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Abstract

We study the problem of designing fault-tolerant routings with small routing tables fork-
connected network ofn processors in the surviving route graph model. The surviving route g
R(G,ρ)/F for a graphG, a routingρ and a set of faultsF is a directed graph consisting of no
faulty nodes ofG with a directed edge from a nodex to a nodey iff there are no faults on the rout
from x to y. The diameter of the surviving route graph could be one of the fault-tolerance mea
for the graphG and the routingρ and it is denoted byD(R(G,ρ)/F). We want to reduce the tota
number of routes defined in the routing, and the maximum of the number of routes define
node (called route degree) as least as possible. In this paper, we show that we can construct
λ for everyn-nodek-connected graph such thatn � 2k2, in which the route degree is O(k

√
n), the

total number of routes is O(k2n) andD(R(G,λ)/F) � 3 for any fault setF (|F | < k). In particular,
in the case thatk = 2 we can construct a routingλ′ for every biconnected graph in which the rou
degree is O(

√
n), the total number of routes is O(n) andD(R(G,λ′)/{f }) � 3 for any fault f . We

also show that we can construct a routingρ1 for everyn-node biconnected graph, in which the to
number of routes is O(n) andD(R(G,ρ1)/{f }) � 2 for any faultf , and a routingρ2 (usingρ1) for
everyn-node biconnected graph, in which the route degree is O(

√
n), the total number of routes i

O(n
√

n) andD(R(G,ρ2)/{f }) � 2 for any faultf .
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1. Introduction
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Consider a communication network or an undirected graphG in which a limited numbe
of link and/or node faultsF might occur. Aroutingρ for a graph defines at most one pa
calledroute for each ordered pair of nodes. A routing is said to beminimal-lengthif any
route fromx to y is assigned to a shortest path fromx to y. We assume that it must b
chosen without knowing which components might be faulty.

Given a graphG, a routingρ and a set of faultsF , thesurviving route graphR(G,ρ)/F

is defined to be a directed graph consisting of all nonfaulty nodes inG, with a directed
edge from a nodex to a nodey iff the route fromx to y is intact. The diameter of th
surviving route graph (denoted byD(R(G,ρ)/F )) could be one of the fault-toleranc
measures for the graphG and the routingρ [2,4]. In a network with a fixed routing, th
time required to send a message along a route is often dominated by the message pr
time at the endpoints of the route. Thus, the total message transmission time is propo
to the diameter of the surviving route graph. Also, in some distributed environme
diameter of the surviving route graph affects the number of phases required for each rou
of certain distributed protocols such as Byzantine agreement protocol[4]. Therefore, we
need routings that minimize these diameters. The routingρ on G is called(d, f )-tolerant
if D(R(G,ρ)/F ) � d for any setF with at mostf faults.

When we consider the fault tolerance of ATM and/or optical networks, routings
satisfy several constraints such as the number of routes defined for a node (route degree o
the node) and the total number of routes defined in the routing[12]. Since the size of th
routing table is dominated by the route degree of the node and the edge-load of the
(the maximum number of routes passing through the edge over all edges) is dependen
the total number of routes, the route degree and the total number of routes should be
as possible[3]. Moreover, if there is an edge between two nodes for which a route
be defined, the route should be defined as the edge (we call such routingsedge-routings).
Edge routings decrease edge-load of the routing and the size of the routing tables.

Many results have been obtained for the diameter of the surviving route
[6,10,11,13]. As far as we use minimal-length routings for general graphs, we ca
expect good behavior for the diameter of the surviving route graph, say constant d
ter [4]. It is also shown that the graph connectivity does not help to reduce the dia
of the surviving route graph if only minimal-length routings are considered[4]. There-
fore, we must consider non-minimal-length routings to obtain efficient fault-tolerant
for k-connected graphs. Forn-nodek-connected graphs, a(5, k − 1)-tolerant routing and
a (3, k − 1)-tolerant routing can be constructed ifn � k2 andn � 2k2, respectively[9].
A (2, k − 1)-tolerant routing can be constructed for everyn-nodek-connected graph suc
that n � 7k3�log2 n� [15]. However, in these routings, the route degree of most n
is n − 1 and it is undesirable. Stronger results have been known forn-node biconnecte
graphs[12]; We can construct a(2,1)-tolerant routing with O(n) routes for everyn-node
biconnected graph[12]. It can be shown that the routing is optimal in the sense tha
only the diameter of the surviving route graph but also the total number of routes
routing are the minimum.

In this paper, we show the following results which improve the previous ones
respect to the route degree and the total number of routes.
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(1) For everyn-nodek-connected graph such thatn � 2k2, we can construct a(3, k − 1)-
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tolerant routingλ in which the route degree is O(k
√

n ) and the total number of route
is O(k2n).

