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a b s t r a c t

In this paper, the band structures of bending waves in a phononic crystal thin plate with a point defect are
studied using an improved plane wave expansion method combined with the supercell technique. In
particular, a phononic crystal thin plate composed of an array of circular crystalline Al2O3 cylinders
embedded in an epoxy matrix with a square lattice is considered in detail. Full band gaps are shown.
When a point defect is introduced, the bending waves are highly localized at or near the defect, resulting
in defect modes. The frequency and number of the defect modes are strongly dependent on the filling
fraction of the system and the size of the point defect. The defect bands appear from the upper edge of
the gap and move to the middle of the gap as the defect size is reduced. For a given defect, the frequencies
of the defect bands increase as the filling fraction increases.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Much attention has recently been paid to the propagation of elas-
tic waves in acoustic band gap materials, called phononic crystals,
which are made of two or more elastic materials with large contrast
between their mechanical properties (elastic stiffness and/or mass
density). The existence of complete phononic band gaps, or ranges
of frequencies in which elastic waves are forbidden to propagate in
any direction, suggests the possible application of phononic crystals
as noise suppressors, perfect acoustic mirrors (Bria and Djafari-
Rouhani, 2002), acoustic filters (Sigalas, 1998), etc. The band gap
characteristics of the perfect bulk phononic crystals have been inves-
tigated extensively both theoretically and experimentally. Some
numerical methods to calculate the band structures have been
developed, including the plane wave expansion (PWE) method (Ta-
naka and Tamura, 1998; Wu et al., 2004), the multiple scattering the-
ory (MST) (Psarobas et al., 2000), the finite difference time domain
(FDTD) method (Garcia-Pablos et al., 2000), the wavelet method
(Yan and Wang, 2006, 2007; Yan et al., 2008), and others. These
numerical methods, combined with the supercell technique (Sigalas,
1997), have also been used to calculate the band structures of imper-
fect bulk phononic crystals with point or linear defects (see, e.g. Khe-
lif et al., 2003; Kafesaki et al., 2001; Sigalas, 1998). The existence of
defects may result in a high localization of elastic waves near the de-
fects, making it possible to design novel microcavities (Khelif et al.,
2003), high efficiency waveguides (Khelif et al., 2004; Torres et al.,
1999), and frequency demultipliers (Benchabane et al., 2005) and
couplers (Sun and Wu, 2005).
ll rights reserved.
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A few investigations have also been carried out for phononic
crystals with finite thickness, i.e. phononic crystal plates. Among
these studies, most are concerned with Lamb waves based on the
three dimensional governing equations of elastic waves; for exam-
ple, Charles et al. (2006) calculated the band structures for two dif-
ferent kinds of two-dimensional phononic guides using the PWE
method, Sun and Wu (2007) studied the propagation of Lamb
waves in a phononic crystal plate using the FDTD method, includ-
ing the guided wave modes due to the linear defect, and Vasseur
et al. (2007) examined the waveguides in a piezoelectric phononic
crystal plate both freestanding and deposited on a silicon substrate
with the help of the finite element method. Very recently, Vasseur
et al. (2008) introduced a supercell PWE method to calculate the
elastic band structures for Lamb waves in a special phononic crys-
tal plate sandwiched between two slabs made of elastic homoge-
neous materials. Pennec et al. (2008) employed both the FDTD
method and the finite element method to investigate the disper-
sion of Lamb waves in a structure consisting of cylindrical dots
deposited on a thin homogeneous plate. The linear defect modes
were also studied. It was found that this structure can exhibit a
low frequency gap.

It is known that the bending wave modes are dominant when
the plate is relatively thin, and thus plate theory is generally used
in this case. Sigalas and Economou (1994) calculated the dispersion
relations of bending waves propagating in thin plates using the
PWE method. Yu et al. (2006) investigated the band structures of
a thin plate with 2D binary locally resonant structures using the
improved PWE method (Li, 1996; Cao et al., 2004). Hsu and Wu
(2006) studied the propagation of waves in a phononic crystal
plate based on the Mindlin plate theory. Until now, however, no
studies have been devoted to bending waves in a plate with
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defects. In this paper, the band structures of phononic crystal thin
plates with a point defect are investigated based on the classical
plate theory using the improved PWE method combined with the
supercell technique.

