Existence of multiple positive solutions for nonlinear m-point boundary value problems

Chuanzhi Bai a,b and Jinxuan Fang a,*

a Department of Mathematics, Nanjing Normal University, Nanjing 210097, People’s Republic of China
b Department of Mathematics, Huaiyin Normal College, Huaiyin 223001, People’s Republic of China

Received 7 January 2002
Submitted by Z.S. Athanassov

Abstract

In this paper, we afford some sufficient conditions to guarantee the existence of multiple positive solutions for the nonlinear m-point boundary value problem for the one-dimensional p-Laplacian

\[
\left(\phi_p(u')\right)' + a(t)f(t,u) = 0, \quad t \in (0, 1),
\]

\[
u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} a_i u(\xi_i).
\]

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Multi-point boundary value problem; Positive solution; Fixed point theorem in cones; One-dimensional p-Laplacian

1. Introduction

In this paper, we are concerned with the existence of multiple positive solutions to the m-point boundary value problem (MBVP) for the one-dimension p-Laplacian

\[
\left(\phi_p(u')\right)' + a(t)f(t,u) = 0, \quad t \in (0, 1),
\]

\[
u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} a_i u(\xi_i),
\]

* Corresponding author.
E-mail address: jxfang@pine.njnu.edu.cn (J. Fang).

0022-247X/03/$ – see front matter © 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0022-247X(02)00509-7
where \(\phi_p(s) = |s|^{p-2}s, \ p > 1, \ 0 < \xi_1 < \xi_2 < \cdots < \xi_{m-2} < 1, \ a_i \geq 0 \) for \(i = 1, \ldots, m - 3 \) and \(a_{m-2} > 0 \). We also assume the following:

(H1) \(\sum_{i=1}^{m-2} a_i \xi_i < 1. \)

(H2) \(f \in C([0, 1] \times [0, \infty], [0, \infty]). \)

(H3) \(a \in C([0, 1], [0, \infty)) \) and there exists \(x_0 \in (\xi_{m-2}, 1) \) such that \(a(x_0) > 0. \)

The study of multi-point boundary value problems for linear second order ordinary differential equations was initiated by Il’in and Moiseev [5]. Since then, there is much current attention focused on the study of nonlinear multi-point boundary value problems, see [1,2,4,9] to name a few. Equation (1.1) with Dirichlet boundary condition has been studied extensively, see, for example, [6,10]. When \(p = 2 \) and \(f(t,u) \equiv f(u) \), (1.1) reduces to

\[
 u'' + a(t)f(u) = 0, \quad t \in (0, 1).
\] (1.3)

Recently, Ma [8] showed the existence of at least of one positive solution to (1.3), (1.2) under the conditions that \(f \) is either superlinear or sublinear. Inspired and motivated by the recent work in [7,8], our purpose here is to give some existence results for one or multiple positive solutions to MBVP (1.1), (1.2). Our theorems generalizes and extends the main result in [8].

By the positive solution of (1.1), (1.2) we understand a function \(u(t) \) which is positive on \(0 < t < 1 \) and satisfies (1.1) and (1.2).

In obtaining positive solutions of (1.1), (1.2), the following fixed point theorem in cones will be fundamental.

Lemma 1.1 [3,7]. Let \(K \) be a cone in a Banach space \(X \). Let \(D \) be an open bounded subset of \(X \) with \(D_K = D \cap K \neq \emptyset \) and \(\overline{D} \notin K \). Assume that \(A : D_K \to K \) is a compact map such that \(x \neq Ax \) for \(x \in \partial D_K \). Then the following results hold:

1. If \(\|Ax\| \leq \|x\|, \ x \in \partial D_K \), then \(i_K(A, D_K) = 1 \).
2. If there exists \(e \in K \setminus \{0\} \) such that \(x \neq Ax + \lambda e \) for all \(x \in \partial D_K \) and all \(\lambda > 0 \), then \(i_K(A, D_K) = 0 \).
3. Let \(U \) be open in \(X \) such that \(\overline{U} \subset D_K \). If \(i_K(A, D_K) = 1 \) and \(i_K(A, U_K) = 0 \), then \(A \) has a fixed point in \(D_K \setminus \overline{U} \). The same results holds if \(i_K(A, D_K) = 0 \) and \(i_K(A, U_K) = 1 \).

