mid \leq 4$ for every $w \in V_{0}$. N ow (15), applied to $V_{\alpha-1} / Z_{\alpha-1}$, yields $V_{0} \leq D$ and thus $V_{0}=Z_{\alpha+1}$. We have shown:
(18) $Q_{\alpha+1}=V_{\alpha+1}=Y$.

Now (7.3)(b) shows that $V_{\alpha+1}$ is extra special. Since $\left[V_{2}, A\right] \leq D$ and $[D, A] \leq V_{1}$ the action of E also gives $\left|V_{\alpha+1} \cap D\right|=2^{5}$ and $\left|V_{\alpha+1} / D\right|=2^{4}$; in particular, $|\bar{A}|=2^{3}$. M oreover, as seen before,
(19) $\left|V / C_{V}(x)\right|=\left|C_{V}(x)\right|=2^{4}$ for every $x \in A \backslash Q_{\alpha+1}$.

Since $C_{\bar{E}_{\alpha+1}}(x)$ operates faithfully on $C_{V}(x)$, (19) and (12) imply
(20) $C_{\bar{E}_{\alpha+1}}(x) \cong U_{x} \leq C_{3} \times C_{3}$ for every $x \in A \backslash Q_{\alpha+1}$.

Note that $|\bar{A}|=2^{3}$. Let $\overline{A_{1}}, \ldots, \overline{A_{n}}$ be the subgroups of index 2 in \bar{A} such that $\bar{E}_{i}=C_{\bar{E}_{\alpha+1}}\left(\bar{A}_{i}\right) \neq 1$. Then

$$
\bar{E}_{\alpha+1}=\left\langle\bar{E}_{i} \mid i=1, \ldots, n\right\rangle
$$

and (20) implies that
(21) $\bar{E}_{\alpha+1}$ is elementary abelian and $\left|\bar{E}_{i}\right|=3$.

In particular, there exists $z \in \bar{A}$ which inverts $\bar{E}_{\alpha+1}$. Since z is in 3 subgroups of index 2 in \bar{A} we have $n \leq 4$. In addition, an easy argument shows that $\bar{E}_{\alpha+1}=\bar{E}_{1} \times \cdots \times \bar{E}_{n}$. Hence \bar{S} is transitive on $\left\{\bar{E}_{1}, \ldots, \bar{E}_{n}\right\}$ and $n=2$ or 4 . The first case contradicts $|\bar{A}|=2^{3}$, and (c) is proven.

Definition. Let H be a finite group. Then H is of type $G_{2}(2)^{\prime}, \Omega_{6}^{-}(3)$, and $\Omega_{8}^{+}(3)$, respectively, if H contains two subgroups G_{α} and $G_{\alpha+1}$ such that $G_{\alpha} \cap G_{\alpha+1}=S \in \operatorname{Syl}_{2}(H)$ and $O_{2}\left(\left\langle G_{\alpha}, G_{\alpha+1}\right\rangle\right)=1$, and G_{α} and $G_{\alpha+1}$ satisfy (8.6)(a), (b), and (c), respectively.

N ote that $G_{2}(2), \mathrm{Aut}\left(\Omega_{6}^{-}(3)\right)$, and $\mathrm{Aut}\left(\Omega_{8}^{+}(3)\right)$ provide examples for such groups H.

9.

In this section we assume H ypothesis 2 and $G=\left\langle P_{1}, P_{2}\right\rangle$, and we use the notation concerning $\Gamma=\Gamma\left(G, P_{1}, P_{2}\right)$ as introduced in Section 7. The additional hypothesis for this section is $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]=1$. A ccording to (7.5) this gives $Z_{\alpha^{\prime}}=\Omega_{1}(Z(T)) \leq Z\left(G_{\alpha^{\prime}}\right)$ for $T \in \operatorname{Syl}_{2}\left(G_{\alpha^{\prime}}\right)$ and $Z\left(G_{\alpha}\right)=1$. Hence, as mentioned in the remark after (7.5), it follows that $E_{\alpha^{\prime}}$ is subnormal in $C_{H}\left(Z_{\alpha^{\prime}}\right)$.
(9.1) Suppose that $b=1$. Let $V_{\alpha^{\prime}}^{*}=\left\langle\left(Z_{\alpha} \cap Q_{\alpha^{\prime}}\right)^{G_{\alpha^{\prime}}}\right\rangle$. Then the following hold:
(a) $\quad G_{\alpha} / Q_{\alpha} \cong S L_{2}(2) \backslash C_{2}$ and $G_{\alpha^{\prime}} / Q_{\alpha^{\prime}} \cong S L_{2}$ (2).
(b) $|S|=2^{7}, Q_{\alpha}=Z_{\alpha}$, and $V_{\alpha^{\prime}}^{*} \cong Q_{8} Y Q_{8}$.
(c) There exists $U \leq V_{\alpha^{\prime}}^{*}$ such that $|U|=2^{3}$ and $N_{H}(U) / U \cong L_{3}(2)$.

Proof. Since $b=1$ we have $\alpha^{\prime}=\alpha+1$ and $Z_{\alpha} \nless Q_{\alpha+1}$. We apply (7.8) with $\delta=\alpha+1, \lambda=\alpha$, and $A=Z_{\alpha}$. Then there exists $x \in G_{\alpha+1}$ such that for $E=\left\langle Z_{\alpha}, Z_{\alpha}^{x}\right\rangle$ and $\alpha+2=\alpha^{x}$:
(i) $x \in E$,
(ii) $\left|Z_{\alpha} / Z_{\alpha} \cap G_{\alpha+2}\right|=2$,
(iii) $\left\langle E, G_{\alpha+1} \cap G_{\alpha}\right\rangle=G_{\alpha+1}$,
(iv) $\left[Z_{\alpha} \cap G_{\alpha+2}, E\right] \leq Q_{\alpha+1}$,
(v) $E=\left\langle a, Z_{\alpha+2}\right\rangle$ for every $a \in Z_{\alpha} \backslash G_{\alpha+2}$.

Let $V=\left(Z_{\alpha} \cap G_{\alpha+2}\right)\left(Z_{\alpha+2} \cap G_{\alpha}\right)$ and $V_{0}=Z_{\alpha} \cap Z_{\alpha+2}$. Then
(1) $V_{0} \leq Z(E)$ and $\left[V Q_{\alpha+1}, E\right] \leq V$, and
(2) $V \cap Q_{\alpha}=V \cap Z_{\alpha}=Z_{\alpha} \cap G_{\alpha+2}=C_{V}(a)$ for $a \in Z_{\alpha} \backslash G_{\alpha+2}$.

By (1), $\left[Q_{\alpha+1}, O^{2}(E)\right] \leq C_{Q_{\alpha+1}}(Z(V))$ and by (7.5)(b), $\Omega_{1}\left(C_{Z(V)}\left(Q_{\alpha+1}\right)\right)$ $=Z_{\alpha+1}$. Hence $\left[C_{Z(V)}\left(Q_{\alpha+1}\right), O^{2}(E)\right]=1$ and the $P \times Q$ lemma gives
(3) $\left[Z(V), O^{2}(E)\right]=1$.

On the other hand, $\left|V / V_{0}\right| \leq 4$ shows that V is abelian since V is generated by involutions. Hence, (3) gives
(4) $\left|V / V_{0}\right|>4$; in particular, $\left|V / V \cap Q_{\alpha}\right| \geq 4$.

Let $\bar{G}_{\alpha}=G_{\alpha} / C_{G_{\alpha}}\left(Z_{\alpha}\right)$. A ssume that X is a subgroup of V such that $\bar{X} \neq 1$ and $\left[Z_{\alpha}, X, X\right]=1$. By (1.2) there exists $X_{1} \leq X$ with $\left|\bar{X} / \bar{X}_{1}\right|=2$ and $C_{Z_{\alpha}}\left(X_{1}\right) \not Z_{\alpha} \cap V$. Now (2) and (v) imply that $X_{1} \leq V_{0} \leq Z_{\alpha}$ and $\bar{X}_{1}=1$. We have shown:
(5) No noncyclic subgroup of \bar{V} operates quadratically on Z_{α}.

For $\bar{X} \leq \bar{V}$ define as in Section 1 ,

$$
m(\bar{X})=\left|Z_{\alpha} / C_{Z_{\alpha}}(X)\right||\bar{X}|^{-1} .
$$

Note that $m(\bar{V})=2$ by (ii) and (2). Suppose that there exists $1 \neq X \leq V$ such that $\bar{X} \neq 1$ and $m(\bar{X})<m(\bar{V})$. By (1.5)(b) we may assume that $|\bar{X}|=2$ and thus $\left|Z_{\alpha} / C_{Z_{\alpha}}(X)\right|=2$. However, now $\left[Z_{\alpha}, X, V\right]=1$ and by (3), $\left[Z_{\alpha}, X\right] \leq V_{0}$. Thus (V) yields $X \leq V_{0}$ and $\bar{X}_{1}=1$, a contradiction. We have shown:
(6) $m(\bar{Y}) \geq m(\bar{V})$ for every $1 \neq \bar{Y} \leq \bar{V}$; in particular, no element of $\bar{V}^{\#}$ induces a transvection on Z_{α}.

Let $F=\left[E_{\alpha}, V\right], W=\left[Z_{\alpha}, F\right]$, and $Y_{0}=C_{Z_{\alpha}}(F)$. Then (5) and (6) together with (1.6) imply:
(7) $\overline{F V} \cong S L_{2}(2) \times S L_{2}$ (2) and $|W|=2^{4}$; in particular, $\left|V / V_{0}\right|=2^{4}$ and $|W / W \cap V|=2$.

Thus we have for $x \in V \backslash Q_{\alpha}$,

$$
\left|W / C_{W}(x)\right|=\left|Z_{\alpha} / C_{Z_{\alpha}}(x)\right|=4 \quad \text { and } \quad[W, x]=\left[Z_{\alpha}, x\right] .
$$

In particular $V \cap Z_{\alpha}=\left[Z_{\alpha}, x\right] V_{0}$. This gives $\left[Y_{0}, x\right]=1$ and $Y_{0} \leq V_{0}$ by (3). A ssume that $Y_{0} \neq 1$. Let $Y=Y_{0} \cap Z(B)$. If $J(S) \leq Q_{\alpha}$, then $Y=Y_{0} \neq 1$. If $J(S) \nless Q_{\alpha}$, then (2.2) shows that $Y \neq 1$.

Now (6.4) and (v) give $Y=Z_{\alpha+1}$. Hence $\left\langle F, G_{\alpha} \cap G_{\alpha+1}\right\rangle=G_{\alpha} \leq$ $C_{H}\left(Z_{\alpha+1}\right)$, a contradiction. We have shown that $Y_{0}=1$ and thus:
(8) $\left|Z_{\alpha}\right|=2^{4}, \bar{G}_{\alpha} \cong S L_{2}(2) \backslash C_{2}$, and $Z_{\alpha} \cap G_{\alpha+2}=Z_{\alpha} \cap Q_{\alpha+1}$.

By (5) and (8), $V_{0}=Z_{\alpha+1}$. Let $V_{1} \leq Q_{\alpha+1}$ be maximal with $\left[V_{1}, Q_{\alpha+1}\right]=$ $Z_{\alpha+1}$ and $\left[V_{1}, E_{\alpha+1}\right]=V_{1}$. Then by (1), $\left|V_{1} \cap V\right| \geq 8$ and $V_{1} \nless Q_{\alpha}$. Since [$\left.\bar{V}_{1}, \bar{V}\right]=1$ and V_{1} is normal in S we get from (8) and (3.4) that
(9) $\quad V_{1} \leq V Q_{\alpha}, 1 \neq\left|V_{1} / C_{V_{1}}\left(Z_{\alpha}\right)\right| \leq 4$, and $\left[E_{\alpha}, V_{1}\right]=E_{\alpha}$.

A gain by (3.4), $E_{\alpha+1}=\left[E_{\alpha+1}, Z_{\alpha}\right]$. Note that $\left[Q_{\alpha}, Z_{\alpha} \cap V_{1}\right]=1$ and $\left|Z_{\alpha} \cap V_{1} / Z_{\alpha+1}\right| \leq 4$. Hence (1.3) yields that $\left|V_{1} / Z_{\alpha+1}\right| \leq 2^{4}$ and $\left|Q_{\alpha} Q_{\alpha+1} / Q_{\alpha+1} Z_{\alpha}\right| \leq 2$ or that $\left|V_{1} / Z_{\alpha+1}\right|=2^{6}$ and $E_{\alpha+1} / C_{E_{\alpha+1}}\left(V_{1}\right)$ is extra special of order 3^{3}.
A ssume first that there is a noncentral chief factor of G_{α} in Q_{α} / Z_{α}. Then $\left[Q_{\alpha}, V_{1}\right] \nless Z_{\alpha}$ and thus $\left|V_{1} / Z_{\alpha+1}\right|=2^{6}$ and $\left|Q_{\alpha} \cap V_{1} / Z_{\alpha} \cap V_{1}\right|=4$. Hence (8) and (7.7)(a) imply:
(10) $\left|Q_{\alpha} / C\right|=2^{4}$, where C is maximal in Q_{α} with $\left[C, E_{\alpha}\right]=Z_{\alpha}$, $\left|\bar{V}_{1}\right|=4$, and $\left[Q_{\alpha}, V_{1}, V_{1}\right] \leq Z_{\alpha}$.

Now (10), (9), and (5) imply that Q_{α} / C and Z_{α} are nonisomorphic G_{α} / Q_{α} modules. Since $Z\left(G_{\alpha}\right)=1$ this shows that $C=Z_{\alpha}$ and $\left|Q_{\alpha}\right|=2^{8}$; in particular, $E_{\alpha} / Q_{\alpha} \cong C_{3} \times C_{3}$ and $E_{\alpha+1} / Q_{\alpha+1}$ is extra special of order 3^{3}.

Let $D \in \operatorname{Syl}_{3}\left(G_{\alpha}\right)$ and let D^{*} be a subgroup of order 3 in D with $V \leq N_{G_{\alpha}}\left(D^{*} Q_{\alpha}\right)$ and $Q=C_{Q_{\alpha}}\left(D^{*}\right)$. Since D^{*} operates fixed-point-freely on Z_{α} we get $|Q|=4$ and $Q \cap Z_{\alpha}=1$. Hence $Q Z_{\alpha}$ is elementary abelian. On the other hand, $Q Z_{\alpha}$ is normal in $Q_{\alpha} V_{1}$ and thus [$V_{1}, Q Z_{\alpha}, Q Z_{\alpha}$] $=1$. It follows that $Q Z_{\alpha}$ centralizes $Z\left(E_{\alpha+1} / Q_{\alpha+1}\right)$. However, then $Q \leq$ $Z_{\alpha} Q_{\alpha+1}$ and $\left[Q, V_{1}\right] \leq Z_{\alpha}$ which contradicts the action of $D^{*} V$ on Q_{α} / Z_{α}.

We have shown that $\left[Q_{\alpha}, E_{\alpha}\right]=Z_{\alpha}$. Now as above $Z\left(G_{\alpha}\right)=1$ yields

$$
\begin{equation*}
Q_{\alpha}=Z_{\alpha} . \tag{11}
\end{equation*}
$$

In particular, we conclude from (8) that $|S|=2^{7}$ and $G_{\alpha} / Q_{\alpha} \cong S L_{2}(2)$ \ C_{2}. N ow $\left|V_{1} \cap V\right|=8$ and $V \cong Q_{8} Y Q_{8}$ follow. In particular $G_{\alpha+1} / Q_{\alpha+1}$ $\cong S L_{2}(2)$ and $V=\left\langle\left(Z_{\alpha} \cap Q_{\alpha+1}\right)^{G_{\alpha+1}}\right\rangle$. It remains to prove (c).

The elements of order 3 in $E_{\alpha+1}$ operate fixed-point-freely on $V / Z_{\alpha+1}$. Hence, there exists an elementary abelian normal subgroup U of order 8 in $E_{\alpha+1}$ different from $V \cap V_{1}$ such that $\left[U, Z_{\alpha}\right] \leq U$. Clearly $N_{G_{\alpha+1}}(U) / U$ $\cong \Sigma_{4}$. Since $U \nless V_{1} Z_{\alpha}$ we also have that $\left[E_{\alpha}, U\right] \neq E_{\alpha}$ and $N_{G_{\alpha}}(U) / U \cong$ Σ_{4}. It follows that $N_{H}(U) / C_{G}(U) \cong L_{3}(2)$. Since $C_{H}(U) \leq C_{H}\left(Z_{\alpha+1}\right)$ and $C_{H}\left(Z_{\alpha+1}\right)$ is of characteristic 2 type, it is easy to see that $C_{H}(U)=U$.