(2) For everyn-node biconnected graph, we can construct a(3,1)-tolerant edge-routing
λ′ in which the route degree is O(

√
n) and the total number of routes is O(n).

(3) For everyn-node biconnected graph, we can construct a(2,1)-tolerant routingρ1 in
which the total number of routes is O(n) and a(2,1)-tolerant routingρ2 in which the
route degree is O(

√
n ) and the total number of routes is O(n

√
n ).

We improve the(3, k − 1)-tolerant routing shown in[9] to the routingλ so that the
route degree ofλ is reduced to O(k

√
n ) with preserving the total number of routes. W

also show that the diameter of the surviving route graph forλ is optimal among routing
with the route degree O(k

√
n ) if n � 2k2 andk = o(n1/6). In the case thatk = 2, we obtain

a stronger result than the general case.
The routingρ1 does not improve the previous result. However, the idea to definρ1

is different from the previous ones and it induces the routingρ2 that is the first(2,1)-
tolerant routing with route degree O(

√
n) for biconnected graphs. We also show that

total number of routes in the routingρ2 is the minimum among(2,1)-tolerant routings
with route degree O(

√
n ).

2. Preliminary

In this section, we give definitions and terminology. We refer readers to[8] for basic
graph terminology.

Unless otherwise stated, we deal with an undirected graphG = (V ,E) that correspond
to a network. For a nodev of G, NG(v) = {u | (v,u) ∈ E} and degG(v) = |NG(v)|.
degG(v) is calleddegreeof v and if G is apparent it is simply denoted by deg(v). For
a node setU ⊆ V , the subgraph induced byU is the maximal subgraph ofG with the node
setU and denoted byG〈U〉. A graphG is k-connectedif there existk node-disjoint paths
between every pair of distinct nodes inG. For a nodev ∈ V and a node setU ⊆ V − {v},
v-U fan is a set of|U | node-disjoint paths fromv to all nodes ofU . Usually 2-connected
graphs are calledbiconnected graphs.

Thedistancebetween nodesx andy in G is the length of the shortest path betweex
andy and is denoted by disG(x, y). Thediameterof G is the maximum of disG(x, y) over
all pairs of nodes inG and is denoted byD(G). Let P(u, v) andP(v,w) be a path fromu

to v and a path fromv to w, respectively. In general, even if bothP(u, v) andP(v,w) are
simple, the concatenation ofP(u, v) andP(v,w) is not always simple. Thus we consid
two kinds of concatenation: one is a usual concatenation (denoted byP(u, v) · P(v,w))
and the other is a special concatenation (denoted byP(u, v) 
 P(v,w)), which is defined
as the shortest path fromu to w in the graphP(u, v) ∪ P(v,w) to make the concatenate
path simple.

Let G = (V ,E) be a graph and letx and y be nodes ofG. DefinePG(x, y) to be
the set of all simple paths from the nodex to the nodey in G, andP(G) to be the se
of all simple paths inG. A routing is a partial functionρ :V × V → P(G) such that
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ρ(x, y) ∈ PG(x, y)(x 
= y). The path specified to beρ(x, y) is called theroute fromx
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to y. For the routesρ(xi−1, xi) (1 � i � p), define[ρ(x0, x1), ρ(x1, x2), . . . , ρ(xp−1, xp)]
to be ρ(x0, x1) · ρ(x1, x2) · · ·ρ(xp−1, xp)(p � 1). We call [ρ(x0, x1), ρ(x1, x2), . . . ,

ρ(xp−1, xp)] a route sequence of lengthp from x0 to xp.
For a graphG = (V ,E), letF ⊆ V ∪E be a set of nodes and edges called a set offaults.

We callF ∩ V (= FV ) andF ∩ E(= FE) the set ofnode faultsand the set ofedge faults,
respectively. If an object such as a route or a node set does not contain any elemeF ,
the object is said to befault free.

For a graphG = (V ,E), a routingρ on G and a set of faultsF(= FV ∪ FE), the
surviving route graph, R(G,ρ)/F , is a directed graph with node setV − FV and edge se
E(G,ρ,F ) = {〈x, y〉 | ρ(x, y) is defined and fault free}. In what follows, unless confusio
arises we use notations for directed graphs as the same ones for undirected graphs

In the surviving route graphR(G,ρ)/F , whenF = ∅ the graph is called the route grap
In the route graph, the outdegree of a nodev is calledthe route degree of a nodev and the
maximum of the route degree of all nodes is calledthe route degree of the routingρ. The
number of directed edges in the route graph corresponds to the total number of
in the routingρ. If the number of edges in the route graph ism, the routingρ is called
m-route-routingor simplym-routing.

