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Abstract

Piecewise linear (G01-based) tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and
unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is
required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly
used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance
of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA) is an efficient method for data fitting that solves the
numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial
applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA) to avoid the numerical instability, and lower chord errors
by using stretching energy term. We implement several algorithm improvements, including (1) an improved technique for initial control point
determination over Dominant Point Method, (2) an algorithm that updates foot point parameters as needed, (3) analysis of the degrees of freedom
of control points to insert new control points only when needed, (4) chord error refinement using a similar ELSPIA method with the above
enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are
presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the
proposed solution.
& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

G-code commands generated by CAM systems play an
important role in CNC machining. Among them piecewise
linear (G01-based) tool paths are widely used. The lack of G1

and G2 continuity of G01-based paths cause unwanted vibra-
tions and slow-downs during machining. To ensure efficient
high-speed machining, a method such as B-spline fitting to
improve the continuity of tool path is required.

Tool path B-spline curve fitting is often required to fulfill
more constraints than conventional B-spline curve fitting in
shape and performance [1], such as approximation of the G01
points within a given tolerance, chord error constraint, shape
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preservation, G2 continuity, and minimal number of control
points. In addition, computation must be fast and accurate even
for large size tool paths to use the solution in actual NC
machining.
The conventional B-spline fitting approaches are often

solved by minimizing Least Square Fitting (LSF) error or
energy functions within a given tolerance [2–8]. LSF involves
solving a very large system of linear equations. It is not
suitable for industrial solutions because of numerical instability
and lack of assurance of a usable result.
Instead of solving linear equation, Progressive and Iterative

Approximation (PIA) proposed by Qi et al. [9] and de Boor
[10] is a new and effective method for data fitting that
eliminates the numerical instability of solving inverse matrices.
PIA constructs a series of fitting curves by adjusting control
points iteratively[11–15]. Deng et al. [4] reported a method of
lsevier. This is an open access article under the CC BY-NC-ND license
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CAM
(generate G-code with G01)

CNC
(machining)

B-spline fitting
(generate G-code with NURBS)

Fig. 1. Flowchart of the relationship between CAM, B-spline fitting, and CNC machining.
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Progressive and Iterative Approximation for Least Squares
(LSPIA) with the ability to handle point set of large size with
less control points than PIA. Nevertheless the LSPIA method
cannot be directly used in industrial applications of NC
machining due to the following reasons: first, LSPIA does
not consider chord error requirement, second, the data points
of empirical examples distributed evenly, but actual NC tool
paths have more complex and unpredictable shapes and non-
uniform data point distribution.

Parameter values of data points and knot vector are critical to the
quality of fitting curve. Piegl and Tiller [5, 16] suggested using
averaging technique (AVG) and knot placement technique (KTP).
Razdan [17] and Li et al. [18] suggested using shape information to
determine knot vectors. Park et al. [3] devised a new B-spline
curve fitting method based on adaptive curve refinement using
dominant points. Their knots were determined by averaging the
parameter values of the dominant points.

Tool path B-spline fitting method is often used to improve
the machining efficiency within the precision to achieve high-
speed and high-precision CNC machining. Yang and Chen
[19] proposed a new high precision fitting approach which
used roughly fit and fine fit for NURBS generation, and
Newton–Raphson method is used to solve the optimization
problem, but the authors did not give a method to solve chord
error refinement, and Newton–Raphson method cannot ensure
a solution that satisfies the accuracy requirement. Syh-
ShiuhYeh and Hsin-Chuan Su [20] developed a method for
implementing an online non-uniform rational B-spline
(NURBS) curve fitting process on CNC machines for improv-
ing the quality and efficiency of machining. He fitted the data
points using optimal search method and used least square
fitting method to solve the optimization problem without
considering chord error and numerical instability. If the fitting
process fails, he just used stored data points as the motion
commands for ensuring the continuous motion of CNC
machines. Zhang et al. [21] proposed a method of curve fitting
for velocity planning on CNC machines based on quadratic B-
splines. The fitting curve was obtained by interpolating feature
points. Chasing method was used to compute control points.
This method also has shortage of the numerical instability of
solving inverse matrices.

The goal of this study is to design and implement an
algorithm that is capable of satisfying all of the requirements.
Conventional LSF method is not considered for industrial-
strength applications because of numerical instability. LSPIA
method cannot be directly used for tool path B-spline fitting
because it does not consider chord error requirement. More-
over, both the conventional LSF method and LSPIA lack
actual machining experiments to validate the usability.

A number of commercial CAD/CAM software systems can
generate NURBS tool paths, such as NX, CATIA, Delcam,
PowerMILL, SINUMERIK 840D compressor etc. The NX
solution delivers favorable results but from data analysis we
found that NX solution has some limitations. It cannot ensure
G1 continuity between two B-splines and determine the feature
points of the tool paths automatically – the feature points are
determined by a user-provided angle. Our previous work [1]
can identify the feature points, which are called “Hard Break
Points (HBP)”, automatically. The goal is to ensure G1

continuity between two B-splines, and G01 and B-spline,
except at HBP locations. HBP identify algorithm [1] is not the
key discussion point in this paper but is the prerequisite of the
tool path B-spline fitting.
Data points in this paper are generated by CAM software,