Definition. Let H be a finite group. Then H is of type $\Omega_{6}^{+}(2)$ if H contains two subgroups G_{α} and $G_{\alpha^{\prime}}$ such that $G_{\alpha} \cap G_{\alpha^{\prime}}=S \in \operatorname{Syl}_{2}(H)$ and $O_{2}\left(\left\langle G_{\alpha}, G_{\alpha^{\prime}}\right\rangle\right)=1$, and G_{α} and $G_{\alpha^{\prime}}$ satisfy (9.1)(a)-(c).

Note that $\Omega_{6}^{+}(2)\left[\cong \Sigma_{8} \cong \operatorname{Aut}\left(L_{4}(2)\right)\right]$ is a group of type $\Omega_{6}^{+}(2)$.
(9.2) Let $\delta \in\left(\alpha^{\prime}\right)^{G}$ and $\lambda, \mu \in \Delta(\delta)$. Suppose that $\left|Z_{\lambda} / Z_{\lambda} \cap Z_{\mu}\right|=2$ and $\left\langle Q_{\mu}, G_{\lambda} \cap G_{\delta}\right\rangle=G_{\delta}$. Then $G_{\lambda} / Q_{\lambda} \cong S L_{2}(2)$ and $\left|Z_{\lambda}\right|=4$.

Proof. A fter conjugation we may assume that $\delta=\alpha+1$ and $\lambda=\alpha$. Let $L=\left\langle Q_{\alpha}, Q_{\mu}\right\rangle$ and $Q=Q_{\alpha+1} \cap Q_{\mu}$. By (7.6)(c), $Q \nless Q_{\alpha}$. Thus, Q induces transvections on Z_{α}. We apply (1.7).
Let $X=\left[Z_{\alpha}, Q\right]$. Then $X \leq Z_{\alpha} \cap Z_{\mu} \cap Z(B)$. Since $\left\langle Q_{\alpha}, G_{\alpha+1} \cap G_{\mu}\right\rangle$ $=G_{\alpha+1}$ we get from (6.4) that $X \leq Z_{\alpha+1}$. Now (1.7) yields $\left|Z_{\alpha}\right|=4$. Hence $G_{\alpha} / C_{G_{\alpha}}\left(Z_{\alpha}\right) \cong S L_{2}(2)$ and $E_{\alpha} / O_{2}\left(E_{\alpha}\right)$ is cyclic. Now (7.7)(a) yields $Q_{\alpha}=C_{G_{\alpha}}\left(Z_{\alpha}\right)$.
(9.3) Suppose that $b>1$. Then $G_{\lambda} / Q_{\lambda} \cong S L_{2}(2)$ and $\left|Z_{\lambda}\right|=4$ for every $\lambda \in \alpha^{G}$.

Proof. It suffices to prove the claim for α. Recall that $Z\left(G_{\alpha}\right)=1$. A ccording to (9.2) we may assume that
(1) $\left|Z_{\alpha}\right|>4$.

We apply (7.8) with $\delta=\alpha^{\prime}, \lambda=\alpha^{\prime}-1$, and $A=V_{\alpha+1}$. Then there exists $x \in G_{\alpha^{\prime}}$ such that for $E=\left\langle V_{\alpha+1}, V_{\alpha+1}^{x}\right\rangle$ and $\mu=\left(\alpha^{\prime}-1\right)^{x}$:
(i) $x \in O^{2}(E)$.
(ii) $Z_{\alpha} \nless G_{\mu}$ and $\left|V_{\alpha+1} / V_{\alpha+1} \cap G_{\mu}\right|=2$,
(iii) $\left\langle E, G_{\alpha^{\prime}} \cap G_{\mu}\right\rangle=G_{\alpha^{\prime}}$,
(iv) $E=\left\langle a, V_{\alpha+1}^{x}\right\rangle$ for every $a \in V_{\alpha+1} \backslash G_{\mu}$.
(v) $\left[E, V_{\alpha+1} \cap G_{\mu}\right] \leq Q_{\alpha^{\prime}}$.

By (7.5)(d), $V_{\alpha+1}$ operates quadratically on $V_{\alpha^{\prime}}$, and vice versa. Since Z_{μ} is not normal in $G_{\alpha^{\prime}}$ and $\left[Z_{\mu}, V_{\alpha+1}^{x}\right.$] = 1 we get from (ii), (iii), and (iv) that $Z_{\mu} \nless Q_{\alpha}$.

Note that by (7.5)(d), $\left[Z_{\alpha}, Z_{\mu} \cap G_{\alpha}, Z_{\mu} \cap G_{\alpha}\right] \leq\left[V_{\alpha^{\prime}}, Z_{\mu} \cap G_{\alpha}\right]=1$. Hence, by (1.2) there exists $W \leq Z_{\mu} \cap G_{\alpha}$ such that $\left|Z_{\mu} \cap G_{\alpha} / W\right| \leq 2$ and $C_{Z_{\alpha}}(W) \nless G_{\mu}$. Now (i) and (iv) imply that $W \leq Z_{\mu} \cap Z_{\alpha^{\prime}-1}$ and $W \leq Q_{\alpha}$. Together with (1) and (9.2) this gives
(2) $Z_{\mu} \cap Q_{\alpha}=Z_{\mu} \cap Z_{\alpha^{\prime}-1},\left|Z_{\mu} \cap G_{\alpha} / Z_{\mu} \cap Q_{\alpha}\right| \leq 2$, and $Z_{\mu} \nless G_{\alpha}$; in particular, $V_{\alpha^{\prime}} \nless Q_{\alpha+1}$.
We now apply (7.8) with $\delta=\alpha+1, \lambda=\alpha+2$, and $A=V_{\alpha^{\prime}}$. Then there exist $y_{\tilde{N}} \in G_{\alpha+1}, \tilde{E}=\left\langle V_{\alpha^{\prime}}, V_{\alpha^{\prime}}^{y}\right\rangle$, and $\tilde{\mu}=(\alpha+2)^{y}$ such that (i)-(v) hold for ($y, E, \alpha^{\prime}, \tilde{\mu}, \alpha+1, \alpha+2$) in place of ($x, E, \alpha+1, \mu, \alpha^{\prime}, \alpha^{\prime}-1$). M oreover, by (7.8) and (6.1) we may also assume that
(3) $O^{2}(\tilde{E}) \leq\left[O^{2}(\tilde{E}), B(T)\right]$, where $T \in \operatorname{Syl}_{2}\left(G_{\alpha+1} \cap G_{\tilde{\mu}}\right)$.

The same argument as above with ($\tilde{\mu}, \mu$) in place of (μ, α) shows that $Z_{\tilde{\mu}} \nless G_{\mu}$ and $\left|Z_{\tilde{\mu}} \cap G_{\mu} / Z_{\tilde{\mu}} \cap Z_{\alpha+2}\right| \leq 2$. Hence, without loss of generality we may assume that $\stackrel{\mu}{\mu}=\alpha$. This gives together with (2) and (9.2):
(4) $\left|Z_{\mu} / Z_{\mu} \cap G_{\alpha}\right|=\left|Z_{\mu} \cap_{\tilde{N}} G_{\alpha} / Z_{\mu} \cap Z_{\alpha^{\prime}-1}\right|=\left|Z_{\alpha} / Z_{\alpha} \cap G_{\mu}\right|=\mid Z_{\alpha} \cap$ $G_{\mu} / Z_{\alpha} \cap Z_{\alpha+2} \mid=2$ and $O^{2}(E) \leq\left[O^{2}(E), B\right]$.
Let $R_{1}=\left[Z_{\alpha} \cap G_{\mu}, Z_{\mu} \cap G_{\alpha}\right] \cap Z(B)$ and $C=C_{H}\left(R_{1}\right)$. A ssume first that $R_{1} \neq 1$. Then C is of characteristic 2 type since $B \leq C$. Note further that $R_{1} \leq Z_{\alpha} \cap Z_{\alpha+2} \cap Z_{\mu} \cap Z_{\alpha^{\prime}-1}$ and thus $\langle E, E\rangle \leq C$.

Let $F=\left[O^{2}(E), B\right]$. Then $F=[F, B] \leqq E_{\alpha+1}$. Hence, (5.2) shows that F is subnormal in C; in particular, $O^{2}(E)_{\sim} \leq F \leq O_{2,2^{\prime}}(C)$. Since α and $\alpha+2$ are conjugate by an element of $O^{2}(\tilde{E})$ we get

$$
Z_{\alpha} \leq Z_{\alpha+2} O_{2}(C) \leq\left(Q_{\alpha^{\prime}} \cap C\right) O_{2}(C),
$$

a contradiction since $\left[Z_{\alpha}, E\right]$ is not a 2-group.

A ssume now that $R_{1}=1$. Then $Z_{\alpha} \nless Z(J(S))$ and thus $J(S) \nless Q_{\alpha}$. From (6.4) we get that $Z_{\alpha} \cap Z_{\alpha+2} \cap Z(B)=Z_{\alpha+1}$ since [$Z_{\alpha} \cap Z_{\alpha+2}, E$] $=1$. On the other hand by (4), $\left|Z_{\alpha} / Z_{\alpha} \cap Z_{\alpha+2}\right|=4$. Thus, (1.7) yields

$$
\left|Z_{\alpha}\right|=2^{4} \quad \text { and } \quad \bar{G}_{\alpha} \cong S L_{2}(2) \backslash C_{2} .
$$

M oreover, since $R_{1}=1$ we have $\bar{S}=\bar{B}\left(\overline{Z_{\mu} \cap G_{\alpha}}\right)$.
Let $R_{0}=\left[Z_{\mu} \cap G_{\alpha}, Z_{\alpha} \cap G_{\mu}\right]$ and $C_{0}=C_{H}\left(R_{0}\right)$. Note that $\langle E, \tilde{E}\rangle \leq$ C_{0} since $R_{0} \leq Z_{\alpha} \cap Z_{\alpha+2} \cap Z_{\mu} \cap Z_{\alpha^{\prime}-1}$ and that $\left|R_{0}\right|=2$ since $R_{1}=1$. Because $C_{\bar{G}_{\alpha}}\left(\overline{Z_{\mu} \cap G_{\alpha}}\right)$ acts transitively on [$\left.Z_{\alpha}, Z_{\mu} \cap G_{\alpha}\right]^{\#}$ there exists $S^{g} \leq G_{\alpha}$ such that $S^{g} \leq C_{0}$. Hence, C_{0} is of characteristic 2 type.

If $O^{2}(E) \leq O_{2,2^{\prime}}\left(C_{0}\right)$, then, as above for E and $C, Z_{\mu} \leq Z_{\alpha^{\prime}-1} O_{2}\left(C_{0}\right)$ and $\left[Z_{\mu}, O^{2}(\tilde{E})\right]$ is a 2-group, a contradiction. A ssume that $O^{2}(E) \nless$ $O_{2,2^{\prime}}\left(C_{0}\right)$. Then $\left[O_{2,2^{\prime}, 2}\left(C_{0}\right), Z_{\alpha}\right] \nless O_{2}\left(C_{0}\right)$ and thus $\left|Z_{\alpha} \cap O_{2}\left(C_{0}\right) / R_{0}\right| \leq$ 2. Hence, Z_{α} induces transvections in $O_{2}\left(C_{0}\right) / \Phi\left(O_{2}\left(C_{0}\right)\right) R_{0}$ since $O_{2}\left(C_{0}\right)$ $\leq S^{g} \leq G_{\alpha}$. Now (1.7) gives $O^{2}(E) \leq O_{2,2^{\prime}}\left(C_{0}\right)$, a contradiction.
Remark. In the following lemmata we will use (9.3) without reference. Note that (9.3) has the following easy consequences which will be used frequently.

Suppose that $b>1$. Then $Z_{\alpha}=Z_{\alpha-1} \times Z_{\alpha+1}$, where $\alpha-1 \in \Delta(\alpha) \backslash$ $\{\alpha+1\}$ and $\left|Z_{\alpha+1}\right|=2$. By (7.6)(b), $S=Q_{\alpha} Q_{\alpha+1}=G_{\alpha} \cap G_{\alpha+1}$ and $\left[Z_{\alpha}, S\right]=Z_{\alpha+1}$. It follows that $\left[V_{\alpha+1}, Q_{\alpha+1}\right]=Z_{\alpha+1}$, and $V_{\alpha+1} / Z_{\alpha+1}$ is a $G_{\alpha+1} / Q_{\alpha+1}$ module. M oreover, by (7.7)(b) this module is faithful.

N ote further that by (9.3), E_{α} is 2-transitive in $\Delta(\alpha)$. Hence, all paths of length 2 with initial vertex in $(\alpha+1)^{G}$ are conjugate under G.
Definition. Let $\delta \in \Gamma$. Then $W_{\delta}=\left\langle V_{\lambda} \mid \lambda \in \Delta(\delta)\right\rangle$ if $\delta \in \alpha^{G}$ and $W_{\delta}=\left\langle V_{\lambda} \mid d(\delta, \lambda)=2\right\rangle$ if $\delta \in(\alpha+1)^{G}$.
(9.4) Let $b>1$ and $\rho \in \Gamma$ with $d(\rho, \alpha+1)=2$. Suppose that there exist $t \in C_{G_{\alpha+1}}\left(V_{\rho}\right), x \in\left[E_{\alpha+1}, t\right]$, and $A \leq V_{\rho}^{x}$ such that
(i) $[A, t] \leq V_{\alpha+1}$,
(ii) $\left\langle G_{\alpha+1} \cap G_{\nu}, t\right\rangle=G_{\alpha+1}$ for $\nu \in \Delta(\alpha+1) \cap \Delta\left(\rho^{x}\right)$,
(iii) $\|\left[V_{\alpha+1}, t\right] Z_{\alpha+1} / Z_{\alpha+1} \mid=2$.

Then $A \leq V_{\alpha+1}$.

Proof. Possibly after conjugation in $G_{\alpha+1}$ we may assume that $\nu=\alpha$. Set $\rho^{x}=\alpha-1$. A ssume that $A \nless V_{\alpha+1}$ and without loss $V_{\alpha-1} \cap V_{\alpha+1} \leq$ A. We choose the following notation: $T=\left\langle\left(t^{x}\right)^{Q_{\alpha}}\right\rangle, F=\left\langle Q_{\alpha} \cap Q_{\alpha-1}, t\right\rangle$, $Q=O_{2}\left(O^{2}(F)\right), \quad \bar{G}_{\alpha+1}=G_{\alpha+1} / Q_{\alpha+1}, \quad \bar{V}_{\alpha+1}=V_{\alpha+1} / Z_{\alpha+1}, \quad$ and $V_{a}=$ $\left[\langle a\rangle V_{\alpha+1}, Q\right] Z_{\alpha+1}$ for $a \in A$.

Note that $t \notin Q_{\alpha+1}$ by (ii) and that $\left[V_{\alpha-1}, T\right]=1$, i.e., $T \leq Q_{\alpha-1}$ by (7.4)(c) and (7.7)(b). Now (iii), (1.7), and (7.7)(b) imply:
(1) $\bar{E}_{\alpha+1} \bar{T}=\bar{E}_{1} \times \cdots \times \bar{E}_{r}, \bar{E}_{i} \cong S L_{2}(2)$, and
(2) $\left[\bar{V}_{\alpha+1}, \bar{E}_{\alpha+1}\right]=\bar{V}_{1} \times \cdots \times \bar{V}_{r}, \bar{V}_{i}=\left[\bar{V}_{\alpha+1}, \bar{E}_{i}\right]$, and $\left|\bar{V}_{i}\right|=4$.

We may assume that $\left[\bar{E}_{\alpha+1}, t\right] \leq \bar{E}_{1}$; i.e., $\bar{x} \in \bar{E}_{1}$ and $O^{2}(\bar{F})=$ $\left\langle O^{2}\left(\bar{E}_{1}\right)^{y} \mid y \in \overline{Q_{\alpha} \cap Q_{\alpha-1}}\right\rangle$. Note that V_{a} is F-invariant and $V_{a} \leq$ $\left[V_{\alpha+1}, O^{2}(F)\right] Z_{\alpha+1}$. Since $\left|Q / Q \cap Q_{\alpha}\right| \leq 2$ we also get that
(3) $\left|V_{a} / V_{a} \cap V_{\alpha-1}\right| \leq 2$.