For a graphG = (V ,E) and a routingρ, if for any edge(x, y) in G such thatρ(x, y) is
defined, the routeρ(x, y) is assigned to the edge,ρ is callededge-routing.

A routingρ is bidirectionalif ρ(x, y) = ρ(y, x) for any node pair(x, y) in the domain
of ρ. If a routing is not bidirectional, it is calledunidirectional. Note that if the routingρ
is bidirectional, the surviving route graphR(G,ρ)/F can be represented as an undirec
graph.

Given a graphG and a routing propertyP , a routingρ onG is optimalwith respect to
P if maxFs.t.|F |�k (D(R(G,ρ)/F )) is minimum over all routings onG satisfyingP . Note
that from the definition of the optimality, ifD(R(G,ρ)/F ) is 2 for any set of faultsF such
that |F | � k, the routing is obviously optimal with respect to any property. If the prop
P is known, we simply call the routing is optimal.

Lemma 2.1 [1]. Let G = (V ,E) be ann-node directed graph. If the maximum outdeg
of G is d and the diameter ofG is p, then|E| = �(n2/dp−1).

3. Optimal routing for k-connected graphs

In this section, we show that forn-nodek-connected graphs withn � 2k2, we can
construct a(3, k − 1)-tolerant bidirectional edge-routingλ such that the route degree
O(k

√
n ) and the total number of routes inλ is O(k2n) and we show that the routingλ is

optimal with respect to the route degree of O(k
√

n ) if n � 2k2 andk = o(n1/6).
The routings fork-connected graphs are based on the following two prope

[9,11,15].

Lemma 3.1 [8]. LetG = (V ,E) be ak-connected graph. LetU be any node set ofV such
that |U | = k and letv be any node inV − U . Then there is av-U fan.
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Fig. 1. The partition of nodes inG.

Let u ∈ U . The path fromv to u in v-U fan is denoted byPfan(v,u;U). If there is an
edge betweenv andu in U , the pathPfan(v,u;U) in thev-U fan can be changed to th
edge[4].

Lemma 3.2 [7]. Let G = (V ,E) be a k-connected graph. Letv1, v2, . . . , vk be distinct
nodes anda1, a2, . . . , ak be positive integers such that

∑k
i=1 ai = |V |. Then there is a

partition V1,V2, . . . , Vk of V such thatvi ∈ Vi , |Vi | = ai and the induced subgraphG〈Vi〉
is connected fori = 1,2, . . . , k.

First we considerk-connected graphs with at least 4k2 nodes, and later we extend t
result fork-connected graphs with at least 2k2 nodes.

Let G = (V ,E) be ann-nodek-connected graph such thatn � 4k2. FromLemma 3.2,
there arek disjoint connected graphsG1,G2, . . . ,Gk which contain disjoint node subse
V1,V2, . . . , Vk such that|Vg| = n/k for g = 1,2, . . . , k. Let Ug be a subset ofVg such that
|Ug| = √

n and let eachUg be partitioned into
√

n/2k1 sets with each 2k nodes. These
sets are denoted byU [g, �] (1 � � �

√
n/2k). Furthermore, eachU [g, �] is partitioned

into two sets with cardinalitiesk. These sets are denoted byU [g, �;0] andU [g, �;1]. Let
W = V − ⋃k

g=1 Ug and letW be partitioned into
√

n/2k sets. These sets are denoted
W1,W2, . . . ,W√

n/2k. The partition ofV is shown inFig. 1.
A bidirectional routingλ is defined as follows:

(1) Forx ∈ W� andy ∈ U [g, �;0] (1� g � k,1 � � � √
n/2k),

λ(x, y) = λ(y, x) = Pfan(x, y;U [g, �;0]).

1 For simplicity, we assume that
√

n/2k is an integer.
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Fig. 2. The routingλ.

No. of def. Outdegree of nodex No. of routes

1. k2 (x ∈ W�) k2n − k3√n

2k
√

n − 2k2 (x ∈ U [g, �;0]) kn − k2√
n

2.
√

n − 1(x ∈ Ug ) nk − √
nk

3. k2 − k(x ∈ U [g, �; i]) k2√
n − k

√
n

4. k2 − k(x ∈ U [g, �; i]) k2√
n − k

√
n

Fig. 3. The outdegree and the number of routes forλ.

(2) Forx, y ∈ Ug (1� g � k),
λ(x, y) = λ(y, x) = a shortest path betweenx andy in G〈Vg〉.

(3) Forx ∈ U [g1, �; i] andy ∈ U [g2, �; i] (1� g2 < g1 � k, 1� � � √
n/2k, i = 0,1)

λ(x, y) = λ(y, x) = Pfan(x, y;U [g2, �; i]).
(4) Forx ∈ U [g1, �; i1] andy ∈ U [g2, �; i2] (1� g2 < g1 � k, 1� � � √

n/2k, i1 
= i2)
λ(x, y) = λ(y, x) = Pfan(y, x;U [g1, �; i1]).