and our fitting results are used for 3-axis actual machining after
B-spline fitting. Fig. 1 is a systematic flowchart of the
relationship between CAM, B-spline fitting, and CNC machin-
ing. Tool path B-spline fitting is an optimize step for tool paths
generated by CAM software, and after tool path B-spline
fitting, the tool paths have better continuity and smoother than
the original G01. It can generate better machining surface and
save internal storage.
In this study, we propose to use LSPIA method incorporat-

ing an energy term (ELSPIA) to improve the performance and
lower the chord errors. We select initial control points which
can demonstrate the feature of data points and are uniformly
distributed. We design an iterative algorithm such that the foot
point parameters are updated strategically; then we analyze the
required degrees of freedom of control points to insert new
control points effectively; furthermore we apply chord error
refinement with ELSPIA method if the chord error requirement
is not satisfied.
This paper is organized as follows. In Section 2, we state the

requirements and high-level algorithm of tool path B-spline
fitting. In Section 3, we introduce the algorithm of LSPIA. In
Section 4, we explain our improvement of LSPIA in four
aspects. Section 5 is the implementation of data fitting and
chord error refinement with ELSPIA. Section 6 presents some
numerical validation and Section 7 presents machining experi-
ments. The last Section 8 concludes this paper. Moreover,
Appendix supplements some detailed algorithm of this paper.
2. Overview of tool path B-spline fitting algorithm

To obtain smooth, shape preserving, and tolerance banded
cubic B-Spline tool paths, first the original data points need to
be processed to remove noise points, determine HBPs, and
identify long segments, then data points of tool path must be
grouped by “breaks”, which should be identified by data
analysis [1]. Thus the generated new point sequences are more
suitable for further fitting.
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Fig. 2. Flowchart of tool path B-spline fitting.
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Fig. 3. Flowchart of minor cycle.
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The conventional B-spline fitting algorithm mainly fitted the
data points with data error constraint. But in tool path B-spline
fitting, not only data error constraint but also chord error
constraint should be specified to minimize the division
between fitting curve and polygon formed by the data points.
Data errors can be optimized by minimizing the least square
fitting error, but chord errors cannot be directly optimized due
to the complex computation.

Firstly, let us review the concept of data point fitting. The
readers are assumed to be familiar with the concepts of B-
spline and optimization theory. A B-spline curve with degree
p, knot vector U¼ fu0; u1;…; unþpþ1g is defined as:

cðtÞ ¼
Xn
i ¼ 0

Bp
i tð ÞPi ð1Þ

Bp
0 tð Þ;Bp

1 tð Þ;…;Bp
n tð Þ� �

are the normalized B-spline basic
functions of degree p defined on the knot vector U.
P0;P1;…;Pnf g are the control points.
In this paper, assume that fQjgmj ¼ 0 are ordered G01 data

points, ftjgmj ¼ 0 are the parameter values of fQjgmj ¼ 0. Data
error constraint is taken into consideration by minimizing the
least square fitting error defined as:

EðPÞ ¼
Xm
j ¼ 0

ðcðtjÞ�QjÞ2 ð2Þ

Wherein, P¼ ðP0;P1;…PnÞT . The matrix form of Eq. (2) is:

EðPÞ ¼ AP�Qð ÞT ðAP�QÞ ð3Þ

Where

Q¼ Q0;Q1;…Qm

� �T
,

Bp
0 t0ð Þ Bp

1 t0ð Þ ⋯ Bp
n t0ð Þ

p Bp t1ð Þ ⋯ Bp t1ð Þ

2
66

3
77
A¼
B0 t1ð Þ
⋮

Bp
0 tmð Þ

1 n

⋮ ⋱ ⋮
Bp
1 tmð Þ … Bp

n tmð Þ

66664
77775
In this study, the initial control points and initial knot vector
are determined before the iterative steps of data point fitting.
The data point fitting algorithm can be divided into three level
cycles: major cycle, medium cycle and minor cycle. After
these three cycles, a refinement process is used to reach the
chord error requirement. There are many methods to solve the
optimization of Eq. (3), but we use LSPIA method in the minor
cycle considering performance and industrial application. We
will introduce the LSPIA method in Section 3. If there is any
data error that cannot satisfy fitting tolerance requirement after
LSPIA iteration, we will start foot point parameter updating
method in the medium cycle and control point insertion
method in the major cycle. At last, chord error refinement
method with ELSPIA is used if the chord errors cannot satisfy
machining tolerance requirement. The flowchart of tool path
B-spline fitting algorithm is shown in Fig. 2.
3. The LSPIA iterative method of data point fitting

In this section, we will introduce the LSPIA iterative method
and analyze why it cannot be directly used for tool path B-
spline fitting.
Assume that fP0

i gni ¼ 0 are the initial control points selected
from the given data points fQjgmj ¼ 0, U¼ fuignþpþ1

i ¼ 0 are the
knot vector. The first B-spline curve is:

c0ðtÞ ¼
Xn
i ¼ 0

Bp
i tð ÞP0

i ð4Þ

Let Pk ¼ ðPk
0;P

k
1;…;Pk

nÞT be the control point vector in the
kth iteration, and Δk ¼ ðΔk

0;Δ
k
1;…;Δk

nÞT be the adjusting vector
of control points in the kth iteration. LSPIA uses steepest
descent method [22] to minimize the fitting error defined by
Eq. (3). First the gradient vector of E Pð Þ in Eq. (3) is computed
as:

∇EðPÞ ¼ 2 AT ðAP�QÞ ð5Þ



Fig. 4. LCM points and LDCM points: (a) LCM points, (b) LDCM points.