A ssume that $\left|V_{\alpha+1} / V_{\alpha+1} \cap V_{\alpha-1}\right|=2$. Then $V_{\alpha-1}=A$ and $\left\langle Q_{\alpha}, t\right\rangle$ normalizes $V_{\alpha-1} V_{\alpha+1}$. Since $G_{\alpha} \cap G_{\alpha+1}=Q_{\alpha} Q_{\alpha+1}$ we get from (ii) that $E_{\alpha+1} \leq\left\langle Q_{\alpha}, t\right\rangle$. Now (7.6)(b) shows that $W_{\alpha}=V_{\alpha-1} V_{\alpha+1}$. It follows that W_{α} is normal in G_{α} and $G_{\alpha+1}$, a contradiction. We have shown:
(4) $\left|V_{\alpha+1} / V_{\alpha-1} \cap V_{\alpha+1}\right| \geq 4$.

Suppose first that $V_{a} \neq Z_{\alpha+1}$. Then $\left[V_{a}, O^{2}(F)\right] \neq 1$ and thus $V_{1} \leq V_{a}$ since $O^{2}(\bar{F})=\left\langle O^{2}\left(\bar{E}_{1}\right)^{y} \mid y \in \overline{Q_{\alpha} \cap Q_{\alpha-1}}\right\rangle$. Now (3) gives $V_{a}=V_{1}\left(V_{a} \cap\right.$ $V_{\alpha-1}$) and $\left[V_{a}, T\right]=\left[V_{1}, T\right] \leq V_{1}$. It follows that $O^{2}(\bar{F})=O^{2}\left(\bar{E}_{1}\right)$ and $F / O_{2}(F) \cong S L_{2}(2)$; in particular,
(5) $V_{a}=V_{1}$.

Since $Q_{\alpha} \cap Q_{\alpha-1}$ is normal in Q_{α} and $\bar{S}=\bar{Q}_{\alpha}$ we conclude that $\overline{Q_{\alpha} \cap Q_{\alpha-1}}$ normalizes \bar{E}_{i} for $i=1, \ldots, r$ and $T \leq Q_{\alpha} \cap Q_{\alpha-1} \leq T Q_{\alpha+1}$. Now $\left[V_{\alpha-1}, T\right]=1$ gives

$$
\left[V_{\alpha-1} \cap V_{\alpha+1}, Q_{\alpha} \cap Q_{\alpha-1}\right]=\left[V_{\alpha-1} \cap V_{\alpha+1}, Q_{\alpha} \cap Q_{\alpha-1} \cap Q_{\alpha+1}\right]=1
$$

since $Z_{\alpha-1} \cap Z_{\alpha+1}=1$.
On the other hand, $V_{\alpha-1} \cap V_{\alpha+1}$ is normal in G_{α} and $O_{2}\left(E_{\alpha}\right) \leq\left\langle\left(Q_{\alpha} \cap\right.\right.$ $\left.\left.Q_{\alpha-1}\right)^{G_{\alpha}}\right\rangle$. It follows that [$\left.V_{\alpha-1} \cap V_{\alpha+1}, O_{2}\left(E_{\alpha}\right)\right]=1$, and (7.5)(c) yields
(6) $V_{\alpha-1} \cap V_{\alpha+1}=Z_{\alpha}$.

Thus, (3) and (5) show that $Z_{\alpha} \leq V_{a}=V_{1}$, and $V_{\alpha+1}=V_{1}$ since $O^{2}(\bar{F})$ is normal in $\bar{E}_{\alpha+1}$; in particular, $\bar{G}_{\alpha+1}=\bar{F}$ and $\left|V_{\alpha+1}\right|=8$. This contradicts (4).

Suppose now that $V_{a}=Z_{\alpha+1}$ for every $a \in A$ and thus
(7) $[A, Q] \leq Z_{\alpha+1}$.

If $Q \nless Q_{\alpha}$, then $A \leq V_{\alpha+1}$, which contradicts the assumption on A. Hence $Q \leq Q_{\alpha}$. Let $Q^{*}=\cap_{y \in F}\left(Q_{\alpha} \cap Q_{\alpha+1}\right)^{y}$ and $\bar{Q}_{\alpha+1}=Q_{\alpha+1} / Q^{*}$. Then $Q_{\alpha-1} \cap Q_{\alpha+1}=Q_{\alpha-1} \cap Q_{\alpha} \cap Q_{\alpha+1} \leq O_{2}(F)$ and so $Q_{\alpha-1} \cap Q_{\alpha+1}$ $\leq Q^{*}$. It follows that $\left[Q_{\alpha+1} \cap Q_{\alpha^{\prime}}, Q_{\alpha} \cap Q_{\alpha-1}\right]=1$. Hence $\mid Q_{\alpha+1} / Q_{\alpha+1}$
$\cap Q_{\alpha} \mid=2$ implies that $F / C_{F}\left(\bar{Q}_{\alpha+1}\right) \cong S L_{2}(2)$. However, $C_{F}\left(\bar{Q}_{\alpha+1}\right)$ normalizes $Q_{\alpha+1} \cap Q_{\alpha}$ and thus by (7.6)(c) and (1), $C_{F}\left(\bar{Q}_{\alpha+1}\right)$ is a 2-group. Now $F / O_{2}(F) \cong S L_{2}(2)$ and $O^{2}(\bar{F})=O^{2}\left(\bar{E}_{1}\right)$. As above we get that $Q_{\alpha} \cap Q_{\alpha-1} \leq T Q_{\alpha+1}$ and $\left[V_{\alpha-1} \cap V_{\alpha+1}, Q_{\alpha} \cap Q_{\alpha-1}\right]=1$ and then $V_{\alpha-1}$ $\cap V_{\alpha+1}=Z_{\alpha}$.
Since $Q_{\alpha} \cap Q_{\alpha-1} \leq T Q_{\alpha+1}$ we also get that

$$
\left[A, Q_{\alpha} \cap Q_{\alpha-1}\right]=\left[A, Q_{\alpha} \cap Q_{\alpha-1} \cap Q_{\alpha+1}\right] \leq Z_{\alpha-1}
$$

and by (7), $\left[A, Q_{\alpha} \cap Q_{\alpha-1} \cap Q_{\alpha+1}\right] Z_{\alpha+1}$ is F-invariant. Hence [$A, Q_{\alpha} \cap$ $\left.Q_{\alpha-1}\right]=1$ since by (ii), Z_{α} is not normal in F. On the other hand, $\left|Q_{\alpha-1} / Q_{\alpha} \cap Q_{\alpha-1}\right|=2$ and thus $\left|A / C_{A}\left(Q_{\alpha-1}\right)\right| \leq 2$; in particular, $A=$ $Z_{\alpha} C_{A}\left(Q_{\alpha-1}\right)$ and $C_{A}\left(Q_{\alpha-1}\right) \neq Z_{\alpha-1}$ since $A \neq Z_{\alpha}$. However, $Z_{\alpha} \leq A \leq$ [$\left.V_{\alpha-1}, E_{\alpha-1}\right] Z_{\alpha}$, and by (1) and (2), $C_{\left[V_{\alpha-1}, E_{\alpha-1}\right]}\left(Q_{\alpha-1}\right)=Z_{\alpha-1}$. We conclude that

$$
\begin{aligned}
\left|C_{V_{\alpha-1}}\left(Q_{\alpha-1}\right) / Z_{\alpha-1}\right| & =\left|C_{V_{\alpha-1}}\left(Q_{\alpha-1}\right)\left[V_{\alpha-1}, E_{\alpha-1}\right] /\left[V_{\alpha-1}, E_{\alpha-1}\right]\right| \\
& =\left|C_{A}\left(Q_{\alpha-1}\right)\left[V_{\alpha-1}, E_{\alpha-1}\right] /\left[V_{\alpha-1}, E_{\alpha-1}\right]\right| \\
& =\left|C_{A}\left(Q_{\alpha-1}\right) / Z_{\alpha-1}\right| .
\end{aligned}
$$

Thus $C_{A}\left(Q_{\alpha-1}\right)=C_{V_{\alpha-1}}\left(Q_{\alpha-1}\right)$ and $A=Z_{\alpha} C_{V_{\alpha-1}}\left(Q_{\alpha-1}\right)$.
Now $G_{\alpha} \cap G_{\alpha-1} \leq N_{G}(A)$. Hence $\left\langle Q_{\alpha}, F\right\rangle$ and thus $E_{\alpha+1}$ normalizes $A V_{\alpha+1}$. Let $V_{a}^{*}=\left[\langle a\rangle V_{\alpha+1}, O_{2}\left(E_{\alpha+1}\right)\right] Z_{\alpha+1}$ for $a \in A$. Then, as for V_{a}, $\left|V_{a}^{*} / V_{a}^{*} \cap V_{\alpha-1}\right| \leq 2$ and $V_{a}^{*}=Z_{\alpha+1}$ or $Z_{\alpha} \leq V_{a}^{*}$. If $Z_{\alpha} \leq V_{a}^{*}$, then $V_{a}^{*}=\left[V_{\alpha+1}, E_{\alpha+1}\right]$ and $\left|V_{\alpha+1} / V_{\alpha+1} \cap V_{\alpha-1}\right|=2$, which contradicts (4). Thus, we have $\left[A, O_{2}\left(E_{\alpha+1}\right)\right] \leq Z_{\alpha+1}$ and $A \leq V_{\alpha+1}$ since by (7.6)(b), $O_{2}\left(E_{\alpha+1}\right) \nless Q_{\alpha}$, a contradiction.
(9.5) Suppose that $b>1$. Let $t \in V_{\alpha+1} \backslash Q_{\alpha^{\prime}}$ such that $\|\left[V_{\alpha^{\prime}}, t\right] Z_{\alpha^{\prime}} / Z_{\alpha^{\prime}} \mid$ $=2$ and $\left[V_{\alpha^{\prime}}, t\right] \leq V_{\alpha^{\prime}-2}$. Then either
(a) $\left|V_{\alpha^{\prime}}\right|=2^{3}$ and $G_{\alpha^{\prime}} / Q_{\alpha^{\prime}} \cong S L_{2}$ (2), or
(b) $\left|V_{\alpha^{\prime}}\right|=2^{5}, G_{\alpha^{\prime}} / Q_{\alpha^{\prime}} \cong S L_{2}(2) \backslash C_{2}$, and $\left|V_{\alpha^{\prime}} \cap V_{\alpha^{\prime}-2}\right|=2^{3}$.

Proof. Let $\bar{V}_{\alpha^{\prime}}=V_{\alpha^{\prime}} / Z_{\alpha^{\prime}}, R=\left[V_{\alpha^{\prime}}, t\right]$, and $\bar{E}_{\alpha^{\prime}}=E_{\alpha^{\prime}} / Q_{\alpha^{\prime}}$. Then t induces a transvection on $\bar{V}_{\alpha^{\prime}}$. Hence (1.7) and (7.7)(b) imply:
(i) $\bar{E}_{\alpha^{\prime}}=\bar{E}_{1} \times \cdots \times \bar{E}_{r}, \bar{E}_{i} \cong C_{3}$ and
(ii) $\bar{V}_{\alpha^{\prime}}=\bar{V}_{0} \times \bar{V}_{1} \times \cdots \times \bar{V}_{r}, V_{i}=\left[V_{\alpha^{\prime}}, E_{i}\right]$, and $\left|\bar{V}_{i}\right|=4$ for $i \geq 1$, and $V_{0}=C_{V_{\alpha^{\prime}}}\left(E_{\alpha^{\prime}}\right)$.

We may assume that $R \leq V_{1}$. Note that $R Z_{\alpha^{\prime}-1}$ is normal in $\left\langle Q_{\alpha^{\prime}-2}, Q_{\alpha^{\prime}}\right\rangle$ and

$$
\left[R,\left\langle Q_{\alpha^{\prime}-2}, Q_{\alpha^{\prime}}\right\rangle\right] \leq Z_{\alpha^{\prime}-1} .
$$

On the other hand, by (7.6)(b), $E_{\alpha^{\prime}-1} \leq\left\langle Q_{\alpha^{\prime}-2}, Q_{\alpha^{\prime}}\right\rangle$, and by (7.5)(c), $R \nless Z\left(O_{2}\left(E_{\alpha^{\prime}-1}\right)\right)$. Hence there exists $w \in O_{2}\left(E_{\alpha^{\prime}-1}\right)$ such that $[w, R] Z_{\alpha^{\prime}}$ $=Z_{\alpha^{\prime}-1}$. It follows that $Z_{\alpha^{\prime}-1} \leq V_{1} V_{1}^{w}$. Since $V_{1} V_{1}^{w}$ is normalized by $E_{\alpha^{\prime}}$ we conclude that $V_{\alpha^{\prime}}=V_{1} V_{1}^{w}$. If $V_{1}=V_{1}^{w}$, then (a) holds, and if $V_{1} \neq V_{1}^{w}$, then (b) holds.
(9.6) Suppose that $b>1$ and $G_{\alpha+1} / Q_{\alpha+1} \cong S L_{2}(2)$. Then $\mid V_{\alpha+1} /$ $V_{\alpha+1} \cap V_{\alpha+3} \mid=2$.
Proof. Let $\alpha-1 \in \Delta(\alpha) \backslash\{\alpha+1\}$ and let $R=\left[V_{\alpha+1}, V_{\alpha^{\prime}}\right]$ and $R_{0}=$ [$V_{\alpha-1}, V_{\alpha^{\prime}-2}$]. Since $\left|Z_{\alpha}\right|=4$ and there are only three $G_{\alpha+1}$-conjugates of Z_{α} we get that $\left|V_{\alpha+1}\right| \leq 2^{4}$ and $\left.\| V_{\alpha+1}, E_{\alpha+1}\right] \mid=2^{3}$. Hence, we may assume:
(*) $\left|V_{\alpha+1}\right|=2^{4}, V_{\alpha-1} \cap V_{\alpha+1}=Z_{\alpha}$, and $Z_{\alpha} \nless\left[V_{\alpha+1}, E_{\alpha+1}\right]$.
Suppose first that $R_{0}=1$. Then $V_{\alpha-1} \leq C_{G_{\alpha^{\prime}-2}}\left(V_{\alpha^{\prime}-2}\right) \leq Q_{\alpha^{\prime}-1} \leq G_{\alpha^{\prime}}$ by (7.7)(b); in particular, $\left[V_{\alpha-1}, R\right]=1$. Hence $\left[V_{\alpha-1}, V_{\alpha^{\prime}}\right] \leq R Z_{\alpha^{\prime}}$. Since $\left|V_{\alpha^{\prime}} / Z_{\alpha^{\prime}-1} R\right|=2$ and $\left[V_{\alpha-1}, Z_{\alpha^{\prime}-1} R\right]=1$ there exists $A \leq V_{\alpha-1}$ such that $\left|V_{\alpha-1} / A\right|=2$ and $\left[V_{\alpha^{\prime}}, E_{\alpha^{\prime}}, A\right]=R$. If $\left[V_{\alpha^{\prime}}, E_{\alpha^{\prime}}\right] \leq Q_{\alpha+1}$, then $R=Z_{\alpha+1}$ and $E_{\alpha} \leq\left\langle Q_{\alpha-1},\left[V_{\alpha^{\prime}}, E_{\alpha^{\prime}},\right]\right\rangle$. Thus $\left[A, E_{\alpha}\right] \leq Z_{\alpha}$ and $A \leq V_{\alpha-1} \cap V_{\alpha+1}$, which contradicts (*). If $\left[V_{\alpha^{\prime}}, E_{\alpha^{\prime}}\right] \nless Q_{\alpha+1}$, then (9.4) with $\rho=\alpha+3$, $t \in\left[V_{\alpha^{\prime}}, E_{\alpha^{\prime}}\right] \backslash Q_{\alpha+1}$, and $(\alpha+3)^{x}=\alpha-1$ shows that $A \leq V_{\alpha+1}$, a contradiction as above. We have shown that $R_{0} \neq 1$.

Suppose next that $b=3$. Then $R Z_{\alpha+2} \leq V_{\alpha+1} \cap V_{\alpha+3}$. Now (*) yields $R \leq Z_{\alpha+2}$ and $Z_{\alpha+2} \leq\left[V_{\alpha^{\prime}}, E_{\alpha^{\prime}}\right]$. This contradicts (*) with α^{\prime} in place of $\alpha+1$.