Fig. 2shows the routes inλ. Fig. 2does not showz′-U [g1, �1;0] fan(z′ ∈ U [g2, �1;1])
andy ′-U [g2, �1;1] fan(y ′ ∈ U [g1, �1;1]) for the lack of space. Because of the property
v-U fan,λ is an edge-routing.Fig. 3 shows the outdegrees ofλ and the number of route
defined inλ. It can be verified that the node with the maximum degree is inU [g, �;0] and
the route degree ofλ is (2k + 1)

√
n− 2k − 1 = O(k

√
n), and the total number of routes

λ is (k2 + 2k)n + (−k3 − k2 − 2k)
√

n = O(k2n).
From the definition ofλ, the next lemma holds.
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Lemma 3.3. LetG = (V ,E) be ak-connected graph on which the routingλ is defined. For

s

tes
te
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-

any nodex and any node setUg such thatx /∈ Ug , there arek node-disjoint routes fromx
to k nodes inUg .

Theorem 3.4. Let G = (V ,E) be ann-nodek-connected graph such thatn � 4k2. The
routingλ onG is (3, k − 1)-tolerant.

Proof. Let F be a faulty set with|F | < k and letR = R(G,λ)/F . Since|F | < k and the
number of node setsVg is k, there is a node setVI such thatG〈VI 〉 contains no element
of F . Let x andy be arbitrary non-faulty distinct nodes inV − F .

Case1. Suppose thatx, y ∈ UI . SinceUI ⊆ VI and the routeλ(x, y) is defined in
G〈VI 〉, λ(x, y) is fault free. Thus, disR(x, y) = 1.

Case2. Suppose thatx ∈ UI andy /∈ UI . FromLemma 3.3, there arek node-disjoint
routes betweeny andk nodes inUI . Since|F | < k, there is a fault free route betweeny

and an node, sayw, in UI . Sinceλ(x,w) does not contain any fault inF , disR(x, y) = 2.
The case thatx /∈ UI andy /∈ UI can be proved similar to case 2 by usingLemma 3.3

and it holds that disR(x, y) = 3. �
For ann-nodek-connected graph, if 2k2 � n � 4k2, set|Ug| = 2k instead of|Ug| = √

n

in the definition. In this case the total number of routes inλ is O(k4) = O(k2n) and the route
degree ofλ is O(k2) = O(k

√
n). Therefore, the following theorem holds.

Theorem 3.5. Let G = (V ,E) be ann-nodek-connected graph. Ifn � 2k2, we can con-
struct a(3, k − 1)-tolerant bidirectional edge-routing such that the total number of rou
is O(k2n) and the route degree isO(k

√
n ). This routing is optimal with respect to the rou

degree ofO(k
√

n) if n � 2k2 andk = o(n1/6).

Proof. The optimality ofλ can be shown as follows. Ifk = o(n1/6) the least number o
routes in(2, k −1)-routings with route degree of O(k

√
n) is ω(n4/3) from Lemma 2.1. On

the other hand, ifk = o(n1/6), the total number of routes inλ is o(n4/3). �
In the case thatk = 2, we will show in the next section that for everyn-node bicon-

nected graph we can construct a(3,1)-tolerant bidirectional edge-routing such that t
total number of routes is O(n) and the route degree is O(

√
n ).

4. Optimal routings for biconnected graphs

4.1. Paths by usings-t numbering

Optimal routings for biconnected graphs are based on s-t numbering[5] which charac-
terize biconnected graphs[12,14].

Given an edge(s, t) of a biconnected graphG = (V ,E), a bijective functiong :V →
{0,1, . . . , |V | − 1 = n − 1} is called ans-t numberingif the following conditions are sat
isfied:
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by

aths.

fault.
Fig. 4. Three kinds of paths,s-path,t-path andst-path.

• g(s) = 0, g(t) = n − 1, and
• every nodev ∈ V − {s, t} has two adjacent nodesu andw such thatg(u) < g(v) <

g(w).

In what follows, we assume that the node set ofG is s-t numbered and it is denoted
{0,1, . . . , n − 1}, wheres = 0 andt = n − 1.

For a nodev in G, we define two pathsPI [v, t] andPD[v, s] as follows:

(1) PI [v, t] = (v0(= v), v1, . . . , vp(= t)), wherevi = max{u | u ∈ NG(vi−1)} (1 � i �
p), and

(2) PD[v, s] = (v0(= v), v1, . . . , vq(= s)), wherevi = min{u | u ∈ NG(vi−1)} (1 � i �
q).