Fig. 5. The approximate foot point and real foot point of Qj.
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Then we can develop the kth iterative steps of LSPIA:

Δk ¼ μAT ðQ�APkÞ
Pkþ1 ¼ PkþΔk

(
ð6Þ

where μ is the moving step, 0oμo 2
λ0
, λ0 is the largest

eigenvalue of matrix ATA. The matrix ATA is a positive
definite and symmetric matrix, The (kþ1)th curve ckþ1ðtÞ is:

ckþ1ðtÞ ¼
Xn
i ¼ 0

Bp
i tð ÞPkþ1

i ð7Þ

Remark 1.1. For the case of interpolating end pointsQ0,Qm,
we just let P0

0 ¼Q0;P
0
n ¼Qmand Pkþ1

0 ¼ Pk
0;P

kþ1
n ¼ Pk

n in the
iteration.

The flowchart of minor cycle is shown in Fig. 3. Compared
with the conventional least square fitting method, LSPIA is an
efficient and intuitive method for data fitting that eliminates the
numerical instability of solving inverse matrices. However, in
most cases the data error requirement cannot be satisfied just
by the minor cycle. Data errors decrease obviously at first
iteration steps but then they slow down after several steps, one
of the reasons is that the foot points computed by data point
parameters are not precise, and the other one is that the control
points lack degree of freedom, meaning that there are not
enough controls points. So we need to improve LSPIA method
to make the fitting curve to satisfy data error and chord error
requirement.

4. The improvement of LSPIA for tool paths B-spline
fitting

In this section, we improve LSPIA method in four aspects:
(1) initial control points selection by LDCM method and knot
vector determination by initial control points; (2) foot point
parameters updating method; (3) control points insertion
method using the degree of freedom of control points; (4)
chord error refinement method using ELSPIA.

4.1. Determination of initial control points and knot vector

In this section, we propose an improved technique for initial
control point determination over the Dominant Point Method
(DOM) [3] to ensure uniform distribution of control points and
convergence of feature locations. Park et al. [3] determined the
dominant points by Local Curvature Maximum (LCM) points,
but LCM points contain noise points. As shown in Fig. 4(a),
there are 55 LCM points selected by 245 data points. Although
the noise points can be excluded in a way, but the dominant
points are gathered at the complex region and none at the flat
region. To exclude the noise points, we adopt a Local
Difference Curvature Maximum (LDCM) method to select
feature points, noted as LDCM points. Assume that the
curvature kj of Pj has been computed by the method in
Appendix A. s is a predefined neighborhood value. The
difference curvature is defined as:

σj ¼ kj�
P

iZ j� s;ir jþ s;ia jki

2s
; j¼ s;…m�s; ð8Þ

If σj40; σj4σj�1, and σj4σjþ1, the point Pj is consid-
ered as a LDCM point. As shown in Fig. 4(b), let s¼5, there
are 33 LDCM points selected from 245 data points. To make
the initial control points distribute uniformly, we need to add
some control points in the region formed by two adjacent
LDCM points that have more than 2s data points. The initial
control point set ensures that there are at most 2s data points (a
data point block) between two initial control points. The end
points of each data point block are selected as initial control
points to make the fitting curve interpolating the end points of
data point blocks instead of all data points.
Assume that fP0

i gni ¼ 0 are the initial control points selected
from fQjgmj ¼ 0, ftjgmj ¼ 0 are the parameter values of fQjgmj ¼ 0.
Mostly the parameter values are computed by chord length or
centripetal methods [2,5]. We use the AVG method of initial
control points to compute the knot vectors:

upþ j ¼ 1
p

Xjþp�1

i¼j

tf ðiÞ; j ¼ 1;…n�p

where f ið Þ is a function that returns the index of the point
Qj corresponding to initial control point P0

i . In order to make
the fitting curve interpolate the end points of data point blocks,
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the end knots should always have multiplicity of (pþ1). The
other knots need to have no multiplicity to obtain curve
with G2continuity.

4.2. Foot point parameters updating method

In the iterative steps of LSPIA, the data point parameter tj is
used as the foot point parameter of the data point Qj. The data

error of Qj is measured by
���cðtjÞ�Qj

���. Actually, ���cðtjÞ�Qj

��� is
not the real deviation between data point Qj and B-spline

curve c tð Þ: As shown in Fig. 5, c tj
� �

is a approximate foot

point of Qj, and c tj
� �

is the projection point of Qj on the B-
spline, tj is the parameter of the projection point. In Section 3,
the adjust vector of control point Pi is defined as:

Δi ¼ μ
Pm
j ¼ 0

Bp
i ðtjÞðQj�cðtjÞÞ, foot point parameters will also

affect the fitting result of LSPIA because imprecise foot point
parameters result in imprecise adjust vectors. Thus we refresh
the foot point parameters to get better fitting result.

The foot point parameters updating method is to compute
the projection point parameters of data points and use them as
new foot point parameters. The projection point parameter tj is
computed by solving Eq. (9). The solution is obtained by using
Newton iteration method.