Suppose finally that $b>3$ and $R_{0} \neq 1$; i.e., $b \geq 5$. Then $\left[R_{0}, V_{\alpha^{\prime}}\right]=1$ and, as above, with (9.4), $R_{0} \leq V_{\alpha-1} \cap V_{\alpha+1}=Z_{\alpha}$. It follows that either $Z_{\alpha} \leq\left[V_{\alpha-1}, E_{\alpha-1}\right]$ or $V_{\alpha^{\prime}-2} \leq Q_{\alpha-1}$ and $R_{0}=Z_{\alpha-1}$. The first case contra$\operatorname{dicts}(*)$ with $\alpha-1$ in place of $\alpha+1$. The second case gives $\left[Z_{\alpha}, V_{\alpha^{\prime}}\right]=1$, which contradicts (7.7)(b).
(9.7) Suppose that $b>1$ and $\left|V_{\alpha+1} / V_{\alpha+1} \cap V_{\alpha+3}\right|=2$. Then $b=3$, $\left|V_{\alpha+1}\right|=8$, and $G_{\alpha+1} / Q_{\alpha+1} \cong S L_{2}(2)$.

Proof. Let $t \in V_{\alpha+1} \backslash Q_{\alpha^{\prime}}$. Then $\left[V_{\alpha^{\prime}}, t\right] \leq V_{\alpha^{\prime}} \cap V_{\alpha^{\prime}-2}=C_{V_{\alpha^{\prime}}}(t)$ and $\|\left[V_{\alpha^{\prime}}, t\right] Z_{\alpha^{\prime}} / Z_{\alpha^{\prime}} \mid=2$. Hence (9.5) implies that $\left|V_{\alpha^{\prime}}\right|=8$ and $G_{\alpha^{\prime}} / Q_{\alpha^{\prime}} \cong$ $S L_{2}(2)$ since $C_{V_{\alpha^{\prime}}}(t)$ is $Q_{\alpha^{\prime}-1}$-invariant and $G_{\alpha^{\prime}}=Q_{\alpha^{\prime}-1} E_{\alpha^{\prime}} Q_{\alpha^{\prime}}$. It remains to prove that $b=3$.

A ssume that $b>3$. Let $R=\left[V_{\alpha^{\prime}}, Z_{\alpha}\right]$. Then $|R|=2$ and $R \leq Z_{\alpha^{\prime}-1}$ since $\left|Z_{\alpha} / C_{Z_{\alpha}}\left(V_{\alpha^{\prime}}\right)\right|=2$ and $\left|V_{\alpha^{\prime}}\right|=8$. With the same argument $R \leq Z_{\alpha+2}$. Hence, there exist $\rho \in \Delta(\alpha+2)$ and $\rho^{\prime} \in \Delta\left(\alpha^{\prime}-1\right)$ such that $R=$ $Z_{\rho}=Z_{\rho^{\prime}}$.
A ssume that $b=7$. Then $R \leq V_{\alpha+3} \cap V_{\alpha+5}=Z_{\alpha+4}$ and thus $R=$ $Z_{\alpha+3}=Z_{\alpha+5}$, which contradicts $Z_{\alpha+4}=Z_{\alpha+3} \times Z_{\alpha+5}$.

A ssume that $b>7$. Let $U=\left\langle W_{\tau} \mid \tau \in \Delta(\alpha)\right\rangle$. Then U is abelian and $U \leq Q_{\rho^{\prime}}$. Let $C=O_{2}\left(C_{G}(R)\right)$. Then $C \leq Q_{\rho^{\prime}} \leq G_{\alpha^{\prime}-1}$. Hence $W_{\alpha^{\prime}-1}$ is C-invariant. Note that E_{ρ} is subnormal in $C_{G}(R)$ and thus $O_{2}\left(E_{\rho}\right) \leq C$. If $\rho \notin\{\alpha+1, \alpha+3\}$, then by (7.6)(b) there exists $x \in C$ such that $(\alpha+1)^{x}=\alpha+3$. Hence $\left[V_{\alpha+1}, W_{\alpha^{\prime}-1}\right]\left[V_{\alpha+3}, W_{\alpha^{\prime}-1}\right]=1$ which contradicts $\left[V_{\alpha+1}, V_{\alpha^{\prime}}\right] \neq 1$. Thus, we have $\rho \in\{\alpha+1, \alpha+3\}$. On the other hand, E_{ρ} is subnormal in $C_{H}(R), W_{\tau} \leq Q_{\rho}$ for $\tau \in \Delta(\alpha)$, and E_{ρ} is 2-transitive on $\Delta(\rho)$. Hence, there exists $\kappa \in \Gamma$ such that $W_{\tau} \leq C W_{\kappa}$, $d\left(\kappa, \alpha^{\prime}\right) \leq b-3$, and $d\left(\kappa, \alpha^{\prime}-1\right) \leq b-4$. We conclude that $U \leq G_{\alpha^{\prime}-1}$.

A ssume that $U \leq G_{\alpha^{\prime}}$. Then $\left[U, V_{\alpha^{\prime}}\right] \leq R Z_{\alpha^{\prime}}$ and either $\left[W_{\alpha}, V_{\alpha^{\prime}}\right]=R$ or $\left[U, V_{\alpha^{\prime}}\right]=\left[W_{\alpha^{\prime}}, V_{\alpha^{\prime}}\right]$. Suppose that $V_{\alpha^{\prime}} \leq Q_{\alpha+1}$. Then $R=Z_{\alpha+1}^{\alpha^{\prime}} \leq Z_{\alpha}$ and the first case shows that V_{τ} is normal in G_{α} for $\tau \in \Delta(\alpha)$, while the second case shows that W_{τ} is normal in G_{α} for $\tau \in \Delta(\alpha)$, a contradiction in both cases. Suppose that $V_{\alpha^{\prime}} \not Q_{\alpha+1}$. Then either W_{α} is normal in $G_{\alpha+1}$ or U is normal in $G_{\alpha+1}$, a similar contradiction.

A ssume that $U \nless G_{\alpha^{\prime}}$. Then $Z_{\alpha^{\prime}} \nless\left[W_{\alpha+1} \cap G_{\alpha^{\prime}}, V_{\alpha^{\prime}}\right]$ since U is abelian and $Z_{\alpha^{\prime}-1}=Z_{\alpha^{\prime}} \times Z_{\alpha^{\prime}-2}$. It follows that $\left[W_{\alpha} \cap G_{\alpha^{\prime}}, V_{\alpha^{\prime}}\right]=R$.

Suppose that $W_{\alpha} \leq G_{\alpha^{\prime}}$. Then [$W_{\alpha^{\prime}}, V_{\alpha^{\prime}}$] $=R \leq V_{\alpha+1} \leq W_{\alpha}$ and $V_{\alpha^{\prime}} \leq$ $Q_{\alpha+1}$ since W_{α} is not normal in $G_{\alpha+1}$. It follows that $R=Z_{\alpha+1}$ and [$W_{\alpha}, V_{\alpha^{\prime}}$] $=Z_{\alpha+1}$. Hence V_{τ} is normal in G_{α} for $\tau \in \Delta(\alpha)$, a contradiction.

Suppose that $W_{\alpha} \nless G_{\alpha^{\prime}}$. Then $\left[W_{\alpha^{\prime}}, Z_{\alpha^{\prime}-1}\right]=Z_{\alpha^{\prime}-2}=R$. On the other hand, $Z_{\alpha^{\prime}-1} \leq Q_{\alpha}$ and so $\left[W_{\alpha}, Z_{\alpha^{\prime}-1}\right] \leq Z_{\alpha} \cap Q_{\alpha^{\prime}}=Z_{\alpha+1}$. It follows that $R=Z_{\alpha+1}=Z_{\alpha^{\prime}-2}$. In particular, $V_{\alpha^{\prime}} \leq Q_{\alpha+1}$ and $\left[U, V_{\alpha^{\prime}}\right]=\left[W_{\alpha}, V_{\alpha^{\prime}}\right]$ since $Z_{\alpha^{\prime}} \nless U$, but now W_{τ} is normal in G_{α} for $\tau \in \Delta(\alpha)$, a contradiction.

It remains to discuss the case $b=5$. Then $R \leq Z_{\alpha+2} \cap Z_{\alpha+4}=Z_{\alpha+3}$; i.e., $\rho=\rho^{\prime}=\alpha+3$. Now the proof can be finished by a nice argument of Goldschmidt [2] which we will repeat here.

Note that $|\Delta(\delta)|=3$ for every $\delta \in \Gamma$. Hence, a subgroup of $G_{\delta} \cap G_{\tau}$, $\tau \in \Delta(\delta)$, is transitive on $\Delta(\delta) \backslash\{\tau\}$ whenever it is not in Q_{δ}. Thus, $G_{\alpha+1} \cap G_{\alpha+2}$ is transitive on $\Delta(\alpha+2) \backslash\{\alpha+1\}$ and $Q_{\alpha+2}$ is transitive on $\Delta(\alpha+3) \backslash\{\alpha+2\}$ since $Q_{\alpha+2} Q_{\alpha+3} \in$ Syl $_{3}\left(G_{\alpha+3}\right)$. M oreover, $Q_{\alpha+2} \cap$ $Q_{\alpha+3} \neq Q_{\alpha+3} \cap Q_{\alpha+4}$ by (7.6)(c), and so $Q_{\alpha+2} \cap Q_{\alpha+3}$ is transitive on $\Delta(\alpha+4) \backslash\{\alpha+3\}$. We conclude that $G_{\alpha+1}$ is transitive on paths of length 4 with initial vertex $\alpha+1$, and so G is transitive on paths of length 4 with initial vertex in $(\alpha+1)^{G}$.

We now investigate a path $(\alpha+1, \ldots, \alpha+5, \ldots, \alpha+7)$ of length 6. Then $V_{\alpha+7} \nless Q_{\alpha+3}$ and $\left[V_{\alpha+3}, V_{\alpha+7}\right]=Z_{\alpha+5}$. Hence, there exists $y \in$ $V_{\alpha+7} \backslash Q_{\alpha+3}$ and $w \in V_{\alpha+1} \backslash Q_{\alpha+5}$ such that for $z=\left[y, y^{w}\right]$ and $z^{\prime}=$ [w, w^{y}],

$$
z \in\left[V_{\alpha+7}, V_{\alpha+7}^{w}\right]=Z_{\alpha+5} \quad \text { and } \quad z^{\prime} \in\left[V_{\alpha+1}, V_{\alpha+1}^{y}\right]=Z_{\alpha+3} .
$$

On the other hand, $\langle y, w\rangle$ is a dihedral group of order $2\left|\left\langle y, y^{w}\right\rangle\right| \leq 16$. It follows that $(y w)^{4} z=(w y)^{4}=z^{\prime}$ and $z=z^{\prime} \in Z_{\alpha+3} \cap Z_{\alpha+5}=1$. Since
$V_{\alpha+1}=Z_{\alpha} Z_{\alpha+2}$ and $\left[V_{\alpha+1}, Z_{\alpha+2}^{y}\right]=\left[Z_{\alpha+2}, V_{\alpha+1}^{y}\right]=1$ we have shown that $\left[V_{\alpha+1}, V_{\alpha+1}^{y}\right]=1$. However, the path $\left(\alpha+1, \ldots, \alpha+3, \ldots,(\alpha+1)^{y}\right)$ is a G-conjugate of $(\alpha+1, \ldots, \alpha+5)$ and thus also $\left[V_{\alpha+1}, V_{\alpha+5}\right]=1$, a contradiction.
(9.8) Suppose that $Z_{\alpha^{\prime}} \leq V_{\alpha+1}$. Then $b \leq 3$.

Proof. Assume that $b>3$; i.e., $b \geq 5$ by (7.5)(a). Let $\lambda \in \Delta(\alpha+1)$. Then W_{λ} is abelian and $W_{\lambda} \leq G_{\alpha^{\prime}-2}$; in particular, $\left[W_{\lambda}, V_{\alpha+1}\right]=1$ and thus [$W_{\lambda}, Z_{\alpha^{\prime}}$] $=1$. Since $Z_{\alpha^{\prime}-1}=Z_{\alpha^{\prime}-2} \times Z_{\alpha^{\prime}}$ we conclude that $W_{\lambda} \leq$ $C_{G}\left(Z_{\alpha^{\prime}-1}\right)$. Now (7.7)(a) gives [$W_{\lambda}, E_{\alpha^{\prime}-1}$] $\leq Q_{\alpha^{\prime}-1}$. Since $E_{\alpha^{\prime}-1}$ is transitive on $\Delta\left(\alpha^{\prime}-1\right)$ we get that $W_{\lambda} \leq G_{\alpha^{\prime}}$.
A ccording to (7.8) and (7.6)(d) there exists $\mu \in \Delta\left(\alpha^{\prime}\right)$ such that

$$
\left|W_{\alpha} / W_{\alpha} \cap G_{\mu}\right|=2, \quad Z_{\alpha} \nless G_{\mu} \quad \text { and } \quad\left[Z_{\alpha}, Z_{\mu}\right] \neq 1 .
$$

A ssume first that $Z_{\mu} \leq G_{\alpha}$. Then $\left[Z_{\alpha}, Z_{\mu}\right]=Z_{\alpha+1}$ and $\left[W_{\alpha}, Z_{\mu}\right] \leq$ $Z_{\alpha+1} Z_{\alpha^{\prime}}$. Let $\alpha-1 \in \Delta(\alpha) \backslash\{\alpha+1\}$. Then there exists a subgroup A of index 2 in $V_{\alpha-1}$ such that $\left[A, Z_{\mu}\right]=Z_{\alpha+1}$. Since $E_{\alpha} \leq\left\langle Q_{\alpha-1}, Z_{\mu}\right\rangle$ we get that $A \leq V_{\alpha+1}$, which contradicts (9.7).
A ssume now that $Z_{\mu} \not G_{\alpha}$; in particular, $Z_{\mu} \nless Q_{\alpha+1}$. Note that

$$
\left[W_{\alpha}, Z_{\mu}\right] \leq\left[Z_{\alpha}, Z_{\mu}\right] Z_{\alpha^{\prime}} \leq V_{\alpha+1} \leq W_{\alpha} .
$$

Hence, W_{α} is normal in $\left\langle G_{\alpha} \cap G_{\alpha+1}, Z_{\mu}\right\rangle$. Since W_{α} is not normal in $G_{\alpha+1}$ we conclude that $\left\langle G_{\alpha} \cap G_{\alpha+1}, Z_{\mu}\right\rangle \neq G_{\alpha+1}$. On the other hand, $Z_{\mu} \nless G_{\alpha}$ and so by (3.3),
(*) $E_{\alpha+1} / O_{2}\left(E_{\alpha+1}\right)$ is not elementary abelian.
Assume that $Z_{\alpha+1} \nless V_{\alpha^{\prime}}$. According to (1.2) there exists $A \leq V_{\alpha^{\prime}}$ and $U \leq V_{\alpha+1}$ such that $\left|V_{\alpha^{\prime}} / A\right|=2, U \nless Q_{\alpha^{\prime}}$, and $[U, A] \leq Z_{\alpha+1}$. Since $Z_{\alpha+1} \nless V_{\alpha}$, we get that $[A, U]=1$, and U induces transvections on $V_{\alpha^{\prime}} / Z_{\alpha^{\prime}}$. Now (1.7) and (7.7)(b) contradict ($*$) with α^{\prime} in place of $\alpha+1$.
A ssume that $Z_{\alpha+1} \leq V_{\alpha^{\prime}}$. Then our hypothesis is symmetric in $\alpha+1$ and α^{\prime}. Thus, with the above argument, $W_{\tau} \leq G_{\alpha+1}$ for $\tau \in \Delta\left(\alpha^{\prime}\right)$. A gain by (7.8) there exists $x \in G_{\alpha+1}$ such that for $E=\left\langle Z_{\mu}, Z_{\mu}^{x}\right\rangle$ and $\lambda=$ $(\alpha+2)^{x}$,

$$
\left\langle Z_{\mu}, G_{\lambda} \cap G_{\alpha+1}\right\rangle=G_{\alpha+1} \quad \text { and } \quad\left|W_{\mu} / W_{\mu} \cap G_{\lambda}\right|=2
$$

Let $\rho=(\alpha+3)^{x}$. N ote that $\left[Z_{\mu}, Z_{\lambda}\right] \neq 1$ since Z_{λ} is not normal in $G_{\alpha+1}$.
Suppose that $Z_{\lambda} \leq G_{\mu}$. Then $E_{\mu} \leq\left\langle Z_{\lambda}, Q_{\kappa}\right\rangle$ for $\kappa \in \Delta(\mu) \backslash\left\{\alpha^{\prime}\right\}$. On the other hand, $\left[W_{\mu}, Z_{\lambda}\right]=\left[Z_{\mu}, Z_{\lambda}\right]\left[W_{\mu} \cap G_{\lambda}, Z_{\lambda}\right] \leq Z_{\alpha+1} Z_{\alpha^{\prime}}$ and, as above for μ and $\alpha,\left|V_{\kappa} / V_{\kappa} \cap V_{\alpha^{\prime}}\right|=2$, which contradicts (9.7).