2. Main results

In this paper, we always assume that (H1)–(H3) hold. We know that \(\phi_q \) is the inverse function to \(\phi_p \) (\(p > 1 \)), where \(\phi_q(s) = |s|^{q-2}s, \ q = p/(p-1) > 1 \). Similar to the Lemma 1 in [8], it is easy to check that (1.1), (1.2) has a solution \(u = u(t) \) if and only if \(u \) solves the operator equation
\[u(t) = - \int_0^t \phi_q \left(\int_0^s a(\tau) f(\tau, u(\tau)) d\tau \right) ds \\
- \frac{\sum_{i=1}^{m-2} a_i \int_0^{\xi_i} \phi_q \left(\int_0^{\xi_i} a(\tau) f(\tau, u(\tau)) d\tau \right) ds}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \\
+ t \int_0^1 \phi_q \left(\int_0^t a(\tau) f(\tau, u(\tau)) d\tau \right) ds \\
:= Au(t). \quad (2.1) \]

For convenience, let
\[\gamma_1 = \min \left\{ a_{m-2}(1 - \xi_m - 2), a_{m-2}\xi_m - 2, \xi_m - 2 \right\} \]
and
\[\gamma_2 = \min \left\{ \max \left\{ \sum_{i=1}^{m-2} a_i \xi_1, a_{m-2}\xi_m - 2 \right\}, \xi_m - 2 \right\} \frac{\int_0^{1} \phi_q \left(\int_0^{\xi_m - 2} a(\tau) d\tau \right) d\tau}{\int_0^{1} \phi_q \left(\int_0^{\xi_m - 2} a(\tau) d\tau \right) d\tau}. \]

From (H3), there exists \([c, d] \subset (\xi_m - 2, 1)\) such that \(a(t) > 0\) for \(t \in [c, d]\). So,
\[\int_{\xi_m - 2}^{1} \phi_q \left(\int_0^{\xi_m - 2} a(\tau) d\tau \right) ds \geq \int_{c}^{d} \phi_q \left(\int_0^{a(\tau)} d\tau \right) \geq \int_{c}^{d} \phi_q \left(\int_0^{a(\tau)} d\tau \right) \geq 0. \quad (2.2) \]

Hence, by (H1) and (2.2), we have that \(0 < \gamma_1, \gamma_2 < 1\). Denote
\[K = \left\{ u \mid u \in C[0, 1], u(t) \geq 0, \min_{\xi_m - 2 \leq t \leq 1} u(t) \geq \gamma \| u \| \right\}, \quad (2.3) \]
where \(\gamma = \gamma_1 \gamma_2\). It is obvious that \(K\) is a cone in \(C[0, 1]\). By (2.1), we have
\[(Au)'(t) = -\phi_q \left(\int_0^t a(\tau) f(\tau, u(\tau)) d\tau \right) \\
- \frac{\sum_{i=1}^{m-2} a_i \int_0^{\xi_i} \phi_q \left(\int_0^{\xi_i} a(\tau) f(\tau, u(\tau)) d\tau \right) ds}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \\
+ \int_0^1 \phi_q \left(\int_0^t a(\tau) f(\tau, u(\tau)) d\tau \right) ds \\
:= Au(t). \]

Thus, from (H2) and (H3), we have
\[(Au)'(t_2) \leq (Au)'(t_1), \quad \text{for any } t_1, t_2 \in [0, 1] \text{ with } t_1 \leq t_2. \]
Hence, \((Au)'(t)\) is a decreasing function on [0, 1], that is, the graph of \(Au(t)\) is concave down on (0, 1). Since

\[Au(0) = 0, \quad Au(1) = \sum_{i=1}^{m-2} a_i u(\xi_i), \]

thus, by Lemmas 2 and 4 in [8], we have

\[Au ≥ 0 \quad \text{and} \quad \inf_{t \in [\xi_{m-2}, 1]} Au(t) ≥ \gamma_1 \|Au\| > \gamma_2 \|Au\|, \quad \text{for} \; u \in K, \]

that is, \(AK \subset K\). It is easy to check that \(A : K \to K\) is completely continuous.