ðQj�cðtÞÞUc' tð Þ ¼ 0 ð9Þ

4.3. Control points insertion to fulfill the data error
requirement

4.3.1. Finding the control points lacking degrees of freedom
In the iterative steps of LSPIA, for every index i, the co-

ntrol point Pi is adjusted by the adjust vector

Δi ¼ μ
Pm
j ¼ 0

Bp
i ðtjÞðQj�cðtjÞÞ, for every index j, if Bp

i ðtjÞ4

0, Qj is considered as a related data point of Pi. For control
point Pi, if its related data point offset vectors have consistent
directions, then we can greatly decreased the related data errors
by adjusting Pi with Δi. In this case Pi is considered as having
enough degree of freedom. Otherwise, we think Pi as lacking
degree of freedom. Assuming that the related data points of
control points Pi are from Qs to Qe, we measure the degree of
freedom of Pi by φi which is defined in the following
expression:

φi ¼
Pj ¼ e

j ¼ s jBp
i ðtjÞðQj�cðtjÞÞj
jΔij

For control points Pi, the greater the φi, the more lacking of
degree of freedom. To fulfill the data error requirement, we use
data errors and degree of freedom of control points to find a
knot interval to insert knot.

4.3.2. Finding the insert interval and insert knot
When a knot is inserted into the interval ½ui; uiþ1�, the

adjacent control points Pi�2 and Pi�1 become new control
points P'i�2, P'i�1 and P'i, the other control points remain
unchanged. Therefore, we define the degree of freedom of the
knot interval ½ui; uiþ1� by the related data errors and the
degree of freedom of Pi�2 and Pi�1.
For each interval ½ui; uiþ1�, if there has a data error that exceed

fitting tolerance, we compute the degree of freedom of the knot
interval ½ui; uiþ1�: γi ¼ φi�2þφi�1, else γi ¼ 0. The knot inter-
val with maximum γi is selected as the insert interval.
4.4. ELSPIA method to fulfill the chord error requirement

The optimization problem of finding the minimization of Eq.
(3) only considers data error constraint, dose not consider
chord error. In this section, the stretching energy term is used
to decrease the chord error. The objective function Eq. (2) can
be modified as:

E Pð Þ ¼
Xm
j ¼ 0

c tj
� ��Qj

� �2þω
Z 1

0

dc tð Þ
dt

� �2
dt ð10Þ

The first term in Eq. (10) is the LSF error to constraint data
error, and the second term is called stretching energy term to
lower the chord error. ω is the weight of energy term. The
matrix form of Eq. (10) is:

EðPÞ ¼ AP�Qð ÞT ðAP�QÞþωPTDP ð11Þ
where D¼Dij ¼

R 1
0 Bi' ðtÞBj' ðtÞdt. The matrix D can be com-

puted by the numerical integration method presented in [21].
Similar to LSPIA, the steepest descent method can be used to
minimize the objective function.
ELSPIA method can decrease the chord error, but the computa-

tion load is greater than LSPIA. So in actual algorithm imple-
mentation, we only use ELSPIA in the chord error refinement step.
The minor cycle procedure still uses LSPIA method.
In the chord error refinement section, only several control points

should be adjusted. Thus, a weight ρi is given to each control point
Pi (if Pineeds to be adjusted, ρi ¼ 1, otherwise ρi ¼ 0Þ. We use
the following method to solve the optimize problem. First the
gradient vector of E Pð Þ in Eq. (11) is computed as:

∇EðPÞ ¼ 2ðAT ðAP�QÞþωDPÞ ð12Þ
Let Pk ¼ ðPk

0;P
k
1;…;Pk

nÞT be the control point vector in the
kth iteration, and Δk ¼ ðΔk

0;Δ
k
1;…;Δk

nÞT be the adjusting vector
of control points in the kth iteration. H is a diagonal matrix
formed by the weights of control points.

H¼
ρ0

⋱
ρn

2
64

3
75
Then we can improve the iterative steps of ELSPIA by using
the matrix description:

Δk ¼ μðAT ðQ�APkÞ�ωDPkÞ
Pkþ1 ¼ PkþHΔk

(
ð13Þ
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Fig. 6. Flowchart of medium cycle.
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where 0oμo 2
λ0
, λ0 is the largest eigenvalue of

H(ATAþωDÞ. The (kþ1)th curve ckþ1t is:

ckþ1ðtÞ ¼
Xn
i ¼ 0

Bp
i tð ÞPkþ1

i ð14Þ

Theorem 1.2. The ELSPIA iterative method is convergent
after several iterative steps.

For the proof of Theorem 1.2, please refer to the Appendix
B.

5. The implementation of tool path data point fitting and
chord error refinement

5.1. The endpoints constraints

In this paper, the fitted B-spline curve needs to satisfy two
kinds of endpoint constraints. First, the B-spline curve must
pass the endpoint of data points, and then the tool paths need
to be G1 continuity at the endpoint between two adjacent B-
splines or a B-spline and a segment. The endpoint tangent
vectors are given before fitting.

In Section 4.1, we know that the end knots are always with
multiplicity (pþ1) in order to make the fitted curve interpolat-
ing the end points of data point blocks, and Remark 1.1
ensures the endpoint of control points do not move in the
iterative steps of LSPIA.