Suppose that $Z_{\lambda} \nless G_{\mu}$. Then $Z_{\lambda} \nless Q_{\alpha^{\prime}}$ and, as above for α, by (7.8) and (7.6)(d) there exists $\mu^{\prime} \in \Delta\left(\alpha^{\prime}\right)$ such that

$$
\left|W_{\lambda} / W_{\lambda} \cap G_{\mu^{\prime}}\right|=2, \quad Z_{\lambda} \nless G_{\mu^{\prime}}, \quad \text { and } \quad\left[Z_{\lambda}, Z_{\mu^{\prime}}\right] \neq 1 .
$$

Note that $\left[W_{\lambda}, Z_{\mu^{\prime}}\right] \leq V_{\alpha+1} \leq W_{\lambda}$. If $Z_{\mu^{\prime}} \leq G_{\lambda}$, then, as above for α and μ, $\left|V_{\rho} / V_{\rho} \cap V_{\alpha+1}\right|=2$ for $\rho \in \Delta(\lambda)$, which contradicts (9.7). If $Z_{\mu^{\prime}} \nless G_{\lambda}$, then W_{λ} is normal in $\left\langle G_{\lambda} \cap G_{\alpha+1}, Z_{\mu^{\prime}}\right\rangle=\left\langle G_{\lambda} \cap G_{\alpha+1}, Z_{\mu}\right\rangle=G_{\alpha+1}$, a contradiction.
(9.9) Suppose that $Z_{\alpha+1} \leq V_{\alpha^{\prime}}$. Then $b \leq 3$.

Proof. A ssume that $b>3$. Then (9.8) with $\alpha+1$ and α^{\prime} interchanged yields $V_{\alpha^{\prime}} \leq Q_{\alpha+1}$. In particular, $V_{\alpha^{\prime}} \leq G_{\alpha}$ and $\left[Z_{\alpha}, V_{\alpha^{\prime}}\right]=Z_{\alpha+1}$, and Z_{α} induces transvections on $V_{\alpha^{\prime}} / Z_{\alpha^{\prime}}$. Hence, according to (1.7), there exists $V_{1} \leq V_{\alpha^{\prime}}$ such that
(1) $\left[V_{1}, Z_{\alpha}\right]=Z_{\alpha+1}$ and $\left[V_{1^{\prime}} C_{G_{\alpha}}\left(Z_{\alpha}\right)\right] \leq Z_{\alpha+1} Z_{\alpha^{\prime}}$.

Let $\alpha-1 \in \Delta(\alpha) \backslash\{\alpha+1\}$ and A be maximal in $V_{\alpha-1}$ such that $\left[A, V_{1}\right] \leq Z_{\alpha+1}$. Then $A=V_{\alpha-1} \cap V_{\alpha+1}$ since $\left\langle Q_{\alpha-1}, V_{1}\right\rangle$ contains E_{α}. From (9.7) we get that
(2) $\left|V_{\alpha-1} / A\right| \geq 4$.

Hence, (1) implies that $V_{\alpha-1} \nless G_{\alpha^{\prime}}$.
Suppose that $V_{\alpha-1} \leq G_{\alpha^{\prime}-1}$. Then $\left|V_{\alpha-1} / V_{\alpha-1} \cap G_{\alpha^{\prime}}\right|=2$ and [$V_{\alpha-1}, Z_{\alpha^{\prime}}$] $=1$ since $Z_{\alpha^{\prime}-1}=Z_{\alpha^{\prime}-2} \times Z_{\alpha^{\prime}}$. We conclude that $Z_{\alpha^{\prime}} \nless W_{\alpha}$ since W_{α} is abelian and (1) yields $\left[V_{\alpha-1} \cap G_{\alpha^{\prime}}, V_{1}\right]=Z_{\alpha+1}$. This contradicts (2).

We have shown that $V_{\alpha-1} \nless Q_{\alpha^{\prime}-2}$. Hence (9.8) implies that $Z_{\alpha^{\prime}-2} \nless$ $V_{\alpha-1}$. Since $\left[Z_{\alpha}, V_{1}\right]=\left[Z_{\alpha-1}, V_{1}\right] \neq 1$ and $b \geq 5$ we also have $Z_{\alpha-1} \nless$ $V_{\alpha^{\prime}-2}$ and thus $V_{\alpha^{\prime}-2} \nless Q_{\alpha-1}$. By (7.8) and (7.6)(d) there exists $\rho \in$ $\Delta\left(\alpha^{\prime}-2\right)$ such that $\left|V_{\alpha-1} / V_{\alpha-1} \cap G_{\rho}\right|=2$, and $\left[V_{\alpha-1} \cap G_{\rho}, Z_{\rho}\right]=1$ since $Z_{\alpha^{\prime}-2} \not V_{\alpha-1}$. Hence, Z_{ρ} induces transvections on $V_{\alpha-1} / Z_{\alpha-1}$. M oreover, $\left[V_{\alpha-1}, Z_{\rho}, V_{1}\right]=1$ since $b>3$ and thus $\left[V_{\alpha-1}, Z_{\rho}\right] \leq V_{\alpha+1}$. From (9.5) we conclude that
(3) $\quad G_{\alpha-1} / Q_{\alpha-1} \cong S L_{2}(2) \backslash C_{2},\left|V_{\alpha-1}\right|=2^{5}$, and $|A|=2^{3}$.

Conjugation to $G_{\alpha^{\prime}}$ gives $Z_{\alpha+1} \leq V_{\alpha^{\prime}} \cap V_{\alpha^{\prime}-2}$. Hence, there exists $y \in$ $C_{G_{\alpha^{\prime}-1}}\left(Z_{\alpha+1}\right)$ such that $\alpha^{\prime y}=\alpha^{\prime}-2$. Let $X=N_{G_{\alpha^{\prime}}}\left(Z_{\alpha+1} Z_{\alpha^{\prime}}\right)$. By (3) applied to α^{\prime} we get that $X / Q_{\alpha^{\prime}} \cong S L_{2}(2) \times C_{2}$ and $X \cap G_{\alpha^{\prime}-1} \in \operatorname{Syl}_{2}(X)$. Hence X^{y} has the same properties with α^{\prime} replaced by $\alpha^{\prime}-2$. It follows that $\left|V_{\alpha-1} / V_{\alpha-1} \cap G_{\alpha^{\prime}-1}\right|=2$. On the other hand, $V_{\alpha-1} \cap G_{\alpha^{\prime}-1} \leq Q_{\alpha^{\prime}-1}$
since $Z_{\alpha^{\prime}-2} \nless V_{\alpha-1}$, and $\left[V_{\alpha-1} \cap Q_{\alpha^{\prime}-1}, V_{1}\right] \leq Z_{\alpha+1}$ since $\left[Z_{\alpha^{\prime}}, V_{\alpha-1}\right] \neq 1$. However, now $\left|V_{\alpha-1} / A\right|=2$, which contradicts (2).
(9.10) $b \leq 3$.

Proof. A ssume that $b>3$. By (9.8) and (9.9), $Z_{\alpha^{\prime}} \nless V_{\alpha+1}$ and $Z_{\alpha+1} \nless$ $V_{\alpha^{\prime}}$; in particular, $V_{\alpha^{\prime}} \not Q_{\alpha+1}$. A ccording to (7.8) and (7.6)(d) there exists $\mu \in \Delta\left(\alpha^{\prime}\right)$ such that $\left|V_{\alpha+1} / V_{\alpha+1} \cap G_{\mu}\right|=2,\left\langle G_{\alpha^{\prime}} \cap G_{\mu}, V_{\alpha+1}\right\rangle=G_{\alpha^{\prime}}$, and $\left[Z_{\mu}, V_{\alpha+1}\right] \neq 1$. Since $Z_{\alpha^{\prime}} \nless V_{\alpha+1}$ we get that $\left[V_{\alpha+1} \cap G_{\mu}, Z_{\mu}\right]=1$, and since $Z_{\alpha+1} \nless V_{\alpha^{\prime}}$, we get that $Z_{\mu} \nless Q_{\alpha+1}$.
Let $\Lambda=\left\{\lambda \in \Delta(\alpha+1) \mid\left\langle G_{\lambda} \cap G_{\alpha+1}, Z_{\mu}\right\rangle=G_{\alpha+1}\right\}$. Pick $\lambda \in \Lambda$. Then [$\left.Z_{\mu}, Z_{\lambda}\right] \neq 1$ since Z_{λ} is not normal in $G_{\alpha+1}$. Hence $Z_{\lambda} \nless G_{\mu}$ and
(1) $\left(\lambda, \alpha^{\prime}\right)$ is a critical pair for every $\lambda \in \Lambda$.

A gain by (7.8) and (7.6)(d) there exists $x \in G_{\alpha+1}$ such that for $\lambda=$ $(\alpha+2)^{x}$ and $E=\left\langle Z_{\mu}, Z_{\mu}^{x}\right\rangle$,
(i) $x \in E$ and $\left[O^{2}(E), V_{\alpha^{\prime}} \cap G_{\lambda}\right] \leq Q_{\alpha+1}$,
(ii) $\lambda \in \Lambda$ and $\left[Z_{\lambda}, Z_{\mu}\right] \neq 1$,
(iii) $\left|V_{\alpha^{\prime}} / V_{\alpha^{\prime}} \cap G_{\lambda}\right|=2$.

Since $Z_{\alpha+1} \nless V_{\alpha^{\prime}}$, we get that $\left[Z_{\lambda}, V_{\alpha^{\prime}} \cap G_{\lambda}\right]=1$, and since $Z_{\alpha^{\prime}} 太 V_{\alpha+1}$ we get that $Z_{\lambda} \nless Q_{\alpha^{\prime}}$. Hence, we may assume that $\lambda=\alpha$. We have shown:
(2) Z_{α} induces transvections on $V_{\alpha^{\prime}} / Z_{\alpha^{\prime}}$.

Let $\bar{V}_{\alpha^{\prime}}=V_{\alpha^{\prime}} / Z_{\alpha^{\prime}}$ and $\bar{E}_{\alpha^{\prime}}=E_{\alpha^{\prime}} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}$. Then (1), (1.7), and (7.7)(b) show:
(3) $\bar{E}_{\alpha^{\prime}}=\bar{E}_{1} \times \cdots \times \bar{E}_{r}, \bar{E}_{i} \cong C_{3}$, and
(4) $\bar{V}_{\alpha^{\prime}}=\bar{V}_{0} \times \bar{V}_{1} \times \cdots \times \bar{V}_{r}, V_{i}=\left[V_{\alpha^{\prime}}, E_{i}\right]$, and $\left|\bar{V}_{i}\right|=4$ for $i \geq 1$, and $V_{0}=C_{V_{\alpha^{\prime}}}\left(E_{\alpha^{\prime}}\right)$.

Let $R=\left[Z_{\alpha}, V_{\alpha^{\prime}}\right]$. Then we may assume that $R \leq V_{1}$ and $Z_{\mu} \leq V_{1} Z_{\alpha^{\prime}-1}$. Let $\alpha-1=(\alpha+3)^{x}, x$ as in (i).
A ssume first that $\left[V_{\alpha-1}, Z_{\alpha^{\prime}-1}\right]=1$. Then by (7.7)(b), $V_{\alpha-1} \leq G_{\alpha^{\prime}}$ and

$$
\left[V_{\alpha-1}, Z_{\mu}\right]=\left[V_{\alpha-1}, V_{1}\right] \leq R Z_{\alpha^{\prime}}
$$

Hence, there exists a subgroup $A \leq V_{\alpha-1}$ such that $\left|V_{\alpha-1} / A\right|=2$ and [A, Z_{μ}] $\leq R$. Now (9.4) (with $\rho=\alpha+3$ and $t \in Z_{\mu} \backslash Q_{\alpha+1}$) implies that $A \leq V_{\alpha+1}$, which contradicts (9.7).

We have shown that $\left[V_{\alpha-1}, Z_{\alpha^{\prime}-1}\right] \neq 1$. Hence, either $Z_{\alpha^{\prime}-1} \leq Q_{\alpha-1}$ or ($\alpha^{\prime}-1, \alpha-1$) is a critical pair. The first case gives $Z_{\alpha-1} \leq V_{\alpha^{\prime}-2}$ and $\left[Z_{\alpha-1}, V_{\alpha^{\prime}}\right]=1$ since $b \geq 5$. However, $Z_{\alpha}=Z_{\alpha-1} \times Z_{\alpha+1}$. Hence $\left[Z_{\alpha}, Z_{\mu}\right]=1$, which contradicts (ii). We have shown:
(5) $\left(\alpha^{\prime}-1, \alpha-1\right)$ is a critical pair.

Set $R_{0}=\left[V_{\alpha-1}, Z_{\alpha^{\prime}-1}\right]$. By (9.4), $R_{0} \leq V_{\alpha+1} \cap V_{\alpha-1}$. Hence, possibly after substituting (α, α^{\prime}) by ($\alpha^{\prime}-1, \alpha-1$), we may assume that $R \leq$ $V_{\alpha^{\prime}} \cap V_{\alpha^{\prime}-2}$. Now (9.5), (9.6), and (9.7) give
(6) $\quad G_{\alpha^{\prime}} / Q_{\alpha^{\prime}} \cong S L_{2}(2) \backslash C_{2},\left|V_{\alpha^{\prime}}\right|=2^{5}$, and $\left|V_{\alpha^{\prime}} \cap V_{\alpha^{\prime}-2}\right|=2^{3}$.

M oreover, there exists $y \in C_{G_{\alpha^{\prime}-1}}(R)$ such that $\alpha^{\prime y}=\alpha^{\prime}-2$. Let $X=$ $N_{G_{\alpha}}\left(R Z_{\alpha^{\prime}}\right)$. Then, as in the proof of (9.9), we get from (4) that $X / Q_{\alpha^{\prime}} \cong$ $S L_{2}^{\alpha}(2) \times C_{2}$ and $X \cap G_{\alpha^{\prime}-1} \in \operatorname{Syl}_{2}(X)$. Hence X^{y} has the same properties with α^{\prime} replaced by $\alpha^{\prime}-2$. Since $b>3$ and $W_{\alpha+1} \leq G_{\alpha^{\prime}-2}$ we get that $W_{\alpha+1} \leq X^{y}$ and
(7) $\left|W_{\alpha+1} / W_{\alpha+1} \cap G_{\alpha^{\prime}-1}\right|=2$.