Since we treat unidirectional routings, we consider directions for undirected p
Therefore, for example,PI [v, t] denotes the path fromv to t and the path fromt to v

of the same one is denoted byPI [t, v].
Note that if(v, s) and(v, t) are inE, PD[v, s] = (v, s) andPI [v, t] = (v, t) from the

definition.
From the definition of the s-t numbering, two pathsPI [v, t] andPD[v, s] are well de-

fined andPI [x, t] andPD[x, s] are node-disjoint for any nodex( 
= s, t).
We define the following concatenated paths withPI s andPDs. Let x andy be arbi-

trary distinct nodes.Ps [x, y], Pt [x, y] andPst [x, y] are defined asPD[x, s] 
 PD[s, y],
PI [x, t]
PI [t, y] andPD[x, s] · (s, t) ·PI [t, y] (if x < y) andPI [x, t] · (t, s) ·PD[s, y] (if
x > y), respectively, and they are calleds-path,t-path andst-paths, respectively (Fig. 4).

4.2. Optimal(3,1)-tolerant routingλ′

In this section, for every biconnected graph we construct an O(n)-routingλ′ with route
degree O(

√
n) such that the diameter of the surviving route graph is three for any one

We also show that the routing is optimal in O(n)-routings with route degree O(
√

n).

Theorem 4.1. Let a routingσ onG be anO(n)-routing. If the route degree ofσ is at most
o(n), D(R((G,σ)/{f }) � 3 for any faultf .
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Proof. We show that this statement holds even if there is no fault inG. Assume that the

r
g

t
t

ted
ted by

e

diameter of the route graph is at most 2. The least number of edges of a graph ofn nodes
with degreek and diameter 2 is�(n2/k) from Lemma 2.1. Since the route degree ofσ is
o(n), the number of edges in the route graph must beω(n). It is a contradiction. �

We construct an O(n)-routing λ′ with route degree O(
√

n) which attains the lowe
bound inTheorem 4.1. The routingλ′ is a hierarchical one based on the optimal routinρ

in [14].
We assume that a biconnected graphG = (V = {s = 0, . . . , t = n − 1},E) has at leas

5 nodes. We divide the nodes ofG into � = �n/p� sections of sizep each except the las
section. Note that the last section contains at most 2p − 1 nodes. For each section deno
by Vi (1 � i � �), the least numbered node and the largest numbered node are deno
si andti , respectively. Note thats = s1 andt = tk .

routingλ′

(1) Forx ∈ Vi (1 � i � �) such thatsi < x < ti ,
λ′(x, si) = Ps [x, si], λ′(si , x) = Ps[si , x],
λ′(x, ti) = Pt [x, ti], λ′(ti, x) = Pt [ti , x], and
λ′(x, si+1) = Ps [x, si+1], λ′(si+1, x) = Ps [si+1, x] (if i < �) and
λ′(x, ti−1) = Pt [x, ti−1], λ′(ti−1, x) = Pt [ti−1, x] (if 1 < i).

(2) Fori, j (1 � i < j � �),
λ′(si, sj ) = Ps [si, sj ], λ′(sj , si) = Ps[sj , si] and
λ′(ti, tj ) = Pt [ti , tj ], λ′(tj , ti ) = Pt [tj , ti].

(3) Fori, j (1 � i � j � �),

λ′(si , tj ) =




(s1, t�) if i = 1 andj = �,

Ps [s1, tj ](= PD[s1, tj ]) if i = 1 andj 
= �,

Pt [si , t�] = (PI [si, t�]) if i 
= 1 andj = �,

Pst [si, tj ] otherwise,

and

λ′(tj , si ) =




(t�, s1) if i = 1 andj = �,

Ps [tj , s1](= PD[tj , s1]) if i = 1 andj 
= �,

Pt [t�, si](= PI [t�, si]) if i 
= 1 andj = �,

Pst [tj , si ] otherwise.

(4) Forx andy such that the routesλ′(x, y) = λ′(y, x) are defined in (1)–(3), if(x, y) ∈ E

thenλ′(x, y) = λ′(y, x) is changed to(x, y).

It is easily verified thatλ′ is a bidirectional edge-routing and an O(n+ �2)-routing with
route degree O(p + �). Thus, if � = �√n� thenλ′ is an O(n)-routing with route degre
O(

√
n ).

Except that(x, y) ∈ E andf = (x, y), we can assume thatf is a node because iff is
an edge we can consider that one of the endpoints off is faulty. We writef ∈ [a, b] if
f ∈ V anda � f � b.
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In the case that(x, y) ∈ E andf = (x, y): if λ′(x, y) is not defined then it is trivial.

of

ences

,

ting

s

Otherwise, from the definition ofλ′ we have two cases, (1)x ∈ Vi andy ∈ {si , ti , si−1, ti−1}
for somei and (2)x, y{si, sj , ti , tj } for i 
= j . We can easily find a route sequence
length 3 that are fault free.