2. Theory

Fig. 1 shows a phononic crystal thin plate. The system is com-
posed of an infinite periodic array of circular cylinders (material
A) embedded periodically in a host matrix (material B). Both elastic
materials A and B are isotropic. The thickness of the thin plate, the
lattice constant and the radius of the cylinder are denoted by h, a
and r0, respectively.

In terms of the (x,y,z)-coordinate system, where the x- and y-
axes are in the plane of the plate as shown in Fig. 1, the equation
governing the bending of a plate with uniform thickness is (Sigalas
and Economou, 1994)
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where w is the transverse displacement in the z-direction, D = Eh3/
12(1 � m2) is the flexural rigidity with E being the Young’s modulus
and m the Poisson’s ratio, a = qh, b = Dm and c = D(1 � m). All of these
quantities are periodic functions of the position vector r = (x,y).

A generally used method to solve the above equation is the con-
ventional PWE method. However, the slow convergence of the
method is always a problem, especially for systems with a large
elastic mismatch. Cao et al. (2004) proposed a new formulation
of the PWE method for band structure calculation and showed that
the new formulation can provide much more accurate numerical
results than the conventional PWE method, especially for systems
with a large elastic mismatch. In the present paper, the new formu-
lation is adopted to expedite convergence and is referred to as the
improved PWE method. For details about this new formulation, we
refer the reader to Li (1996) and Cao et al. (2004).

According to Bloch’s theorem, the displacement fields of har-
monic waves in the phononic crystal thin plate can be expressed as

wðr; tÞ ¼ eiðk�r�xtÞwkðrÞ; ð2Þ

where k = (k1,k2) is the Bloch wave vector and x is the angular fre-
quency. wk(r) is a periodic function with the same spatial periodic-
ity as the structure and can be expanded in Fourier series as

wkðrÞ ¼
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Fig. 1. An infinite phononic crystal thin plate: (a) the square lattice, (b) the cross secti
where G1 = 2p(n1/a,n2/a) is the 2D reciprocal lattice vector with n1,
n2 = 0, ±1, ±2, . . .±n and AG1 is the corresponding Fourier coefficient.

In the conventional PWE method, the material parameters are
all directly expanded in Fourier series according to the spatial peri-
odicity. In the improved PWE method, however, the inverses of the
material parameters (excluding the mass density) are expanded in
Fourier series in order to get a good convergence (Li, 1996; Cao
et al., 2004). For the present problem, we expand a(r), 1/b(r), 1/
D(r) and 1/c(r) in a Fourier series of the following form:

HðrÞ ¼
X

G2

eiG2 �rHG2 ð4Þ

with

HG2 ¼
fHA þ ð1� f ÞHB for G2 ¼ 0
ðHA � HBÞFG2 for G2–0

�
; ð5Þ

where H(r) can be one of a(r), 1/b(r), 1/D(r) or 1/c(r), HG2 is the cor-
responding Fourier coefficient, G2 = 2p(n1/a,n2/a), n1,n2 = 0, ±1,
±2, . . .±n, and f is the filling fraction of each inclusion, defined as
the ratio between the cross sectional area of a cylinder and that
of the primitive unit cell. FG2 is the structure function, defined as

FG2 ¼
1
S

Z
A

e�iG�rdr2;

with S denoting the area of the unit cell and the integral being per-
formed over the cross section of the material A. For circular cylin-
ders with radius r0, f ¼ pr2

0=a2 and FG2 ¼ 2fJ1ðjG2jr0Þ=jG2jr0 with J1

(jG2jr0) being the first order Bessel function of the first kind.
Considering Eqs. (1)–(5), we have the following eigenvalue

problem:
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where G3 = G1 + G2 and sHt
�1
G2

denotes the inverse of the Toeplitz ma-
trix sHtG2

with elements shown in Eq. (5) (Li, 1996; Cao et al., 2004).
Truncating the series in Eq. (6) to finite sums consisting of N terms,
we can obtain N � N equations, and Eq. (6) can then be rewritten in
matrix form:
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on cutting along the line C–C in (a), and (c) the corresponding first Brillouin zone.