A ssume that $b>5$. Then $W_{\alpha+1}$ is abelian. Note that by (7), $\mid V_{\alpha-1} /$ $V_{\alpha-1} \cap G_{\alpha^{\prime}-1} \leq 2$ and that by (5) and (9.8), $Z_{\alpha^{\prime}-2} \not R_{0}$; i.e., $V_{\alpha-1} \cap$ $G_{\alpha^{\prime}-1} \leq Q_{\alpha^{\prime}-1} \leq G_{\alpha^{\prime}}$. Hence

$$
\left[V_{\alpha-1} \cap G_{\alpha^{\prime}-1}, Z_{\mu}\right]=\left[V_{\alpha-1} \cap G_{\alpha^{\prime}-1}, V_{1}\right] \leq R Z_{\alpha^{\prime}}
$$

Suppose that $Z_{\alpha^{\prime}} \leq\left[V_{\alpha-1} \cap G_{\alpha^{\prime}-1}, Z_{\mu}\right]$. Then $Z_{\alpha^{\prime}} \leq W_{\alpha+1}$ and $\left[Z_{\alpha^{\prime}}, V_{\alpha-1}\right]=1$ since $W_{\alpha+1}$ is abelian. Thus, by (6), $V_{\alpha-1} \leq C_{G_{\alpha^{\prime}-2}}\left(Z_{\alpha^{\prime}-1}\right)$ $\leq G_{\alpha^{\prime}-1}$ and $V_{\alpha-1} \leq G_{\alpha^{\prime}}$. In particular, there exists a subgroup ${ }^{\alpha^{\prime}} \leq V_{\alpha-1}$ such that

$$
\begin{equation*}
\left[A, Z_{\mu}\right]=R \quad \text { and } \quad\left|V_{\alpha-1} / A\right|=2 \tag{*}
\end{equation*}
$$

Suppose that $Z_{\alpha^{\prime}} \nless\left[V_{\alpha-1} \cap G_{\alpha^{\prime}-1}, Z_{\mu}\right]$. Then, for $A=V_{\alpha-1} \cap G_{\alpha^{\prime}-1}$, property (*) is satisfied. Hence, a subgroup A with (*) exists in both cases. Now (9.4) gives $A \leq V_{\alpha+1}$ which contradicts (9.7). We have shown:
(8) $b=5$.

A ccording to (6) there exists $\lambda \in \Lambda$ such
(**) $\quad V_{\rho} \cap V_{\alpha+1} \cap V_{\alpha+3}=Z_{\alpha+1} \quad$ for every $\rho \in \Delta(\lambda) \backslash\{\alpha+1\}$.
We fix λ with this property and pick $\rho \in \Delta(\lambda) \backslash\{\alpha+1\}$. Then $\left[V_{\rho}, V_{\alpha+3}\right]$ $\leq V_{\rho} \cap V_{\alpha+1} \cap V_{\alpha+3}=Z_{\alpha+1}$, and (6) gives [$V_{\rho}, V_{\alpha+3}$] $=1$. Hence $W_{\lambda} \leq$ $G_{\alpha^{\prime}}$, and since $Z_{\mu} \leq V_{1} Z_{\alpha^{\prime}-1}$ we get
(9) $\left[W_{\lambda}, Z_{\mu}\right] \leq R Z_{\alpha^{\prime}}$.

Let $Q=O_{2}\left(E_{\alpha+1}\right)$ and $Q_{0}=C_{Q_{\alpha+2}}\left(V_{\alpha+1} \cap V_{\alpha+3}\right)$. Then $\left|Q_{\alpha+1} / Q_{0}\right|=4$ and $Q_{\alpha+2}=\left[Q_{\alpha+2}, E_{\alpha+2}\right] Q_{0}$. Now (7.6)(b) gives $\left[Q, Q_{\alpha+2}\right] \nless Q_{0}$; in particular, $\left[Q \cap Q_{\alpha+2}, V_{\alpha+1} \cap V_{\alpha+3}\right] \neq 1$. From $\left[W_{\alpha+1}, V_{\alpha+1} \cap V_{\alpha+3}\right]=1$ and (6) we conclude

$$
\begin{equation*}
\left(Q \cap Q_{\alpha+2}\right) Q_{\alpha+3}=G_{\alpha+2} \cap G_{\alpha+3} . \tag{10}
\end{equation*}
$$

Let C be the largest normal subgroup of $G_{\alpha+1}$ in $W_{\alpha+1}$ such that $\left[C, E_{\alpha+1}\right] \leq V_{\alpha+1}$. Then $\left(C \cap V_{\alpha-1}\right) V_{\alpha+1}=\left(C \cap V_{\alpha+3}\right) V_{\alpha+1}$ by the action of $E_{\alpha+1}$. Hence [$\left(C \cap V_{\alpha-1}\right) V_{\alpha+1}, Z_{\mu}$] $=R$ and (9.4) yields
(11) $C \cap V_{\alpha-1} \leq V_{\alpha+1}$.

Set $W=\left[W_{\alpha+1}, Q\right] C$. Assume that $W \leq C$. Then by (11), $\left[V_{\alpha+3}, Q \cap\right.$ $\left.Q_{\alpha+2}\right] \leq V_{\alpha+1} \cap V_{\alpha+3}$, but this contradicts (6) and (10). Thus, we have
(12) $W \cap V_{\alpha+3} \nless V_{\alpha+1}$.

A ssume that $Z_{\alpha^{\prime}} \leq W$. Then by (9), $\left[W_{\lambda}, Z_{\mu}\right] \leq W$ and $W_{\alpha+1}=W_{\lambda} W$ since $\lambda \in \Lambda$. Hence also $W_{\alpha+1}=W_{\alpha+2} W$, and (8) shows that $\left[W_{\lambda}, Z_{\mu}\right]=R$ $\leq V_{\alpha+1}$ since $Z_{\mu} \leq V_{1} Z_{\alpha+4}$ and $\left[Z_{\alpha+4}, W_{\alpha+2}\right.$] $=1$. This gives $\left[W_{\alpha+1}, Q\right] \leq$ $V_{\alpha+1}$, which contradicts (10) and (11).
A ssume finally that $Z_{\alpha^{\prime}} \not \approx W$. Then $\left(W_{\lambda} \cap W\right) C$ is normal in $G_{\alpha+1}$ and $W \leq V_{\alpha+1}$, which contradicts (12).
10.

In this section we finish the discussion started in Section 9. More precisely, in this section we assume H ypothesis $2,\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]=1$, and $b=3$.

Recall from (9.3) that $G_{\alpha+2} / Q_{\alpha+2} \cong S L_{2}(2),\left|Z_{\alpha+2}\right|=4$, and $Z_{\alpha+2}=$ $Z_{\alpha+1} \times Z_{\alpha^{\prime}}=\Omega_{1}\left(Z\left(Q_{\alpha+2}\right)\right)$. Since $G_{\alpha+2}$ is 2-transitive on $\Delta(\alpha+2)$ the path $\left(\alpha+1, \alpha+2, \alpha^{\prime}\right)$ is a $G_{\alpha+2^{-}}$-conjugate of ($\alpha^{\prime}, \alpha+2, \alpha+1$). Hence, we have symmetry in $\alpha+1$ and α^{\prime}; i.e., $V_{\alpha+1} \nless Q_{\alpha^{\prime}}$ and $V_{\alpha^{\prime}} \nless Q_{\alpha+1}$.

Note further that by (7.7)(b), $C_{G_{\alpha^{\prime}}}\left(V_{\alpha^{\prime}}\right) \leq Q_{\alpha^{\prime}}$. We use the following notation:

$$
\bar{V}_{\alpha^{\prime}}=V_{\alpha^{\prime}} / Z_{\alpha^{\prime}} \quad \text { and } \quad \bar{G}_{\alpha^{\prime}}=G_{\alpha^{\prime}} / Q_{\alpha^{\prime}}
$$

(10.1) Let $W=\left\langle\left(V_{\alpha+1} \cap Q_{\alpha^{\prime}}\right)^{G_{\alpha+2}}\right\rangle$ and $W_{0}=\left(\cap_{\rho \in \Delta(\alpha+2)} Q_{\rho}\right) \cap$ $W_{\alpha+2}$. Then

$$
W_{\alpha+2}^{\prime}=V_{\alpha+1} \cap V_{\alpha^{\prime}}, \quad\left|W_{0} / W\right|=2, \quad \text { and } \quad\left|W_{\alpha+2} / W\right|=2^{3},
$$

and one of the following holds:
(a) $2^{6} \leq|S| \leq 2^{7}$ and $G_{\alpha+1} / Q_{\alpha+1} \cong G_{\alpha+2} / Q_{\alpha+2} \cong S L_{2}$ (2), and
(a ${ }_{1}$) $\quad Z_{\alpha+2}=W$ and $O_{2}\left(E_{\alpha+2}\right) \cong C_{4} \times C_{4}$,
$\left(a_{2}\right) \quad\left|V_{\alpha+1}\right|=2^{3}$ and $O_{2}\left(E_{\alpha+1}\right)$ is extra special of order 2^{5}, and
$\left(\mathrm{a}_{3}\right)$ there exists an involution $a \in Q_{\alpha+2} \backslash Z_{\alpha+2}$ such that $C_{G}(a)$ is not solvable.
(b) $2^{11} \leq|S| \leq 2^{12}, \quad G_{\alpha+2} / Q_{\alpha+2} \cong S L_{2}(2)$, and $G_{\alpha+1} / Q_{\alpha+1} \cong$ $\mathrm{Fb}(20), \mathrm{Fb}(20)$ being the Frobenius group of order 20, and
$\left(\mathrm{b}_{1}\right) \quad\left|V_{\alpha+1} / Z_{\alpha+1}\right|=\left|O_{2}\left(E_{\alpha+1}\right) / V_{\alpha+1}\right|=2^{4}$ and $O_{2}\left(E_{\alpha+1}\right)^{\prime}=V_{\alpha+1}$, and
$\left(\mathrm{b}_{2}\right) \quad\left|Z_{\alpha+2}\right|=\left|W / V_{\alpha+1} \cap V_{\alpha^{\prime}}\right|=\left|W_{\alpha+2} / W_{0}\right|=\left|O_{2}\left(E_{\alpha+2}\right) W_{\alpha+2}\right|$ $W_{\alpha+2} \mid=4$ and $\left|V_{\alpha+1} \cap V_{\alpha^{\prime}} / Z_{\alpha+2}\right|=2$.

Proof. Since $Q_{\alpha+1}$ is transitive on $\Delta(\alpha+2) \backslash\{\alpha+1\}$ we get that $V_{\alpha+1} \cap Q_{\alpha^{\prime}}=V_{\alpha+1} \cap Q_{\rho}$ for $\rho \in \Delta(\alpha+2) \backslash\{\alpha+1\}$. It follows that
(1) $W \leq \cap_{\rho \in \Delta(\alpha+2)} Q_{\rho}$.

Since $\left[V_{\alpha+1} \cap Q_{\alpha^{\prime}}, V_{\alpha^{\prime}} \cap Q_{\alpha+1}\right.$] $\leq Z_{\alpha+1} \cap Z_{\alpha^{\prime}}=1$ we conclude that
(2) $\Phi(W)=1$.

A ssume that $O_{2}\left(E_{\alpha+1}\right) \leq V_{\alpha+1}$. Then by (7.6)(b), $V_{\alpha+1} \nless Q_{\alpha+2}$ and $b=2$, a contradiction. Thus, we have:
(3) There exists a noncentral chief factor of $E_{\alpha+1}$ in $O_{2}\left(E_{\alpha+1}\right) / V_{\alpha+1}$.
$V_{\alpha^{\prime}}$ operates quadratically on $V_{\alpha+1} / Z_{\alpha+1}$. Hence, by (1.2) there exists $t \in V_{\alpha+1} \backslash Q_{\alpha^{\prime}}$ and $A \leq V_{\alpha^{\prime}}$ such that $\left|V_{\alpha^{\prime}} / A\right|=2$ and $[A, t] \leq Z_{\alpha+1}$. We get that
(4) $\|\left[\bar{V}_{\alpha^{\prime}}, t\right]=2$ or $\|\left[\bar{\alpha}_{\alpha^{\prime}}, t\right]=4$ and $Z_{\alpha+1} \leq\left[V_{\alpha^{\prime}}, t\right]$.

Suppose that there exists $a \in V_{\alpha+1} \backslash Q_{\alpha^{\prime}}$ such that $\left.\| \bar{V}_{\alpha^{\prime}}, a\right]=2$. Since [$\left.V_{\alpha^{\prime}}, a\right] \leq V_{\alpha+1} \cap V_{\alpha^{\prime}}$ we get from (9.5) that either
(5) $G_{\alpha^{\prime}} / Q_{\alpha^{\prime}} \cong S L_{2}$ (2) $\backslash C_{2},\left|V_{\alpha^{\prime}}\right|=2^{5}$, and $\left|V_{\alpha+1} \cap V_{\alpha^{\prime}}\right|=2^{3}$, or
(6) $\quad G_{\alpha^{\prime}} / Q_{\alpha^{\prime}} \cong S L_{2}(2)$ and $\left|V_{\alpha^{\prime}}\right|=2^{3}$.

A ssume that (5) holds. Then $\langle\bar{a}\rangle$ is not normal in $\bar{Q}_{\alpha+2}$ and so $\left|\bar{V}_{\alpha+1}\right|=4$ and $V_{\alpha+1} \cap Q_{\alpha^{\prime}}=V_{\alpha+1} \cap V_{\alpha^{\prime}}$. It follows that $\left[Q_{\alpha^{\prime}} \cap\right.$ $\left.Q_{\alpha+2}, V_{\alpha+1}\right] \leq V_{\alpha^{\prime}}$. Since $\left|Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}} \cap Q_{\alpha+2}\right|=2$ this contradicts (3) and $\left|\bar{V}_{\alpha+1}\right|=4$.

A ssume that (6) holds. We will show (a). Since $\left|V_{\alpha+1}\right|=8$ we get that $Z_{\alpha+2}=W=V_{\alpha+1} \cap V_{\alpha^{\prime}}$ and $W_{\alpha+2}^{\prime}=Z_{\alpha+2}$. M oreover, if $\left|W_{\alpha+2} / Z_{\alpha+2}\right|=$ 4, then $W_{\alpha+2}$ is abelian which contradicts $b=3$. Thus, we have $\left|W_{\alpha+2} / Z_{\alpha+2}\right|=2^{3}$.

It follows that $\left.\|\left[O_{2}\left(E_{\alpha^{\prime}}\right), W_{\alpha+2}\right] V_{\alpha^{\prime}} / V_{\alpha^{\prime}}\right]=2$ and thus $\left|O_{2}\left(E_{\alpha^{\prime}}\right) / V_{\alpha^{\prime}}\right|=4$. Now $O_{2}\left(E_{\alpha^{\prime}}\right) / Z_{\alpha^{\prime}}$ is abelian and so $\left[O_{2}\left(E_{\alpha^{\prime}}\right), \Phi\left(O_{2}\left(E_{\alpha^{\prime}}\right)\right)\right]=1$. Hence $O_{2}\left(E_{\alpha^{\prime}}\right) \cong Q_{8} Y Q_{8}$.

Note that $\left[Q_{\alpha+2}, O_{2}\left(E_{\alpha^{\prime}}\right)\right] \leq W_{\alpha+2}$ and thus by (7.6)(b), $O_{2}\left(E_{\alpha+2}\right)=$ $\left[W_{\alpha+2}, E_{\alpha+2}\right]$. Now the structure of $O_{2}\left(E_{\alpha^{\prime}}\right)$ gives (a a_{1}). Let $C=C_{Q_{\alpha+2}}(D)$,
where $D \in \operatorname{Syl}_{3}\left(G_{\alpha+2}\right)$. N ote that $Z\left(G_{\alpha+2}\right)=1$ and thus $C_{C}\left(O_{2}\left(E_{\alpha+2}\right)\right)=$ 1. By $\left(\mathrm{a}_{1}\right),\left[C, O_{2}\left(E_{\alpha+2}\right)\right]=Z_{\alpha+2}$ and $C_{O_{2}\left(E_{\alpha+2}\right)}(c)=Z_{\alpha+2}$ for $1 \neq c \in C$. This gives $|C| \leq 4$ and $|S| \leq 2^{7}$.

It remains to prove $\left(a_{3}\right)$. We will apply $\left(a_{1}\right)$ and $\left(a_{2}\right)$ without reference. Let $T=G_{\alpha+2} \cap G_{\alpha^{\prime}}$ and $W^{*}=C_{Q_{\alpha+2}}\left(W_{0}\right)$. Then either $W^{*}=W_{0}$ or $|S|=2^{7}$ and $\left|W^{*}\right|=2^{4}$. Since $\left[W^{*}, E_{\alpha+2}\right]=Z_{\alpha+2}$ and $Z\left(G_{\alpha+2}\right)=1$ we get in both cases that W^{*} is an elementary abelian normal subgroup of $G_{\alpha+2}$.

Let $N=C_{H}\left(Z_{\alpha+2}\right)$ and $N_{0}=O_{2}(N)$. Then $N_{H}\left(Z_{\alpha+2}\right)=G_{\alpha+2} N$ and $Q_{\alpha+2} \in \operatorname{Syl}_{2}(N)$. Clearly $C_{N}\left(N_{0} / Z_{\alpha+2}\right) \leq N_{0}$ since N is of characteristic 2 type. M oreover, $N_{0} \leq Q_{\alpha+2}$ and $Q_{\alpha+2} / Z_{\alpha+2}$ is abelian. Hence $N_{0}=$ $Q_{\alpha+2}$ and $N \leq N_{H}\left(Q_{\alpha+2}\right)$.