Theorem 4.2. Let G be a biconnected graph with at least5 nodes. ThenD(R(G,λ′)/
{f }) � 3 for any faultf in G.

Proof. Let R = R(G,λ′)/{f }. Let x andy be any pair of distinct nonfaulty nodes inG.
(1) Suppose thatx = s andy = t . If f is not the edge(s, t) then disR(s, t) = 1. Other-

wise, for anyz ∈ {si, ti} (1 < i < �), the route sequence[λ′(s, z), λ′(z, t)] cannot containf .
Thus, disR(s, t) � 2.

(2-1) Suppose thatx = s andy ∈ {sj , tj }(1� j � � andy 
= t) or x ∈ {si, ti} (1 � i � �

andx 
= s) andy = t . For the former case, since there are two node-disjoint route sequ
λ′(s, y) and[λ′(s, t), λ′(t, y)], disR(x, y) � 2. The latter case can be proved similarly.

(2-2) Suppose thatx ∈ {si, ti} andy ∈ {sj , tj } (1 � i � j � �, x 
= s andy 
= t).
If f = (s, t) or f ∈ [s, x], λ′(x, t = t�) and λ′(y, t = t�) are fault free. Thus

disR(x, y) � 2. Similarly, if f ∈ [y, t] sinceλ′(x, s = s1) andλ′(y, s = s1) are fault free
disR(x, y) � 2. Otherwise (f ∈ [x, y]), λ′(x, s1), λ′(s1, t�) and λ′(y, t�) are fault free.
Thus, disR(x, y) � 3.

(3) Suppose thatx ∈ Vi −{si , ti} andy ∈ Vj −{sj , tj } (1� i � j � �) such thatg(x) <

g(y).
If f = (s, t) or f ∈ [s, x], sinceλ′(x, ti) andλ′(y, tj ) are fault free, disR(x, ti) � 1 and

disR(y, tj ) � 1. Also sinceλ′(ti , tj ) does not contain the fault, disR(x, y) � 3. Similarly,
disR(x, y) � 3 holds for the case thatf ∈ [y, t]. Otherwise (f ∈ [x, y]), λ′(x, si), λ′(si, tj )
andλ′(y, tj ) are fault free. Thus, disR(x, y) � 3.

(4) Otherwise,x ∈ Vi andy ∈ Vj (1 � i � j � �) such that eitherx ∈ {si , ti} or y ∈
{sj , tj }. The cases thatx = si andsj < y < tj and thatsi < x < ti andy = tj can be proved
similar to the case (3). For the case thatx = tj and sj < y < tj , except thatf ∈ [x, y]
we can prove similar to the case (3). In the case thatf ∈ [x, y], if 1 < i and i < � then
λ′(x, ti−1), λ′(ti−1, sj+1) andλ′(y, sj+1) are fault free. Thus, disR(x, y) � 3. If i = 1 or
i = �, thenλ′(x = s1, t�), λ′(t�, tj ) andλ′(y, tj ) (if i = 1) andλ′(x = si , s1), λ′(s1, t�) and
λ′(y, t�) (if i = �) are fault free, respectively. Thus, disR(x, y) � 3.

The case thatsi < x < ti andy = tj can be treated symmetrically.�

For a biconnected graphG with at most 4 nodes, it is easily proved that an edge-rou
for G is (3,1)-tolerant. Therefore, the following theorem holds.

Theorem 4.3. For everyn-node biconnected graphG, we can construct a(3,1)-tolerant
edge-routing onG in which the total number of routes isO(n) and the route degree i
O(

√
n ). This routing is optimal with respect toO(n)-routings with route degreeO(

√
n ).
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4.3. Optimal routingρ

hs

ining
odes

s
e-

ode set

de
As far as the authors have known, there do not exist(2, k − 1)-tolerant routings for
k-connected graphs with their route degree O(k

√
n). Although the case thatk � 3 is still

open, we show that we can construct a(2,1)-tolerant edge-routing for biconnected grap
such that its route degree is O(

√
n) and the total number of routes is O(n

√
n ). This routing

is optimal because it is(2,1)-tolerant. FromLemma 2.1, in order to define(2,1)-tolerant
routings with route degree O(

√
n ), the total number of routes must be�(n

√
n). Thus, the

total number of routes in the routing shown here attains the lower bound.
Let G = (V ,E) be a biconnected graph withn nodes. Assume thatn � 18 andV is

divided into�n/18� groups of 18 nodes each and the last group made up of the rema
(n mod 18) nodes. Each group except the last one is divided into two parts with 9 n
each.