To ensure G1 continuity at the endpoint of B-spline, given
two unit tangent vectors V1and V2, l1and l2 are the length of
endpoint tangent vectors of the B-spline. The fitted B-spline
must satisfy the equations:

c'ð0Þ ¼ l1V1; c'ð1Þ ¼ l2V2

The endpoint tangent vectors of the B-spline with multi-
plicity (pþ1) end knots are:

c'ð0Þ ¼ p
P1�P0

upþ1�u1
; c' 1ð Þ ¼ p

Pn�Pn�1

upþn�un

The length of the end tangent vectors is important to the
quality of the B-spline at end portion. It may cause loop at the
end of B-spline if the tangent length is too long, and the end
two control points will be too close if the tangent length is too
short. So we determine the length of end tangent vectors by the
following approximate calculation:

l1 ¼
Q1�Q0

t1� t0
; l2 ¼

Qm�Qm�1

tm� tm�1

To ensure G1 continuity, control pointsP0;P1;Pn�1; and Pn

are determined beforehand and will not move in the iterative
steps of data points fitting.

5.2. Foot point parameters updating in the medium cycle

The foot point parameters are firstly computed by the chord
length parameters of data points, and then are updated by the
parameters of projection points. In this study, first the parameters
are updated right after the first B-spline is obtained, and then the
parameters are updated every ten iterations of the minor cycle. The
flowchart of the medium cycle is shown in Fig. 6.
Fig. 7(a) and (b) plot the fitted curves of a data set before

and after foot point parameters updating respectively. The
machining tolerance is 0.03 mm and the fitting tolerance is
0.015 mm. During fitting, the minor cycle iterates 20 times
without control points insertion. It can be seen that the fitted
curve using foot point parameters updating method has better
properties in shape-preserving and chord error.

5.3. Control points insertion in the major cycle

In Section 4.3, we introduce the control point insertion
method in the major cycle. The flowchart of the major cycle is
shown in Fig. 8. After we select an interval that lacks degree of
freedom and has at least two data point parameters inside, a
knot can be inserted in this interval by selecting the middle
point of the interval or the data point parameter with maximum
data error in the interval. In our solution the middle point
strategy is adopted. After control point insertion, both the data
errors and chord errors can be decreased.

5.4. Determination of the control points that can be adjusted
in the chord error refinement step

In tool path B-spline fitting, the most important and difficult
problem is to satisfy the chord error requirement. To lower
chord errors, the fitting tolerance in the data fitting steps can be
set smaller than the machining tolerance. We check the chord
errors by using the method introduced in Appendix. Chord
error refinement aims to decrease the chord error that exceeds
the allowed machining tolerance after fitting. The flowchart of
chord error refinement is shown in Fig. 9. There is no need to
adjust all control points in chord error refinement. So we need
a strategy to determine which control points need to be
selected to apply adjusting.
Chord error refinement is first to find a knot interval that

contains at least one point where the chord error exceeds the
machining tolerance, secondly insert a knot in the interval,
determine weights of control points, and then use the ELSPIA
method to compute the control points.



Fig. 7. The fitted curve before and after updating of foot points parameters: (a) before foot point parameters updating and (b) after foot point parameters updating.

Major cycle begin

Medium cycle foot point parameters updating

Are the data error satisfying
fitting tolerance?

YES

Knot insertion

Does any control point
lack degree of freedom

Are the Iteration number
reaching maximum number? Major cycle over

YES

YES

NO

NO

NO

?

Fig. 8. Flowchart of major cycle.
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Assuming that the interval ½ui;uiþ1� contains at least one point
where the chord error exceeds the machining tolerance, the
adjusting control points are P'i�2, P'i�1, and P'i (new control
points after knot insertion), the weights of P'i�2, P'i�1, and P'i
need to be set to 1. The control points with weights equaling to 1
will be adjusted in the following chord error refinement process.

5.5. Weight selection

There are two weights in this section to be determined. The first
is moving step μ. An estimated μ can be determined by
Gershgorin disc theorem [19]. For the details of the determination,
please refer to the Appendix. The other is the weight of energy
term. As we know, the adjusting vector of control points in the kth
iteration is:

Δk ¼ μ AT Q�APk
� ��ωDPk

� �¼ μ ATQ�ATAPk�ωDPk
� �

To ensure that ATAPk and DPk have the same order of
magnitude, the weight ω can be estimated by the matrixes ATA
and D.

ω� traceðATAÞ
traceðDÞ

Using the same data points of Fig. 7, Table 1 compares the
fitting result before and after chord error refinement. In the fitting,
the machining tolerance is 0.03 mm and fitting tolerance is
0.015 mm. It can be seen that the fitted curve can satisfy the data
error and chord error requirement after chord error refinement.
In our actual testing of various shapes of G-code, at least 99% of

the fitted points satisfied the chord error refinement if given a
reasonable machining tolerance, but if there were still some
segments that exceeded the allowed machining tolerance, we had
to cut off the exceeding spline into G01 segments to ensure the
continuous motion of the CNC machining. The cutting sections
were ensured to have G1 continuity between G01 and B-spline, but
G0 continuity between G01 and G01. It was not a perfect strategy
and B-spline blending method will be used in the future work.