0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

W
id

th
 o

f 
th

e 
fi

rs
t b

an
d 

ga
p

(Δ
ω

a/
C

t) 

f

Fig. 3. The normalized first band gap width varying with the filling fraction.
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x2PAkþG1 ¼ QAkþG1
; ð7Þ

where P and Q are N � N matrixes,
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; ð8Þ
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The eigenfrequency x can be obtained by solving Eq. (7) for a spe-
cific Bloch vector k, yielding the band structures.

It should be noted that the classical plate theory used in this pa-
per is applicable only for a thin plate and long wavelengths, so that
kh� 1, h/a� 1. Mindlin’s plate theory could avoid this limitation,
but it is more complex mathematically (Hsu and Wu, 2006). Here,
as a preliminary investigation of the defect state of the bending
wave modes, we use the classical plate theory.

3. Band structures for a perfect phononic crystal thin plate

We consider bending waves propagating in a perfect phononic
crystal thin plate with cylindrical inclusions of Al2O3 (material A)
embedded periodically in the Epoxy host (material B) as shown
in Fig. 1a. The mechanical properties used in the following calcula-
tions are qA = 3970 kg/m3, EA = 402.7 GPa, and mA = 0.23, and
qB = 1142 kg/m3, EB = 4.35 GPa, and mB = 0.378. The thickness of
the plate is h=0.1a, and the transverse wave velocity in Epoxy is
Ct = 1160 m/s.

Fig. 2 displays the band structure along the closed path
M � C � X �M in the first irreducible Brillouin zone shown in
Fig. 1c with filling fraction f = 0.283. The frequency is normalized
by a/Ct. We find that there exist two complete band gaps. The first
one, which is much wider than the second one, is located in the
normalized frequency region 3.37 � 4.63.
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Fig. 2. Band structures of the perfect phononic crystal thin plate (Al2O3/Epoxy) of a
square lattice with f = 0.283.
The width of the first band gap as a function of the filling frac-
tion is shown in Fig. 3. We can see that the band gap exists for fill-
ing fractions varying from 0.1 to 0.6. With the filling fraction
increasing, the width of the band gap increases to a maximum
and then decreases. Fig. 3 shows that the optimal filling fraction
giving a maximum gap width for the Al2O3/Epoxy thin plate is
f = 0.4.

4. Band structures for a phononic crystal thin plate with a point
defect

Now we examine the band structures of the thin plate when a
point defect is introduced. The defect is created by changing the ra-
dius of one of the cylinders. The theoretical analysis of the defect
modes can be carried out by the supercell technique that has been
performed successfully for the study of defect states in 2D bulk
phononic crystals (Sigalas, 1998; Wu et al., 2001; Yan et al.,
2008). The basic idea of the supercell technique is to select an
M �M supercell including the defect and impose Born-von-Kar-
mon periodic conditions on the boundary of the supercell (Sigalas,
1998; Yan et al., 2008). Previous calculations have shown that a
5 � 5 supercell can yield accurate results (Sigalas, 1998; Wu
et al., 2001; Yan et al., 2008). Therefore, in our computation we
choose a 5 � 5 supercell containing the point defect as shown in
Fig. 4a, where the hollow circle indicates the point defect with ra-
dius rd. The corresponding irreducible part of the first Brillouin
zone is shown in Fig. 4b. The Fourier coefficient HG in Eq. (4) is
now changed to

HG ¼

1
25 24½fHA þ ð1� f ÞHB � þ fdHA þ ð1� fdÞHBf g for G ¼ 0
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where G = 2p(n1/5a,n2/5a) is the reciprocal lattice vector with n1,
n2 = 0, ±1, ±2, . . .n and Fd

G ¼ 2f dJ1ðjGjr0Þ=jGjr0 is the structure func-
tion of the defect cylinder with fd ¼ pr2

d=a2 being the defect filling
ratio.