A ssume that $W_{0}=W^{*}$. Then $\left|Q_{\alpha+2} / Z_{\alpha+2}\right|=2^{3}$ and $N_{H}\left(Q_{\alpha+2}\right) / Q_{\alpha+2}$ is a solvable subgroup of $L_{3}(2)$ containing Σ_{3}. This gives $N_{H}\left(Q_{\alpha+2}\right)=$ $G_{\alpha+2}$.

A ssume that $W_{0} \neq W^{*}$. Note that $V_{\alpha^{\prime}}$ is a maximal elementary abelian subgroup of $Q_{\alpha+2}$. Hence, W^{*} is the only elementary abelian subgroup of order 2^{4} in $Q_{\alpha+2}$, and W^{*} is normal in $N_{H}\left(Q_{\alpha+2}\right)$. Let c be an element of odd order in $C_{H}\left(Q_{\alpha+2} / W^{*}\right)$. Then $Q_{\alpha+2}=W^{*} C_{Q_{\alpha+2}}(c)$ and $Z_{\alpha+2}=$ $\Phi\left(C_{Q_{q+2}}(c)\right)$. The 3-subgroup lemma gives $\left[W^{*},\langle c\rangle, C_{Q_{\alpha+2}}(c)\right]=1$ and thus $\left[W^{*},\langle c\rangle\right] \leq Z_{\alpha+2}$. Since c has odd order this yields ${ }^{+2}\left[W^{*}, c\right]=1$ and $\left[Q_{\alpha+2}, c\right]=1$. We conclude that $C_{H}\left(Q_{\alpha+2} / W^{*}\right)$ is a 2-group and $G_{\alpha+2}=$ $N_{H}\left(Q_{\alpha+2}\right)$. This implies
(7) $N_{H}\left(Z_{\alpha+2}\right)=G_{\alpha+2}$.

A ssume that $W^{*} \neq W_{0}$. Suppose that $\left[W^{*}, T\right] \leq Z_{\alpha+2}$. Then [W^{*}, $\left.O_{2}\left(E_{\alpha^{\prime}}\right)\right] \leq Z_{\alpha+2} \leq V_{\alpha^{\prime}}$ and thus $W^{*} \leq Q_{\alpha^{\prime}}$. This gives $\left[W^{*}, O_{2}\left(E_{\alpha^{\prime}}\right)\right] \leq$ $Z_{\alpha^{\prime}}$ and $\left|W^{*} / C_{W^{*}}\left(O_{2}\left(E_{\alpha^{\prime}}\right) \cap O_{2}\left(E_{\alpha+2}\right)\right)\right| \leq 2$. However, the action of D on W^{*} and $O_{2}\left(E_{\alpha+2}\right)$ implies

$$
C_{W^{*}}\left(O_{2}\left(E_{\alpha^{\prime}}\right) \cap O_{2}\left(E_{\alpha+2}\right)\right)=C_{W^{*}}\left(O_{2}\left(E_{\alpha+2}\right)\right)=Z_{\alpha+2}
$$

This contradicts $\left|W^{*} / Z_{\alpha+2}\right|=4$. We have shown:
(8) E ither $W^{*}=W_{0}$ or $T / O_{2}\left(E_{\alpha+2}\right) \cong D_{8}$.

Let $M=N_{H}\left(W^{*}\right)$ and set $U=O_{2,2^{\prime}}(M) T$ and $W_{1}=\left\langle Z_{\alpha^{\prime}}^{U}\right\rangle$. By (1.2),

$$
\left.W_{1}=\left\langle C_{W_{1}}(A)\right|\left|Q_{\alpha+2} / A\right|=2\right\rangle
$$

since $Q_{\alpha+2}$ is quadratic on W_{1}. Let A be any subgroup of index 2 in $Q_{\alpha+2}$ and $a \in C_{W_{1}}(A)$. Then $G_{\alpha+2}=Q_{\alpha+2} C_{G_{\alpha+2}}(a)$ and $\llbracket a, Q_{\alpha+2} \rrbracket \leq 2$. This gives $a \in Z_{\alpha+2}$, a contradiction.

We have shown that $W_{1}=Z_{\alpha+2}$, and (7) implies
(9) $N_{H}\left(W^{*}\right)=G_{\alpha+2}$.

Let $a \in W^{*} \backslash Z_{\alpha+2}$ and $v \in Z_{\alpha+2}^{\#}$. Note that $C_{H}(v)$ is of characteristic 2 type. Set $C_{a}=C_{H}(a), C_{0}=O_{2},\left(C_{a}\right)$, and $C_{1}=O_{2}\left(C_{a}\right)$. Then

$$
C_{0}=\left\langle C_{C_{0}}(v) \mid v \in Z_{\alpha+2}^{\#}\right\rangle
$$

and the $P \times Q$ lemma applied to $C_{C_{0}}(v) \times\langle a\rangle$ and $O_{2}\left(C_{H}(v)\right)$ gives $C_{0}=1$.

To prove (a_{3}) we may assume that $C_{C_{\alpha}}\left(C_{1}\right) \leq C_{1}$. A ccording to (9) and the structure of $G_{\alpha+2}$ we have $N_{C_{1}}\left(W^{*}\right)^{\alpha} \leq W^{*}$ and thus $C_{1}=W^{*}$. This yields, together with (9),
(10) $\quad C_{H}(a) \leq G_{\alpha+2}$ for every $a \in W^{*} \backslash Z_{\alpha+2}$.

Next pick $u \in C_{a}$ such that $\langle u\rangle$ is conjugate to $Z_{\alpha^{\prime}}$. If $u \in W^{*}$, then (10) implies that $u \in Z_{\alpha+2}$.

A ssume that u is not in W^{*}. Then $u \notin Q_{\alpha+2}$ since $C_{a} \cap Q_{\alpha+2}=W^{*}$, and by (8), $a \in W_{0}$. We may assume that $u \in G_{\alpha^{\prime}}$. If $u \notin Q_{\alpha^{\prime}}$, then [$\left.V_{\alpha^{\prime}}, u\right] Z_{\alpha^{\prime}}=Z_{\alpha+2}$ and $u \in Q_{\alpha+2}$, a contradiction. Thus $u \in Q_{\alpha^{\prime}}$ and therefore $u \in O_{2}\left(E_{\alpha^{\prime}}\right)$ since $C_{Q_{\alpha}}(a) \leq O_{2}\left(E_{\alpha^{\prime}}\right)$. Now u is conjugate in $G_{\alpha^{\prime}}$ to an involution in $a V_{\alpha^{\prime}}$. On the other hand, every involution in $a V_{\alpha^{\prime}}$, is in $a Z_{\alpha+2}=a C_{V_{\alpha}}(a)$. Hence, there exists a conjugate of u in $W^{*} \backslash Z_{\alpha+2}$, which is impossible as we have seen above. We have shown:
(11) Every conjugate of $Z_{\alpha^{\prime}}$ in $C_{H}(a)$ is contained in $Z_{\alpha+2}$.

Let $\left(\alpha+1, \ldots, \alpha^{\prime}, \ldots, \alpha+9\right)$ be a path of length 8 and let $u \in$ $Z\left(\left\langle a, Z_{\alpha+9}\right\rangle\right)^{\#}$. Then $u \in C_{a} \leq G_{\alpha+2}$. A ssume that u is conjugate in H to an element of $Z_{\alpha^{\prime}}$. Then by (11), $u \in Z_{\alpha+2}$ and thus $\langle u\rangle=Z_{\rho}$ for some $\rho \in \Delta(\alpha+2)$. On the other hand, $Z_{\delta} \leq G_{\alpha+5}$ and $Z_{\delta} \nless Q_{\alpha+5}$ for $\delta=$ $\alpha+2, \alpha+9$. This implies that $\left[Z_{\rho}, Z_{\alpha+9}\right] \neq 1$, a contradiction.

A ssume that u is not conjugate to an element of $Z_{\alpha^{\prime}}$. Then, as in step (11), conjugation in $G_{\alpha^{\prime}}$ shows that u is conjugate to an element of $W^{*} \backslash Z_{\alpha+2}$. Hence, by (10), $C_{H}(u) \leq G_{\mu}$ for some $\mu \in \alpha^{G}$, but then by (11), $Z_{\alpha+9} \leq Z_{\mu}$, and $\left\langle a, Z_{\alpha+9}\right\rangle$ is abelian since $u \notin Z_{\mu}$. It follows, again by (11), that $Z_{\alpha+9} \leq Z_{\alpha+2}$. Now $Z_{\alpha+9}$ fixes $\alpha+4$ and $\alpha+6$ and so $Z_{\alpha+9} \leq Q_{\alpha+5}$, a contradiction. This last contradiction shows that $\left(\mathrm{a}_{3}\right)$ holds. We may assume now:
(12) No involution in $V_{\alpha+1} \backslash Q_{\alpha^{\prime}}$, induces a transvection on $\bar{V}_{\alpha^{\prime}}$.

In particular, by (4) there exists $t \in V_{\alpha+1} \backslash Q_{\alpha^{\prime}}$ such that $\left.\| \bar{V}_{\alpha^{\prime}}, t\right]=4$ and $Z_{\alpha+1} \leq\left[V_{\alpha^{\prime}}, t\right]$. A ccording to (3.6) there exists a subgroup E in $E_{\alpha^{\prime}}$ such that for $\overline{A_{0}}=C_{\bar{V}_{\alpha+1}}(\bar{E})$:
(i) $\bar{E}\langle\bar{t}\rangle$ is dihedral and $E=O^{2}(E)$,
(ii) $\bar{V}_{\alpha+1}=\langle\bar{t}\rangle \bar{A}_{0}$, and
(iii) $\left\langle E, G_{\alpha+2} \cap G_{\alpha^{\prime}}\right\rangle=G_{\alpha^{\prime}}$.

Set $V_{1}=\left[V_{\alpha^{\prime}}, E\right]$ and $V_{0}=C_{V_{\alpha^{\prime}}}(E)$. Note that $\left[V_{1}, A_{0}\right] \leq Z_{\alpha^{\prime}}$ since $V_{\alpha+1}$ is quadratic on $V_{\alpha^{\prime}}$. Let $y \in Q_{\alpha+2}$ and $t^{\prime}=t^{y}$.
A ssume that $t^{\prime} \in A_{0}$. Then $\left[V_{\alpha^{\prime}}, t^{\prime}\right] \leq\left[V_{0}, t^{\prime}\right] Z_{\alpha^{\prime}}$. It follows that $Z_{\alpha+1} \leq$ V_{0} and $\left[Z_{\alpha+2}, E\right]=1$. Now (iii) shows that $Z_{\alpha+2}$ is normal in $G_{\alpha^{\prime}}$, a contradiction.
We have shown that $t^{\prime} \notin A_{0}$; i.e., $C_{V_{1}}(t)=C_{V_{1}}\left(t^{\prime}\right)$ and $\left[V_{1}, t\right] Z_{\alpha^{\prime}}=$ [$\left.V_{1}, t^{\prime}\right] Z_{\alpha^{\prime}}$. Hence, either $\left[\bar{V}_{1}, t\right]=\bar{Z}_{\alpha+1}$ or $\left[\bar{V}_{\alpha^{\prime}}, t\right]=\left[\bar{V}_{1}, t\right] \bar{Z}_{\alpha+1}$ and $\left[\bar{V}_{\alpha^{\prime}}, t\right]=\left[\bar{V}_{\alpha^{\prime}}, t^{\prime}\right]$. In the first case $\left|\bar{V}_{1}\right|=4$, and by (1.4), $\bar{E}_{\alpha^{\prime}}$ is elementary abelian. Since $Z_{\alpha+2} \leq V_{1}$ we conclude that $V_{1}=V_{\alpha^{\prime}}$, a contradiction to (12). Hence, we are in the second case and $\bar{t}=\overline{t^{\prime}}$. It follows that $\langle\bar{t}\rangle$ is normal in $\bar{Q}_{\alpha+2}$. Together with (3.4) we get

$$
\begin{equation*}
E_{\alpha^{\prime}}=\left[E_{\alpha^{\prime}}, t\right] \text { and }\left[V_{\alpha^{\prime}}, t\right] Z_{\alpha+2} \text { is normal in } G_{\alpha+2} \tag{13}
\end{equation*}
$$

We now apply (1.3). If $\bar{E}_{\alpha^{\prime}} \cong C_{3}$, then $\left|\bar{V}_{\alpha^{\prime}}\right| \leq 2^{3}$, which contradicts (12).
A ssume that $\bar{E}_{\alpha^{\prime}}$ is extra special of order 3^{3}. Let $\langle\bar{e}\rangle=Z\left(\bar{E}_{\alpha^{\prime}}\right)$ and $R=\left[V_{\alpha^{\prime}}, t\right]$. Note that $[\bar{e}, \bar{t}]=1$. Hence by (13), $R Z_{\alpha+2}$ is normal in $\left\langle G_{\alpha+2}, e\right\rangle$, and it is easy to see that

$$
N_{G}\left(R Z_{\alpha+2}\right) / C_{G}\left(R Z_{\alpha+2}\right) \cong L_{3}(2),
$$

which contradicts H ypothesis 2. From (1.3) we conclude:

$$
\begin{equation*}
\bar{E}_{\alpha^{\prime}} \cong C_{3} \times C_{3} \text { or } C_{5},\left|V_{\alpha^{\prime}}\right|=2^{5} \text {, and }\left|V_{\alpha+1} \cap V_{\alpha^{\prime}}\right|=\left|C_{V_{\alpha+1}}\left(V_{\alpha^{\prime}}\right)\right|= \tag{14}
\end{equation*}
$$ 2^{3}.

By (3) there exists a noncentral chief factor of $G_{\alpha^{\prime}}$ in $O_{2}\left(E_{\alpha^{\prime}}\right) / V_{\alpha^{\prime}}$, and by (13) and (14), t does not induce a transvection on that chief factor. Hence $\left[O_{2}\left(E_{\alpha^{\prime}}\right) \cap Q_{\alpha+2}, V_{\alpha+1}\right] \nless V_{\alpha^{\prime}}$ and thus
(15) $\left|V_{\alpha+1} / V_{\alpha+1} \cap O_{2}\left(E_{\alpha^{\prime}}\right)\right|=2$; in particular, $W \leq O_{2}\left(E_{\alpha^{\prime}}\right)$.