For a nodev ∈ V , let q = v div 18, r = v mod 18,g = r div 9 and� = r mod 9. Each
nodev is represented as[q;g, (i, j)], where 0� q � �n/18�, g = 0,1 and(i, j) is the
ternary representation of� (0 � i, j � 2).

We define the routingρ for G based on the ternary representation(i, j) of � of each node
as follows: Letx andy be represented as[qx;gx, (ix, jx)] and [qy;gy, (iy, jy)], respec-
tively. The routeρ(x, y) is defined as shown inFig. 5. The route fromx to y is determined
based onjx andiy . For example, ifjx = 0 andiy = 2 then thet-path fromx to y is used to
defineρ(x, y) andjx = 2 andiy = 0 then thest-path fromx to y is used to defineρ(x, y)

and so on. The routingρ is well-defined. It is a unidirectional andn(n − 1)-routing and its
route-degree isn − 1.

The intuitive idea of the routingρ is as follows: Letu andv be arbitrary distinct node
and we consider the route sequence fromu to v. Since in each interval there are two nin
node sets, at least one of them is fault-free and each node in this fault-free nine-n
plays a role of an intermediate nodez in the route sequence fromu to v according to
the location of a fault. Since surviving routesρ(u, z) and ρ(z, v) are s-path, t-path or
st-path, the all combinations of these paths are prepared and the intermediate noz is
determined according tou andv. For example, ifju = 0, iv = 0, ρ(u, z) is s-path and
ρ(z, v) is t-path, the intermediate nodez is chosen such thatiz = 0 andjz = 1.Lemma 4.4
will show that the definition ofρ depicted inFig. 5 is sufficient to prove thatρ is (2,1)-
tolerant.

Let I [q,g] = {[q;g, (i, j)] | 0 � i � j � 2}, where 0� q � �n/18� − 1 andg = 0,1,
and letI [q] = I [q,0] ∪ I [q,1].

ρ(x, y) =

iy = 0 iy = 1 iy = 2

jx = 0 Ps [x,y] Pst [x,y] Pt [x,y]
jx = 1 Pt [x,y] Ps [x,y] Pst [x,y]
jx = 2 Pst [x,y] Pt [x,y] Ps [x,y]
wherex = [qx ;gx, (ix , jx)] y = [qy ;gy, (iy , jy)].

Fig. 5. The routingρ.
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Lemma 4.4. Let G = (V ,E) be a biconnected graph on which the routingρ is defined.

at

ince

a

d-
For arbitrary distinct nodesx andy, arbitrary two kinds of pathsa-path andb-path(a, b ∈
{s, t, st}) and any intervalI [q,g], there exists a nodez ∈ I [q,g] such thatρ(x, z) is a-
path andρ(z, y) is b-path.2

Proof. Let x = [qx;gx, (ix, jx)] andy = [qy;gy, (iy, jy)]. For example, ifjx = 0, iy = 1,
a = s andb = st , thenz is defined as[q;g, (0,0)] ∈ I [q,g]. From the definition ofρ, we
can see thatρ(x, z) is defined ass-path andρ(z, y) is defined asst-path. Formally, we
defineiz andjz of z = [q;g, (iz, jz)] ∈ I [q,g] according toa andb as follows:

iz = jx (if a = s), jx + 2 (mod 3) (if a = t) andjx + 1 (mod 3) (if a = st),

jz = iy (if b = s), iy + 1 (mod 3) (if b = t) andiy + 2 (mod 3) (if b = st).

Then it can be verified that the routeρ(x, z) is defined asa-path andρ(z, y) is defined as
b-path forz ∈ I [q,g] from the definition ofρ. �
Theorem 4.5. Let G be ann-node biconnected graph such thatn � 18. The routingρ on
G is (2,1)-tolerant.

Proof. Let f be any fault and letR = R(G,ρ)/{f }. Let x and y be arbitrary distinct
nonfaulty nodes inG.

Since there is one fault inG, eitherI [0,0] = {[0;0, (i, j)] | 0 � i � j � 2} or I [0,1]
does not containf . Without loss of generality, we can assume thatI [0,1] is fault free.
Note thatI [0,1] = {9,10, . . . ,17}. There are 12 cases according to the locations ofx, y

andI [0,1] and they can be similarly proved by usingLemma 4.4. We show one case th
x < I [0,1] < y (it means thatx < 9 and 17< y).