We define \(K_\rho = \{x \in K : \|x\| < \rho\}\). Furthermore, we define a set \(\Omega_\rho\) as

\[\Omega_\rho = \left\{ x \in K : \min_{\xi_{m-2} \leq t \leq 1} x(t) < \gamma_1 \rho \right\}. \]

Lemma 2.1 [7]. \(\Omega_\rho\) defined above has the following properties:

(a) \(\Omega_\rho\) is open relative to \(K\).
(b) \(K_{\gamma_1 \rho} \subset \Omega_\rho \subset K_\rho\).
(c) \(x \in \partial \Omega_\rho\) if and only if \(\min_{\xi_{m-2} \leq t \leq 1} x(t) = \gamma_1 \rho\).
(d) If \(x \in \partial \Omega_\rho\), then \(\gamma_1 \rho \leq x(t) \leq \rho\) for \(t \in [\xi_{m-2}, 1]\).

Now, for the convenience, we introduce the following notations. Let

\[f^\rho_{\gamma_1 \rho} = \min \left\{ \min_{t \in [\xi_{m-2}, 1]} \frac{f(t, u)}{\phi_p(\rho)} : u \in [\gamma_1 \rho, \rho] \right\}, \]

\[f^{\gamma_1 \rho}_0 = \max \left\{ \max_{t \in [0, 1]} \frac{f(t, u)}{\phi_p(\rho)} : u \in [0, \rho] \right\}, \]

\[f^a = \lim_{u \to a} \sup_{t \in [0, 1]} \frac{f(t, u)}{\phi_p(u)}, \]

\[f_a = \lim_{u \to a} \inf_{t \in [\xi_{m-2}, 1]} \frac{f(t, u)}{\phi_p(u)} \] \((\alpha := \infty \text{ or } 0^+)\),

\[m = 1 - \sum_{i=1}^{m-2} a_i \xi_i \int_0^1 \phi_q \left(\int_0^s a(\tau) d\tau \right) ds \]

and

\[M = \frac{1 - \sum_{i=1}^{m-2} a_i \xi_i}{\min \left[\max \{ \sum_{i=1}^{m-2} a_i \xi_1, a_{m-2} \xi_{m-2}, \xi_{m-2} \} \right] \int_{\xi_{m-2}}^1 \phi_q \left(\int_{\xi_{m-2}}^s a(\tau) d\tau \right) ds}. \]

Remark 2.1. By (H_1) and (2.2), it is easy to see that \(0 < m, M < \infty\) and \(M \gamma_1 \gamma_2 = M \gamma_1 < m\).

Now, we impose conditions on \(f\) which assure that \(i_K(A, K_\rho) = 1\).
Lemma 2.2. If \(f \) satisfies the following condition
\[
f_0 \rho \leq \phi_p(m) \quad \text{and} \quad u \neq Au \quad \text{for } u \in \partial K_\rho,
\]
then \(i_K(A, K_\rho) = 1 \).

Proof. By (2.1) and condition (2.4) we have for \(y \in \partial K_\rho \)
\[
Ay(t) \leq \frac{t \int_0^1 \phi_q \left(\int_0^x a(\tau) f(\tau, y(\tau)) d\tau \right) ds}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \leq \phi_q \left(\phi_p(\rho) \phi_p(m) \right) \frac{\int_0^1 \phi_q \left(\int_0^x a(\tau) d\tau \right) ds}{1 - \sum_{i=1}^{m-2} a_i \xi_i}
\]
\[
= \rho m \sum_{i=1}^{m-2} a_i \xi_i = \rho = \|y\|.
\]
This implies that \(\|Ay\| \leq \|y\| \) for \(y \in \partial K_\rho \). By Lemma 1.1(1), we have \(i_K(A, K_\rho) = 1 \). \(\square \)

Next, we impose conditions on \(f \) which assure that \(i_K(A, \Omega_\rho) = 0 \).

Lemma 2.3. If \(f \) satisfies the following condition
\[
f_0 ^\rho \rho \geq \phi_p(M M') \quad \text{and} \quad u \neq Au \quad \text{for } u \in \partial \Omega_\rho,
\]
then \(i_K(A, \Omega_\rho) = 0 \).