Following the same process as the one used in the perfect plate
calculation, the band structures of bending waves in the thin plate
with different values of defect cylinder radius rd are shown in
Fig. 5. In all, 1089 plane waves are employed, and the calculating
accuracy can be seen from Table 1, which displays the frequencies



B 

d

A

k2 

k1 
X 

M 
/5a π

/5a π
Γ

a b

r
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Table 1
Variation of the normalized frequencies with the number of plane waves (2n + 1)2

employed in the calculation for points A, B, and C marked in Fig. 5.

n x1 x2 x3

8 2.8553 3.4175 3.5078
9 3.0758 3.4931 3.5988

10 3.1144 3.6773 4.1838
11 3.1451 3.7556 4.3722
12 3.1694 3.7971 4.3871
13 3.2196 3.8247 4.4139
14 3.2319 3.8405 4.4174
15 3.2963 3.8870 4.4880
16 3.2983 3.9209 4.5002
17 3.3085 3.9427 4.5322

x1 – the frequency of the lower edge of the band gap marked by A; x2 – the
frequency of the defect band marked by B; x3 – the frequency of the upper edge of
the band gap marked by C.
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varying with the number of plane waves for the points A, B, and C
marked in Fig. 5. The filling fraction of the corresponding perfect
system is f = 0.283. It can be seen from Fig. 5 that the flat defect
bands, which are nondegenerate, start to appear from the upper
edge of the gap and finally fall in the middle. Similar behaviors
have been found in 2D infinite systems (Sigalas, 1997).

Fig. 6 shows in detail how the frequencies of defect modes
change with defect radius for the given filling fraction f = 0.283.
More defect bands (up to three) appear inside the first band gap
as the radius ratio rd/r0 decreases from 0.8 to 0. All defect bands
move from the upper edge towards the middle as rd decreases.
The edges of the first band gap remain almost unchanged as rd

varies.
The displacement distributions associated with the three defect

modes with rd/r0 = 0.2 at the C point in the 5 � 5 supercell are
shown in Fig. 7. The cylinders are located at [(2nx + 1)/2,(2ny + 1)/
2], (nx,ny = 0, 1, 2, 3, 4) and the defect cylinder is at the center.
The results show their peculiar symmetry. It can be clearly seen
that for the two lower defect modes, the displacement amplitudes
around the defect are much bigger than those at or far away from
the defect (see Fig. 7a and b). However, for the higher defect mode,
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Fig. 5. Band structures of the phononic crystal thin plate (Al2O3/Epoxy) with a point
defect for f = 0.283.
the displacement amplitude reaches a maximum at the defect cyl-
inder and decays rapidly with distance away from the defect (see
Fig. 7c). Obviously, the bending waves corresponding to the three
modes are so localized at or near the defect that they cannot escape
into the surrounding media. In other words, the point defect be-
haves like a vacant resonator. It can be also seen that the degree
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Fig. 6. Frequencies of the defect modes versus radius ratio rd/r0 at filling fraction
f = 0.283 in the Al2O3/Epoxy system.
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of localization for the third defect mode (shown in Fig. 7c) is much
higher than for the other two.

Fig. 8 shows the frequencies of the defect modes as a function of
filling fraction for rd = 0. The lines with dots indicate the frequen-
cies of the defect modes, and the solid lines show the edges of
the first band gap. We can see that the frequencies of the defect
modes increase as the filling fraction increases. There are up to five
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Fig. 8. Defect modes versus filling fraction for rd = 0.
nondegenerate defect bands emerging from inside the first band
gap. The number of defect bands increases from 1 to 5 as the filling
fraction increases from 0.11 to 0.5, before decreasing to 1 as the
filling fraction increases to 0.55. The defect bands disappear at very
low and very high filling fractions.

5. Conclusions

Based on the improved PWE method combined with the
supercell technique, the band structures of bending waves in
the phononic crystal thin plate of Al2O3/Epoxy with a point defect
have been calculated. The defect modes existing in the first band
gap are shown to be strongly dependent on the size of the point
defect and the filling fraction of the system. For a given filling
fraction, the defect bands appear from the upper edge of the
gap and move to the middle of the gap as the defect size is re-
duced. For a given defect, the number of the defect bands varies
between 0 and 5 in a certain range of the filling fraction, and the
frequencies of the defect bands increase with increasing filling
fraction. The displacement distributions show that the bending
waves are highly localized at or near the defect, and the degrees
of localization are different for different modes. This study pro-
vides a foundation in theory to design acoustic filters in engi-
neering applications.
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