Suppose thatx < I [0,1] < y. If f = (x, y) ∈ E, then fromLemma 4.4there is a node
z ∈ I [0,1] such thatρ(x, z) is anst-path andρ(z, y) is at-path and they do not containf .
If f ∈ [s = 0, x − 1] then fromLemma 4.4there is a nodez ∈ I [0,1] such that both
ρ(x, z) andρ(z, y) aret-paths and their routes are fault free. Iff ∈ [x + 1,7], then from
Lemma 4.4there is a nodez ∈ I [0,1] such thatρ(x, z) is ans-path andρ(z, y) is a t-path
and they are fault free. The cases thatf ∈ [18, y − 1] andf ∈ [y + 1, t = n − 1] can be
proved similarly. Therefore disR(x, y) � 2. �

The routingρ is not an edge-routing because there is a case that(x, y) ∈ E andρ(x, y)

is defined as anst-path. However, it can be changed into an edge-routing as follows. S
both ans-path and at-path fromx to y become an edge if(x, y) ∈ E from the definition, if
ρ(x, y) is defined by anst-path and(x, y) ∈ E, thenρ(x, y) is defined as the edge(x, y).
We can show that the modifiedρ is (2,1)-tolerant.

In the proof ofTheorem 4.5, we only use the routes between nodes inI [0], from nodes
in I [0] to other nodes and from nodes not inI [0] to nodes inI [0]. Thus, we can obtain

2 It may be possible thatx = z or y = z. It can occur thatx,y ∈ I [q,g]. In this case an empty path is consi
ered to bea(b)-path, respectively.
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(2,1)-tolerant unidirectional edge-routingρ1 in which the total number of routes is O(n)

e

ns

ch

d

as follows.
routingρ1
Let x andy be represented as[qx;gx, (ix, jx)] and[qy;gy, (iy, jy)], respectively sam

as inρ. ρ(x, y) is defined as shown inFig. 5 if (qx = qy = 0), (qx 
= 0 andqy = 0) or
(qx = 0 andqy 
= 0)

Theorem 4.6. LetG be ann-node biconnected graph such thatn � 18. The routingρ1 on
G is (2,1)-tolerant edge-routing withO(n) routes.

4.4. Optimal routing with route degreeo(n)

We construct a(2,1)-tolerant routingρ2 with route degree O(
√

n ) for n-node bicon-
nected graphs by modifying the routingρ.

Let G = (V ,E) be ann-node biconnected graph. We assume that each nodex in G is
denoted by[qx;gx, (ix, jx)] same as inρ. We can assume that there is an integer� such that
(n/18= �2).3 Thus,qx can be represented by(qL

x , qR
x ), where 1� qL

x , qR
x � � = √

n/18.
routingρ2

Let x and y be represented as[qx = (qL
x , qR

x );gx, (ix, jx)] and qy = [(qL
y , qR

y );gy,

(iy, jy)], respectively.ρ2(x, y) is defined as shown inFig. 5 if qx = qy or qR
x = qL

y .
In the routingρ2, the routeρ2(x, y) is defined ifx andy are in the same intervalI [q] or

the right partqR
x of qx and the left partqL

y of qy are equal. From the definition ofρ2, we can
verify that the route degree is O(

√
n ). We can show that the routingρ2 is (2,1)-tolerant

by usingLemma 4.4and the following lemma.

Lemma 4.7. Letx = [qx = (qL
x , qR

x );gx, (ix, jx)] andy = [qy = (qL
y , qR

y );gy, (iy, jy)] be
arbitrary distinct nodes ofG on whichρ2 is defined. Then, one of the following conditio
holds.

(1) qx = qy , that is,x andy are in the same groupI [qx = qy].
(2) qR

x = qL
y , that is, the routes fromx to nodes inI [qy] are defined.

(3) There is a groupI [qz] such thatqR
x = qL

z andqR
z = qL

y , that is, the routes fromx to
nodes inI [qz] and from nodes inI [qz] to nodes inI [qy] are defined.

The total number of routes defined inρ2 is O(n
√

n ), because the route degree of ea
node is(

√
n). FromLemma 2.1the total number of routes is at least�(n

√
n ) to define

(2,1)-tolerant routings with route degree O(
√

n ) The routingρ2 attains the lower boun
of the total number of routes.

Since in the case thatn < 18 we can construct a(2,1)-tolerant edge-routing forn-node
biconnected graphs[12], the following theorem holds.

3 Otherwise, we choose�2 � n/18< (� + 1)2 and consider�2 groups. Each of the remaining at most 2� + 1

groups is merged into each of�2 groups, where at most 2� + 1 groups contain 36 nodes instead of 18 nodes.
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Theorem 4.8. Let G be ann-node biconnected graph. We can construct(2,1)-tolerant

inter-
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.

edge-routing onG with O(n
√

n ) routes and route degreeO(
√

n ).

5. Concluding remarks

We have shown three optimal edge-routings with smaller routing tables. It is an
esting open question whether or not there exists an(2, k − 1)-tolerant routing with route
degree O(k

√
n) for n-nodek-connected graphs (k � 3). It is also an interesting open que

tion whether or not there exists an(2,1)-tolerant bidirectional routing with route degr
O(

√
n ) for n-node biconnected graphs.
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