Proof. Let \(e(t) \equiv 1 \) for \(t \in [0, 1] \); then \(e \in \partial K_1 \). We claim that
\[
y \neq Ay + \lambda e, \quad y \in \partial \Omega_\rho, \lambda > 0.
\]
In fact, if not, there exist \(y_0 \in \partial \Omega_\rho \) and \(\lambda_0 > 0 \) such that \(y_0 = Ay_0 + \lambda_0 e \). From the process of proof of Lemma 4 in [8] and (2.1) we have
\[
\min_{t \in [\xi_{m-2}, 1]} Ay_0(t) = \min \{ Ay_0(1), Ay_0(\xi_{m-2}) \}.
\]
For \(i = 1, \ldots, m - 2 \), we obtain
\[
(1 - \xi_i) \int_0^{\xi_i} \phi_q \left(\int_0^x a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \leq \xi_i \int_0^{\xi_i} \phi_q \left(\int_0^x a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds.
\]
(2.7)

So, by (2.7)
\[
\xi_i \int_0^{\xi_i} \phi_q \left(\int_0^x a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds - \int_0^{\xi_i} \phi_q \left(\int_0^x a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds
\]
\[
= \xi_i \int_0^{\xi_i} \phi_q \left(\int_0^{\xi_i} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds
\]

\[
\int_0^{\xi_i} a(\tau) f(\tau, y_0(\tau)) d\tau + \int_0^{\xi_i} a(\tau) f(\tau, y_0(\tau)) d\tau
\]
\[
= \xi_i \int_0^{\xi_i} \phi_q \left(\int_0^{\xi_i} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds
\]
\[+ \xi_i \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds - \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \]

\[\geq \xi_i \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds + \xi_i \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \]

\[- (1 - \xi_i) \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \]

\[\geq \xi_i \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds, \quad i = 1, \ldots, m - 2. \quad (2.8) \]

By (2.1), Lemma 2.1(d), condition (2.5) and (2.8) we have

\[
A y_0(1) = - \int_0^1 \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds
\]

\[
- \sum_{i=1}^{m-2} a_i \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds
\]

\[
+ \frac{\sum_{i=1}^{m-2} a_i \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds}{1 - \sum_{i=1}^{m-2} a_i \xi_i}
\]

\[
= \frac{\sum_{i=1}^{m-2} a_i \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds}{1 - \sum_{i=1}^{m-2} a_i \xi_i}
\]

\[
- \sum_{i=1}^{m-2} a_i \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds
\]

\[
= \frac{1}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \sum_{i=1}^{m-2} a_i \left(\xi_i \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \right.
\]

\[
- \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds
\]

\[
\geq \frac{1}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \sum_{i=1}^{m-2} a_i \xi_i \int_0^{\xi_i} \phi_q \left(\int_0^s a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds
\]

\[
\geq \frac{1}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \max \left\{ \sum_{i=1}^{m-2} a_i \xi_1, a_{m-2} \xi_{m-2} \right\}
\]
\[
\phi_q\left(\int_{\xi_{m-2}}^{1} \phi_q \left(\int_{\xi_{m-2}}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \right) \\
\geq \frac{\phi_q(\phi_p(M\gamma)\phi_p(\rho))}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \max \left\{ \sum_{i=1}^{m-2} a_i \xi_1, a_m^{-2} \xi_{m-2} \right\} \int_{\xi_{m-2}}^{1} \phi_q \left(\int_{\xi_{m-2}}^{s} a(\tau) d\tau \right) ds \\
= \frac{M\gamma\rho}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \max \left\{ \sum_{i=1}^{m-2} a_i \xi_1, a_m^{-2} \xi_{m-2} \right\} \int_{\xi_{m-2}}^{1} \phi_q \left(\int_{\xi_{m-2}}^{s} a(\tau) d\tau \right) ds.
\]

(2.9)