6. Numerical validation

6.1. Fitting result

A software framework is built to implement the tool path B-
spline curve fitting algorithm. The tool paths in this study are
generated by NX 9.0 with a given machining tolerance, and the
data sets are cut off from the actual tool paths. Four data sets are
fitted by cubic B-spline curves by using the proposed method. The
data points and fitted curves are plotting in Fig. 10, and the fitting
information is listing in Table 2. It can be seen that the number of
control points is less than 50% of data point quantity, and the
maximum data errors and maximum chord errors both satisfy the
machining tolerance requirement.
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The whole G-code can be fitted by our algorithm at the same
time. Fig. 11 plots the G-codes before and after B-spline fitting.
The G-code in Fig. 11(a) and (b) are the portion of the G-code at
the lower right corner of Fig. 11(a) and (b), respectively. The G01
Find the intervals which chord error
exceed machining tolerance

Find the control points need to be optimized

Turn to medium cycle

Chord error refinement begin

Are the chord error satisfying
machining tolerance?

Chord error refinement over

Knot Insertion

NO

YES

Fig. 9. Flowchart of chord error refinement.

Table 1
Fitting results before and after chord error refinement.

Fitting information Before refinement After refinement

Maximum data error [mm] 0.02028 0.01208
Maximum chord error [mm] 0.07492 0.02841

Fig. 10. The fitted curves: (a) example a, (b) ex
points are colored with light green and the B-splines are colored
with yellow. Fig. 11(a) is the original G-code formed by G01, and
Fig. 11(b) is the G-code formed by G01 and B-splines.
In Fig. 11(b), the dark green sections are long segments,

which do not be fitted for they are feature of the parts. We can
see that the G-code after fitting is smoother than the original
G01 points. The original G01 code only has G0 continuity, but
the G-code after B-spline fitting have G1 continuity between
G01 and B-spline, and between two B-splines. Moreover, the
cubic B-spline without multiply knots has G2 continuity.

6.2. Comparisons with the LSPIA method

Fig. 12 compares the fitting result of LSPIA and ELSPIA. In
Fig. 12(a), the fitting curves of both LSPIA and ELSPIA are
plotted, and the details are plotting in Fig. 12(b) and (c),
respectively. It can be seen that the fitted curve of ELSPIA is
closer to the polyline formed by data points, so the chord error
of ELSPIA is smaller than LSPIA, which demonstrates that the
stretching energy term works and stretches the fitting curve to
decrease the chord error.

6.3. Comparisons with the NX fitting result

In this section, we compare our fitting results with the fitting
results of CAM software NX. The fitted G-codes are plotted in
Figs. 13–15 and the fitting information is listed in Table 3.
ample b, (c) example c and (d) example d.

Table 2
Fitting information.

Fitting information Examples

a b c d

Machining tolerance [mm] 0.005 0.01 0.004 0.002
Fitting tolerance [mm] 0.0025 0.005 0.002 0.001
Number of data points 129 162 100 506
Number of control points 27 76 48 120
Maximum data error [mm] 0.0024 0.0058 0.0019 0.00099
Maximum chord error [mm] 0.0037 0.0098 0.0035 0.00125



Fig. 11. G-code before and after B-spline fitting: (a) original G-code and (b) G-code after fitting.

Fig. 12. Comparison between LSPIA and ELSPIA: (a) Fitted curves of LSPIA and ELSPIA, (b) Fitted curve of LSPIA and (c) Fitted curve of ELSPIA.

Fig. 13. B-spline fitting of workpiece “C-shape block”: (a) original G-code, (b) NX fitting and (c) our method fitting.

Fig. 14. B-spline fitting of workpiece “Bird's nest”: (a) original G-code, (b) NX fitting and (c) our method fitting.
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Figs. 13–15 demonstrates three workpieces’ toolpaths fitted
by NX and our method. In our method, the HBPs and long
segment are identified in the preprocessing and the long
segments remain unchanged in the fitting process, but NX fits
the G-code without considering long segment. We can find the
difference in Figs. 14 and 15.
Table 3 lists the fitting information of the three workpiece in
Figs. 13–15. It can be seen that the G-codes fitted by our
method have less points of G1 discontinuity and G2 dis-
continuity than NX, which demonstrates that our method can
improve the continuity of tool paths. There are still several G1

discontinuity points because our method did not confine G1



Fig. 15. B-spline fitting of workpiece “Variant curvature”: (a) original G-code, (b) NX fitting and (c) our method fitting.

Table 3
Fitting information of NX and our method.

G-code name Machining Tolerance
[mm]

G01
number

Control points
number

G1 discontinuity
number

G2discontinuity
number

Maximum chord error
[mm]

Average chord error
[mm]

C-shape
block

0.01 9472 NX 2879 89 99 0.010105 0.008757
Our 3275 2 33 0.009981 0.004997

Bird's nest 0.001 43,660 NX 16550 5514 5682 0.001540 0.000675
Our 27290 1082 1223 0.001011 0.000483

Variant
curvature

0.01 11,512 NX 5843 2403 2603 0.010608 0.006646
Our 6213 773 1297 0.010097 0.004567

Fig. 16. Machining device: Drilling and milling machining center (HNC-
818A/MD controllers) TC500R.
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continuity in the HBPs location. The maximum chord errors of
NX and our result listed in Table 3 can reach chord error
requirement. The average chord errors of our method are
smaller than NX's of the three examples, which can make a
contribution to obtain better machining results, but it may be
one of the reasons that we have more control points than NX.