Set $Y=C_{W}\left(V_{\alpha^{\prime}}\right) \Omega_{1}\left(Z\left(W_{\alpha+2}\right)\right)$. By (14), $\left[C_{Q_{\alpha^{\prime}}}\left(V_{\alpha^{\prime}}\right), V_{\alpha+1}\right] \leq V_{\alpha^{\prime}}$ and thus $\left[Y, E_{\alpha^{\prime}}\right] \leq V_{\alpha^{\prime}}$ Let $D \in \operatorname{Syl}_{3}\left(E_{\alpha^{\prime}}\right)$. Then

$$
Y V_{\alpha^{\prime}}=Y_{0} V_{\alpha^{\prime}} \quad \text { for } Y_{0}=C_{Y V_{\alpha^{\prime}}}(D)
$$

On the other hand, by (7.6)(b), $\left|O_{2}\left(E_{\alpha^{\prime}}\right) / O_{2}\left(E_{\alpha^{\prime}}\right) \cap Q_{\alpha+2}\right|=2$ and

$$
\left[Y, O_{2}\left(E_{\alpha^{\prime}}\right) \cap Q_{\alpha+2}\right] \leq Z\left(W_{\alpha+2}\right) \cap V_{\alpha^{\prime}} \leq V_{\alpha+1} \cap V_{\alpha^{\prime}}
$$

Thus $\left.\|\langle y\rangle, O_{2}\left(E_{a^{\prime}}\right)\right] Z_{\alpha^{\prime}} / Z_{\alpha^{\prime}} \mid \leq 2^{3}$ for $y \in Y$, and (14) gives $\left[Y, O_{2}\left(E_{\alpha^{\prime}}\right)\right]$ $\leq Z_{\alpha^{\prime}}$; in particular, Y_{0} is normal in $E_{\alpha^{\prime}}$. Now (12) shows that $Y_{0} \leq$ $\Omega_{1}\left(Z\left(W_{\alpha+2}\right)\right) \leq Y$. It follows that

$$
Y=Y_{0}\left(V_{\alpha+1} \cap V_{\alpha^{\prime}}\right) \quad \text { and } \quad Y=\Omega_{1}\left(Z\left(W_{\alpha+2}\right)\right)
$$

A gain from $\left[Y, O_{2}\left(E_{\alpha^{\prime}}\right)\right] \leq Z_{\alpha^{\prime}}$ and from (7.6)(b) we get that $\left[Y, E_{\alpha+2}\right]=$ $Z_{\alpha+2}$. Assume that there exists $y \in Y_{0} \backslash Z_{\alpha^{\prime}}$. Then $C_{G_{\delta}}(y)$ is transitive on $\Delta(\delta)$ for $\delta=\alpha+2, \alpha^{\prime}$, and (7.2) yields a contradiction. We have shown that $Y_{0}=Z_{\alpha^{\prime}}$ and thus

$$
\begin{equation*}
C_{W}\left(V_{\alpha^{\prime}}\right)=\Omega_{1}\left(Z\left(W_{\alpha+2}\right)\right)=V_{\alpha+1} \cap V_{\alpha^{\prime}} \tag{16}
\end{equation*}
$$

N ote that $\left[W, O_{2}\left(E_{\alpha^{\prime}}\right)\right] \leq C_{W}\left(V_{\alpha^{\prime}}\right)$ since $\left[V_{\alpha^{\prime}}, O_{2}\left(E_{\alpha^{\prime}}\right)\right] \leq Z_{\alpha^{\prime}}$. Hence (16) gives
(17) $\left|W / V_{\alpha+1} \cap V_{\alpha^{\prime}}\right|=4$ and $\left[W, G_{\alpha+2} \cap G_{\alpha^{\prime}}\right] \leq V_{\alpha^{\prime}}$.

Let $U=\left\langle W^{E_{\alpha^{\prime}}}\right\rangle$. Then $U / V_{\alpha^{\prime}}$ is elementary abelian. Note that $\left.\| O_{2}\left(E_{\alpha^{\prime}}\right), t\right] V_{\alpha^{\prime}} / V_{\alpha^{\prime}} \mid \leq 4$. Hence (3) and (14) show that $U=O_{2}\left(E_{\alpha^{\prime}}\right)$ and

$$
\text { (18) }\left|O_{2}\left(E_{\alpha^{\prime}}\right) / V_{\alpha^{\prime}}\right|=2^{4}
$$

A ssume now that $\bar{E}_{\alpha^{\prime}} \cong C_{3} \times C_{3}$. Let $D=D_{1} \times D_{2}\left[\in \operatorname{Syl}_{3}\left(E_{\alpha^{\prime}}\right)\right]$, such that $D_{i} \cong C_{3}$ and $W_{i}:=C_{V_{\alpha^{\prime}}}\left(D_{i}\right) \neq Z_{\alpha^{\prime}}$. Then $V_{\alpha^{\prime}}=W_{1} W_{2}, W_{1} \cap W_{2}=Z_{\alpha^{\prime}}$, and $\left[W_{i}, D_{j}\right] Z_{\alpha^{\prime}}=W_{i}$.

Suppose that $\left[O_{2}\left(E_{\alpha^{\prime}}\right), D_{i}\right]=O_{2}\left(E_{\alpha^{\prime}}\right)$. Then the 3-subgroup lemma gives [$\left.O_{2}\left(E_{\alpha^{\prime}}\right), W_{i}\right]=1$ and thus $\left[O_{2}\left(E_{\alpha^{\prime}}\right), V_{\alpha^{\prime}}\right]=1$, which contradicts (16).

H ence $O_{2}\left(E_{\alpha^{\prime}}\right)=Q_{1} Q_{2}$, where $Q_{i}=C_{O_{2}\left(E_{\left.\alpha^{\prime}\right)}\right)}\left(D_{i}\right)$. Note that $\left[Q_{i}, D_{j}\right] Z_{\alpha^{\prime}}$ $=Q_{i}$. Hence, another application of the 3 -subgroup lemma yields [Q_{1}, Q_{2}] $\leq W_{1} \cap W_{2}=Z_{\alpha^{\prime}}$. Since $\left|Q_{i} / W_{i}\right|=4$ we conclude that $Q_{i}^{\prime} \leq Z_{\alpha^{\prime}}$ and thus $O_{2}\left(E_{\alpha^{\prime}}\right)^{\prime} \leq Z_{\alpha^{\prime}}$. However, by (7.6)(b), $O_{2}\left(E_{\alpha^{\prime}}\right) \nless Q_{\alpha+2}$ and so $\left[W, O_{2}\left(E_{\alpha^{\prime}}\right)\right]$ $\nless Z_{\alpha+2}$. This contradicts (15). Together with (14) we have shown that $\bar{E}_{\alpha^{\prime}} \cong C_{5}$.

Note that $\left|O_{2}\left(E_{\alpha^{\prime}}\right) / O_{2}\left(E_{\alpha^{\prime}}\right) \cap Q_{\alpha+2}\right|=2$ and $\left[O_{2}\left(E_{\alpha^{\prime}}\right) \cap Q_{\alpha+2}, V_{\alpha+1}\right]$ $\leq V_{\alpha+1} \cap Q_{\alpha^{\prime}} \leq W$. By (17), $\left|W / W \cap V_{\alpha^{\prime}}\right|=2$ and so $O_{2}\left(E_{\alpha^{\prime}}\right) \cap Q_{\alpha+2} \nless$ $V_{\alpha^{\prime}} Q_{\alpha+1}$. This implies:
(19) $\quad G_{\alpha+1} / Q_{\alpha+1} \cong \mathrm{Fb}(20)$.

Since $V_{\alpha+1}$ does not induçe transvections on $O_{2}\left(E_{\alpha^{\prime}}\right) / V_{\alpha^{\prime}}$ we also have $\left|W_{\alpha+2} / W\right|=2^{3}$. Let $\underset{\sim}{W} \leq \tilde{W} \leq W_{\alpha+2}$ such that $\left[\tilde{W}, O^{2}\left(\underset{\sim}{E_{\alpha+2}}\right)\right] \leq W$ and $|\underset{\sim}{W} / W|=2$. Then $\left.\| \tilde{W}, O_{2}\left(E_{\alpha^{\prime}}\right)\right] V_{\alpha^{\prime}} / / V_{\alpha^{\prime}} \mid \leq 2$ and thus $\tilde{W} \leq Q_{\alpha^{\prime}}$. Hence $\tilde{W}=W_{0}$.

To prove (b) it remains to show $\left|Q_{\alpha^{\prime}} / O_{2}\left(E_{\alpha^{\prime}}\right)\right| \leq 2$ since then $\left|Q_{\alpha+2} / W_{\alpha+2}\right| \leq 2^{3}$ and $\left|O_{2}\left(E_{\alpha+2}\right) W_{\alpha+2} / W_{\alpha+2}\right|=4$. We apply $\left(\mathrm{b}_{1}\right)$ and $\left(\mathrm{b}_{2}\right)$ without reference.

Let $C=C_{Q_{\alpha^{\prime}}}\left(O_{2}\left(E_{\alpha^{\prime}}\right)\right)$. N ote that $C \leq C_{G_{\alpha_{\alpha+2}}}(W) \leq Q_{\alpha+2}$. Since $V_{\alpha^{\prime}} \not \approx C$ we get that $C \cap V_{\alpha^{\prime}}=Z_{\alpha^{\prime}}$ and $\left[C, V_{\alpha+1}\right] \leq C \cap V_{\alpha+1}=Z_{\alpha^{\prime}}$. Hence (12) implies $C \leq C_{Q_{\alpha+1}}\left(V_{\alpha+1}\right)$ and $\left[C, O_{2}\left(E_{\alpha+1}\right)\right] \leq V_{\alpha+1}$. On the other hand, $\left[C, O_{2}\left(E_{\alpha+1}\right) \cap Q_{\alpha+2}\right] \leq C \cap V_{\alpha+1}=Z_{\alpha^{\prime}}$ and so $\left.\| c, O_{2}\left(E_{\alpha+1}\right)\right] \leq 4$ for $c \in C$. Thus $\left[C, O_{2}\left(E_{\alpha+1}\right)\right] \leq Z_{\alpha+1}$ and $\left[C, O_{2}\left(E_{\alpha+1}\right) \cap Q_{\alpha+2}\right]=1$. Now $C Z_{\alpha+2}$ is normal in $G_{\alpha+2}$ and $\left[C Z_{\alpha+2}, O_{2}\left(E_{\alpha+2}\right)\right]=1$. From (7.5)(c) we get that

$$
\text { (20) } C=Z_{\alpha^{\prime}} .
$$

Let $C_{1}=C_{Q_{\alpha^{\prime}}}\left(V_{\alpha^{\prime}}\right)$. Then $Q_{\alpha^{\prime}}=C_{1} O_{2}\left(E_{\alpha^{\prime}}\right)$ and $C_{1} \cap O_{2}\left(E_{\alpha^{\prime}}\right)=V_{\alpha^{\prime}}$. Hence it suffices to prove that $\left|C_{1} / V_{\alpha^{\prime}}\right| \leq 2$. Since $\left[V_{\alpha^{\prime}} \cap V_{\alpha+1}, C_{1}\right]=1$ it follows that $C_{1} \leq V_{\alpha^{\prime}} Q_{\alpha+1}$. Let $\left(\alpha-1, \alpha, \alpha+1, \ldots, \alpha^{\prime}\right)$ be a path of length 4 such that

$$
Z_{\alpha^{\prime}} \nless Q_{\alpha-1} \quad \text { and } \quad Z_{\alpha-1} \nless Q_{\alpha^{\prime}},
$$

and let $C_{2}=C_{1} \cap Q_{\alpha-1}$.
Note that $\left[C_{2}, V_{\alpha-1}\right] \leq V_{\alpha+1}$ and thus $\left[E_{\alpha+1}, C_{2}\right] \leq V_{\alpha+1}$. It follows that $C_{2} \leq C_{Q_{\alpha+1}}\left(V_{\alpha+1}\right)$ and $\left[C_{2}, V_{\alpha+1} \cap Q_{\alpha^{\prime}}\right]=1$. This implies that $\left[C_{2}, O_{2}\left(E_{\alpha^{\prime}}\right)\right] \leq Z_{\alpha^{\prime}}$.

A ssume that $C_{2} \nless V_{\alpha^{\prime}}$. Then $C_{C_{2} V_{\alpha^{\prime}}}\left(O_{2}\left(E_{\alpha^{\prime}}\right)\right) \not \approx Z_{\alpha^{\prime}}$ by (ii) since $\left|C_{2} V_{\alpha^{\prime}} / C_{2} V_{\alpha^{\prime}} \cap Q_{\alpha-1}\right|=4$, a contradiction to (12).

Let $C_{0}=C_{C_{2} V_{\alpha}}(D)$. Then $\left[C_{0}, O_{2}\left(E_{\alpha^{\prime}}\right)\right]=1$ and by (20), $C_{0}=Z_{\alpha^{\prime}}$. Hence $C_{2} \leq V_{\alpha^{\prime}}$, and $\left|C_{1} / V_{\alpha^{\prime}}\right| \leq 2$ since $V_{\alpha^{\prime}} \cap Q_{\alpha+1} \nless Q_{\alpha}$ and $\mid C_{1} \cap$ $Q_{\alpha} /\left(C_{1} \cap Q_{\alpha-1}\right) Z_{\alpha^{\prime}} \mid=2$. This proves (b).

Definition. Let H be a finite group which contains two subgroups $G_{\alpha+2}$ and $G_{\alpha+1}$ such that $G_{\alpha+2} \cap G_{\alpha+1}=S \in \operatorname{Syl}_{2}(H)$ and $O_{2}\left(\left\langle G_{\alpha+2}, G_{\alpha+1}\right\rangle\right)=1$. Then H is of type M_{12} and ${ }^{2} F_{4}(2)^{\prime}$, respectively, if (10.1)(a) and (b), respectively, hold for $G_{\alpha+2}$ and $G_{\alpha+1}$.

Note that M_{12} and ${ }^{2} F_{4}(2)^{\prime}$ are examples for such groups H.

11.

In this section we prove Theorems 1 and 2 . Let H be a finite group. Suppose that
(i) H satisfies the hypothesis of Theorem 1 or
(ii) H satisfies the hypothesis of Theorem 2, but not (d) or (e) of its conclusion.

Then in both cases H satisfies Hypothesis 2 of Section 5. If (i) holds, then (8.2), (8.6), and (9.1), (9.10), and (10.1) prove Theorem 1. Hence, we may assume that (ii) holds.

If H also satisfies the hypothesis of Theorem 1, then (a) of Theorem 2 is a direct consequence of Theorem 1. Thus, we may assume, in addition, that S_{0} is contained in a unique maximal 2-local subgroup of H. In particular, the subgroups S, P_{1}, and P_{2} of Hypothesis 2 are as in (5.1)(c). Now (8.2) shows that either
(I) $\quad P_{1} \cong P_{2} \cong \Sigma_{4}$ and $S \cong D_{8}$, or

$$
\begin{equation*}
P_{1} \cong P_{2} \cong C_{2} \times \Sigma_{4} \text { and } S \cong C_{2} \times D_{8} . \tag{II}
\end{equation*}
$$

Let $Q=O_{2}\left(P_{1}\right)$ and $N=N_{H}(Q)$. Then (5.1)(c_{2}) implies that $S \in$ $\operatorname{Syl}_{2}(N)$, and the solvability of N and $C_{N}(Q) \leq Q$ gives $N=P_{1}$.
A ssume case (I). Let $x \in Q \backslash Z\left(S_{0}\right)$. Then $Q=C_{S_{0}}(x)$ and

$$
4^{-1}\left|S_{0}\right|=\left|S_{0} / C_{S_{0}}(x)\right|=\left|\left\{[s, x] \mid s \in S_{0}\right\}\right| .
$$

It follows that $S_{0}^{\prime}=\Phi\left(S_{0}\right)$ and $\left|S_{0} / \Phi\left(S_{0}\right)\right|=4$. Now [4, 5.4.5] shows that (b) of Theorem 2 holds.

In case (II), S contains exactly two elementary abelian subgroups of order 8 and $\left|N_{S_{0}}(S) / S\right|=2$. On the other hand, $C_{H}\left(Z\left(P_{1}\right)\right)$ is of characteristic 2 type, and so $C_{H}\left(Z\left(P_{1}\right)\right)=P_{1}$. It follows that $J(S)=J\left(N_{S_{0}}(S)\right)$ and $S_{0}=N_{S_{0}}(S)$. Now (c) of Theorem 2 holds.

ACKNOWLEDGMENTS

I would like to thank Professor A. D elgado and Professor J. G. Thompson for reading large parts of the manuscript. They made many helpful suggestions and pointed out several mistakes.

REFERENCES

1. B. Baumann, Ü ber endliche Gruppen mit einer zu $L_{2}\left(2^{n}\right)$ isomorphen Faktorgruppe, Proc. Amer. Math. Soc. 74 (1979), 215-222.
2. D. Goldschmidt, A utomorphisms of trivalent graphs, Ann. of Math. 111 (1980), 377-404.
3. K. Gomi, On the 2-local structure of groups of characteristic 2 type, J. Algebra 108 (1987), 492-502.
4. D. G orenstein, "Finite G roups," H arper \& R ow, N ew Y ork, 1968.
5. D. Gorenstein and R. Lyons, Nonsolvable finite groups with solvable 2-local subgroups, J. Algebra 38 (1976), 453-522.
6. Z. Janko, Nonsolvable finite groups all of whose 2 -local subgroups are solvable, I, J. Algebra 21 (1972), 458-517.
7. F. Smith, Finite simple groups all of whose 2-local subgroups are solvable, J. Algebra 34 (1975), 481-520.
8. B. Stellmacher, Pushing up, Arch. Math. 46 (1986), 8-17.
9. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, I, Bull. Amer. Math. Soc. 74 (1968), 383-437; II, Pacific J. Math. 33 (1970), 451-536; III, Pacific J. Math. 39 (1971), 483-534; IV, Pacific J. Math. 48 (1973), 511-592; V, Pacific J. Math. 50 (1974), 215-297; VI, Pacific J. Math. 51 (1974), 573-630.