For \(t > 0 \)
\[
\left(\int_{0}^{t} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \right)'
= \frac{t \phi_q \left(\int_{0}^{t} a(\tau) f(\tau, y_0(\tau)) d\tau \right) - \int_{0}^{t} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds}{t^2} \\
\geq 0,
\]

which implies that
\[
\int_{0}^{\xi_{m-2}} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \geq \int_{0}^{\xi_{m-2}} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \xi_i,
\]

(2.10)

for \(i = 1, 2, \ldots, m - 2 \). Thus, by Lemma 2.1(d), (2.1), (2.8) and (2.10) we have
\[
A_{y_0}(\xi_{m-2})
= - \int_{0}^{\xi_{m-2}} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \\
- \xi_{m-2} \sum_{i=1}^{m-2} a_i \int_{0}^{\xi_{m-2}} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \\
+ \xi_{m-2} \int_{0}^{1} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \\
= \xi_{m-2} \int_{0}^{1} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds - \int_{0}^{\xi_{m-2}} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \\
+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \sum_{i=1}^{m-2} a_i \left(\xi_i \int_{0}^{\xi_{m-2}} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \\
- \xi_{m-2} \int_{0}^{\xi_{m-2}} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds \right)
\]
\[
\geq \frac{\xi_{m-2} \int_{0}^{1} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds - \int_{0}^{\xi_{m-2}} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \geq \frac{\xi_{m-2} \int_{0}^{1} \phi_q \left(\int_{0}^{s} a(\tau) f(\tau, y_0(\tau)) d\tau \right) ds}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \geq \phi_q \left(\phi_p(M'\gamma) \phi_p(\rho) \right) \frac{\xi_{m-2} \int_{0}^{1} \phi_q \left(\int_{0}^{s} a(\tau) d\tau \right) ds}{1 - \sum_{i=1}^{m-2} a_i \xi_i} = \frac{M'\gamma \rho}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \int_{0}^{1} \phi_q \left(\int_{0}^{s} a(\tau) d\tau \right) ds + \lambda_0.
\]

Hence, from (2.6), (2.9) and (2.11), we have that for \(t \in [\xi_{m-2}, 1] \)
\[
y_0(t) = Ay_0(t) + \lambda_0 e(t) \geq \min_{t \in [\xi_{m-2}, 1]} Ay_0(t) + \lambda_0
\geq \min \{ Ay_0(1), Ay_0(\xi_{m-2}) \} + \lambda_0
\geq \frac{M'\gamma \rho}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \min \left\{ \max \left\{ \sum_{i=1}^{m-2} a_i \xi_1, a_{m-2} \xi_{m-2} \right\}, \xi_{m-2} \right\}
\times \int_{\xi_{m-2}}^{1} \phi_q \left(\int_{\xi_{m-2}}^{s} a(\tau) d\tau \right) ds + \lambda_0
= \gamma \rho + \lambda_0.
\]
This implies that \(\gamma \rho \geq \gamma \rho + \lambda_0 \), a contradiction. Hence, by Lemma 1.1(2), it follows that
\[i_K(A, \Omega_\rho) = 0.\]

We now give our results on the existence of multiple positive solutions of (1.1), (1.2).

By Lemmas 2.2, 2.3 and 1.1, we have

Theorem 2.4. Assume that one of the following conditions holds:

\((H_4)\) There exist \(\rho_1, \rho_2, \rho_3 \in (0, \infty) \) with \(\rho_1 < \gamma \rho_2 \) and \(\rho_2 < \rho_3 \) such that
\[
f_{\rho_1} \leq \phi_p(m), \quad f_{\gamma \rho_2} \geq \phi_p(M'\gamma), \quad u \neq Au \quad \text{for} \quad u \in \partial \Omega_{\rho_2}
\] and
\[
f_{\rho_3} \leq \phi_p(m).
\]

\((H_5)\) There exist \(\rho_1, \rho_2, \rho_3 \in (0, \infty) \) with \(\rho_1 < \rho_2 < \gamma \rho_3 \) such that
\[
f_{\gamma \rho_1} \geq \phi_p(M'\gamma), \quad f_{\rho_2} \leq \phi_p(m), \quad u \neq Au \quad \text{for} \quad u \in \partial K_{\rho_2}
\] and
\[
f_{\rho_3} \geq \phi_p(M'\gamma).
\]
Then (1.1), (1.2) has two positive solutions. Moreover, if in (H4) \(f^{\rho_1}_0 \leq \phi_p(m) \) is replaced by \(f^{\rho_1}_0 < \phi_p(m) \), then (1.1), (1.2) has a third positive solution \(y_3 \in K_{\rho_1} \).