7. Machining experiments

7.1. Machining results

In this section, the proposed scheme is implemented in a
Drilling and milling machining center (HNC(Huazhong
Numerical Control)-818A/MD CNC system) Tool TC500R
made by Shenyang Machine, as shown in Fig. 16. The
configuration information of TC500R is listing in Table 4

In the machining, some machining parameters such as feed
rate and spindle speed need to be set beforehand, we list the
machining parameters of the “C-shape block”, “Bird's nest”,
and “Variant curvature” in Table 5. The work-blank of the
three adopted workpiece is cube with dimension of
40mm� 40mm� 40mm, and the material of the work-blank
is 6061 aluminum alloy. The cutter used in the machining is a
ball end mill made of cemented carbide.

The machining effects are shown in Figs. 17–19. Each
workpiece is machined three times using: original G01,
NURBS fitted by NX, and NURBS fitted by our method. To
obtain more precise machining time measurement, we utilized
the cycle time of the servo drive to compute the actual
machining time excluding the air (non-cutting) time of the
cutter. As shown in Table 6, there is not much difference
among the actual machining time of the three workpiece. The



Table 5
Parameters for the actual machining.

G-code name Feed rate [mm/min] Spindle speed [r/min] In-process stock from rough machining [mm] Cut pattern Step over

C-shape block 1000 6000 0.25 Helical Number: 50
Bird's nest 1000 6000 0.1 Zig zag Maximum Scallop Height: 0.0008 mm
Variant curvature 1000 6000 0.3 Zig zag Maximum Scallop Height: 0.001 mm

Table 4
Configuration information of TC500R.

Axis X-axis Y-axis Z-axis Spindle

Motor type GK6063-6AF31-JE GK6063-6AF31-JE GK6063-6AF31-JB SVM-90L-A2/10000
Rated torque [NM] 11 11 11 23.66
Rated speed [PRM] 3000 3000 3000 1500
Phase current [A] 13.5 13.5 13.5 14.4
Rated Power [KW] 3.5 3.5 3.5 3.7
Servo driver type HSV-180UD-50 HSV-180UD-50 HSV-180UD-50 HSV-180US-50

Fig. 17. Machining picture of workpiece “C-shape block”: (a) original G-code, (b) NX fitting and (c) our method fitting.

Fig. 18. Machining picture of workpiece “Bird's nest”: (a) original G-code, (b) NX fitting and (c) our method fitting.
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result is not conclusive because only one commercial machine
tool and CNC system is used for the tests but it reflects that
there are rooms for improvements of both NX and our method.

7.2. Roughness testing
To evaluate machining quality, we measured the surface

roughness of the machining workpiece. The device we used is
a Comprehensive Measurement System for Surface Profile
TAYLOR HOBSON PGI830. As shown in Fig. 20. The
measurement range of the device is 200mm in X-axis and 8 mm
in Z-axis, the measurement accuracy is with resolution 0.8 nm/
8 mm. In the testing, the sample length is set to 2 mm in the
surface and 5 mm in the plane. We take the index Ra to measure
surface roughness. The testing locations are marked in Fig. 21.



Fig. 19. Machining picture of workpiece “Variant curvature”: (a) original G-code, (b) NX fitting and (c) our method fitting.

Table 6
Actual machining time of the three examples.

G-code name Actual machining time [s]

G01 NX fitting Our method fitting

C-shape block 374 374 374
Bird's nest 491 489 494
Variant curvature 794 800 792

Fig. 20. Roughness test device: Comprehensive Measurement System for
Surface Profile.

S. He et al. / Journal of Computational Design and Engineering 2 (2015) 218–232 229
We test every workpiece in three locations, as marked in
Fig. 21. For each location, we test the roughness in two
directions: follow and crossing, meaning it is following or
crossing the cutting direction, respectively. We measure the
roughness in two directions because both affect the surface
quality, although tool path fitting focuses on only the quality of
the follow direction. In order to remove the effects of errors,
we test every location ten times and compute the mean value
as the roughness of the location.

Summarizing the 9 groups of data in Table 7 regarding the
crossing roughness, our method is better than G01 in 6 cases,
and 1 case better than the NURBS of NX. As for the follow
roughness, our method is better than G01 in 5 cases, and 6
cases better than the NURBS of NX. Overall, the differences
are not significant enough to draw the conclusion.

8. Conclusion

This paper presents a new approach to approximate G01
paths with cubic B-spline curves. It can improve the continuity
of tool paths and ensure efficient high-speed machining. We
use a progressive and iterative approximation incorporating
energy term to avoid the computational cost of solving linear
equations and lower the chord error by using stretching energy
term. We take three measures to satisfy the requirements for
tool path fitting: ELSPIA, foot point parameters updating and
control points’ refinement.
In the experiment, we compared our fitting results with the

original G01 tool paths and the fitting results of NX. Our
method has less points of G1 and G2 discontinuity and
smaller average chord error than NX's, but our method
generates more control points than NX. Roughness testing



Fig. 21. Roughness testing location: (a) “C-shape block”, (b)“Bird's nest” and (c) “Variant curvature”.

Table 7
Roughness tests of the three examples.