The proof is similar to that given for Theorem 2.10 in [7]; we omit it here.

Theorem 2.4 can be generalized to obtain many positive solutions; we also omit it here.

As a special case of Theorem 2.4 we obtain the following result.

Corollary 2.5. If there exists \(\rho > 0 \) such that one of the following conditions holds:

(H6) \(0 \leq f^0 < \phi_p(m) \), \(f^\rho \gamma \geq \phi_p(M\gamma) \), \(u \neq Au \) for \(u \in \partial \Omega_\rho \) and \(0 \leq f^\infty < \phi_p(m) \),

(H7) \(\phi_p(M) < f^0 \leq \infty \), \(f^\rho_0 \leq \phi_p(m) \), \(u \neq Au \) for \(u \in \partial K_\rho \) and \(\phi_p(M) < f^\infty \leq \infty \),

then (1.1), (1.2) has two positive solutions.

Proof. We show that (H6) implies (H4). It is easy to verify that \(0 \leq f^0 < \phi_p(m) \) implies that there exists \(\rho_1 \in (0, \gamma \rho) \) such that \(f^{\rho_1}_0 < \phi_p(m) \). Let \(k \in (f^\infty, \phi_p(m)) \). Then there exists \(r > \rho \) such that \(\max_{t \in [0,1]} f(t,u) \leq k \phi_p(u) \) for \(u \in [r, \infty) \) since \(0 \leq f^\infty < \phi_p(m) \). Let

\[
\beta = \max \left\{ \max_{t \in [0,1]} f(t,u) : 0 \leq u \leq r \right\}
\]

and

\[
\rho_3 > \max \left\{ \frac{\beta}{\phi_p(m) - k}, \rho \right\}.
\]

Then we have

\[
\max_{t \in [0,1]} f(t,u) \leq k \phi_p(u) + \beta \leq k \phi_p(\rho_3) + \beta < \phi_p(m) \phi_p(\rho_3) \quad \text{for} \quad u \in [0, \rho_3].
\]

This implies that \(f^{\rho_3}_0 < \phi_p(m) \) and (H4) holds. Similarly, (H7) implies (H5). \(\square \)

By a similar argument to that of Theorem 2.4, we obtain the following results on existence of at least one positive solution of (1.1), (1.2).

Theorem 2.6. Assume that one of the following conditions holds:

(H8) There exist \(\rho_1, \rho_2 \in (0, \infty) \) with \(\rho_1 < \gamma \rho_2 \) such that

\[
f^{\rho_1}_0 \leq \phi_p(m) \quad \text{and} \quad f^{\rho_2}_\gamma \geq \phi_p(M\gamma).
\]

(H9) There exist \(\rho_1, \rho_2 \in (0, \infty) \) with \(\rho_1 < \rho_2 \) such that

\[
f^{\rho_1}_\gamma \geq \phi_p(M\gamma) \quad \text{and} \quad f^{\rho_2}_0 \leq \phi_p(m).
\]

Then (1.1), (1.2) has a positive solution.

As a special case of Theorem 2.6, we obtain the following result:
Corollary 2.7. Assume that one of the following conditions holds:

\((H_{10})\) \(0 \leq f^0 < \phi_p(m)\) and \(\phi_p(M) < f_\infty \leq \infty\).

\((H_{11})\) \(0 \leq f_\infty < \phi_p(m)\) and \(\phi_p(M) < f^0 \leq \infty\).

Then \((1.1), (1.2)\) has a positive solution.

Remark 2.2. For \(p = 2\) and \(f(t,u) \equiv f(u)\), Corollary 2.7 generalizes Theorem 1 in [8].

Acknowledgment

The authors express their thanks to Professor Zhivko S. Athanassov for his careful reading and useful suggestions in improving this paper.

References