G-code name Crossing roughness Ra [μm]

Location 1 Location 2 Location 3

G01 NX OUR G01 NX OUR G01 NX OUR

C-shape block 0.4084 0.416 0.3924 0.439 0.3988 0.4093 0.4157 0.3977 0.3997
Bird's nest 0.633 0.6384 0.6659 0.5796 0.4729 0.7469 0.6021 0.6492 0.6594
Variant curvature 0.8778 0.7861 0.788 0.8194 0.7595 0.8155 0.562 0.5389 0.5439
G-code name Follow roughness Ra[μm]

Location 1 Location 2 Location 3
G01 NX OUR G01 NX OUR G01 NX OUR

C-shape block 0.2399 0.2824 0.2654 0.2096 0.2399 0.2432 0.301 0.3745 0.3092
Bird's nest 0.776 0.7268 0.7589 0.4756 0.4361 0.4635 0.4064 0.4174 0.3986
Variant curvature 0.4654 0.7065 0.6261 0.3118 0.2762 0.2362 0.43 0.4898 0.4185

Fig. 22. Check chord error.
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indicates that our method has better quality in some case, but
worse quality than G01 or NX in some locations. Experiment
reflects that the algorithm in this paper is robust and suitable
for general industrial applications but still have some
improvement space.
Machining time and surface roughness are the ultimate measur-

ing stick of the worthiness of tool path fitting algorithms. Our
results showed slight improvement over the G01 and NX NURBS
tool paths, but the results are not statistically significant to be
conclusive. More work is required to enhance/modify the fitting
algorithm to further improve the path continuity and surface
quality. We believe the algorithm presented in the paper is robust
and ready for real-world applications. It also provides a good start
for further improvement.
Currently we are working on an algorithm to address the

crossing roughness in order to achieve the overall surface
quality. In addition, we plan to extend the tool path B-spline
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fitting method to 5-axis machining. The crossing optimization
of 5-axis machining is also under consideration.
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Appendix A. Compute discrete curvature

In this paper, given the data points fQjgmj ¼ 0, for every Qj,
the discrete curvature kj is computed by second difference
quotients. The computational steps are:

Step1: compute the chord length: sj ¼
Pm
j ¼ 1

jQj�Qj�1j;

Step2: compute the first difference quotients: T sj; sj�1
	 


¼ Qj�Qj� 1

sj� sj� 1
;

Step3: compute the second difference quotients: T sjþ1;
	

sj; sj�1� ¼ T sjþ 1;sj½ ��T sj ;sj� 1½ �
sjþ 1 � sj� 1

;
Step4: the discrete curvature is : kj ¼ 2T sjþ1; sj; sj�1

	 

;

Appendix B. Proof of Theorem 1.2
Proof. Letting I be the nþ1 rank identity matrix and V ¼
ATAþωD.
1
2
∇E Pkþ1

� �¼ VPkþ1�ATQ

¼ VðPkþ1�V�1ATQÞ

¼ V½PkþμHðATQ�VPkÞ�V�1ATQ�

¼ VðI�μHVÞðPk�V�1ATQÞ
¼⋯

¼ VðI�μHVÞðP0�V�1ATQÞ
Note that when 0oμo 2

λ0
, 0oρðI�μHVÞo1, where

ρðI�μHVÞ is the spectral radius of ðI�μHVÞ. Therefore,
lim
k-1

I�μHVð Þk ¼ ð0Þnþ1

Where ð0Þnþ1is an nþ1 rank zero matrix. 12∇E P1ð Þ ¼ 0. So
the ELSPIA method is convergent after several iterative steps.

Appendix C. Weight selection

For Eq. (13), the iterative sequence is convergent when 0o
μo 2

λ0
. λ0 is the largest eigenvalue of H(ATAþωDÞ. We can

give a practical best weight by estimating the eigenvalues of
H(ATAþωDÞ with Gershgorindisc theorem [19]. The practical
best weight is: μ¼ 2

C, C¼maxi cif g; ði¼ 0; 1;…nÞ, ci is the
sum of the absolute value of the ith row elements of H
(ATAþωDÞ.
Appendix D. Check chord error

In this study, we check chord errors by segment processing.
As shown in Fig. 22, we can find the corresponding curve
segment c tð Þð tA ½tj; tjþ1�Þ for segment QjQjþ1, then the
maximum distance is measured by the distance of common
vertical segment. The purpose is to find a parameter tn, s.t.
c tnð ÞQUc' tnð Þ ¼ 0:Q is the pedal from the point c tnð Þ to do
vertical line for the segment QjQjþ1. c' t

nð Þ is the tangent
vector at the point c tnð Þ.
To solve the equation c tð ÞQUc' tð Þ ¼ 0, replace t with x in

order not to make confusion with data point parameters tj, we
translate it into solving the minimize problem of the following
function:

f xð Þ ¼Qjc xð Þ � QjQjþ1 � QjQjþ1 Uc' xð Þ
We use the Newton iteration method to solve the problem,

set an initial value x0, the iteration step is:

xiþ1 ¼ xi�
f xið Þ
f ' xið Þ

¼ xi�
Qjc xð Þ � QjQjþ1 � QjQjþ1 Uc' xð Þ

Qjc xð Þ � QjQjþ1 � QjQjþ1 Uc'' xð Þþc' xð Þ � QjQjþ1 � QjQjþ1 Uc' xð Þ
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