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Abstract

We study the problem of designing fault-tolerant routings with small routing tables for a
connected network of processors in the surviving route graph model. The surviving route graph
R(G, p)/F for a graphG, a routingp and a set of fault# is a directed graph consisting of non-
faulty nodes ofG with a directed edge from a nodeto a nodey iff there are no faults on the route
from x to y. The diameter of the surviving route graph could be one of the fault-tolerance measures
for the graphG and the routing and it is denoted by (R(G, p)/F). We want to reduce the total
number of routes defined in the routing, and the maximum of the number of routes defined for a
node (called route degree) as least as possible. In this paper, we show that we can construct a routing
A for everyn-nodek-connected graph such that> 2k2, in which the route degree is(@/n), the
total number of routes is @%n) and D(R(G, 1)/ F) < 3 for any fault set (|F| < k). In particular,
in the case that = 2 we can construct a routing for every biconnected graph in which the route
degree is @/n), the total number of routes is(@) andD(R(G, »')/{f}) < 3 for any fault f. We
also show that we can construct a routimgfor everyn-node biconnected graph, in which the total
number of routes is @) and D(R(G, p1)/{f}) < 2 for any fault f, and a routingv> (using 1) for
everyn-node biconnected graph, in which the route degree(igi0), the total number of routes is
O(n/n) andD(R(G, p2)/{f}) < 2 for any faultf.
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1. Introduction

Consider a communication network or an undirected gi@jamwhich a limited number
of link and/or node faultg” might occur. Arouting p for a graph defines at most one path
calledroute for each ordered pair of nodes. A routing is said tontiaimal-lengthif any
route fromx to y is assigned to a shortest path framo y. We assume that it must be
chosen without knowing which components might be faulty.

Given a graplG, a routingpe and a set of fault¢’, thesurviving route graptR(G, p)/F
is defined to be a directed graph consisting of all nonfaulty nodes, iwith a directed
edge from a node to a nodey iff the route fromx to y is intact. The diameter of the
surviving route graph (denoted bR (R(G, p)/F)) could be one of the fault-tolerance
measures for the grapti and the routinge [2,4]. In a network with a fixed routing, the
time required to send a message along a route is often dominated by the message processing
time at the endpoints of the route. Thus, the total message transmission time is proportional
to the diameter of the surviving route graph. Also, in some distributed environment the
diameter of the survivingaute graph affects the numbédrahases required for each round
of certain distributed protocols sh as Byzantine agement protocdd]. Therefore, we
need routings that minimize these diameters. The roytiog G is called(d, f)-tolerant
if D(R(G, p)/F) < d for any setF with at mostf faults.

When we consider the fault tolerance of ATM and/or optical networks, routings must
satisfy several constraints such as the number of routes defined for arooedegree of
the nodé and the total number of routes defined in the roufiti2]. Since the size of the
routing table is dominated by the route degree of the node and the edge-load of the routing
(the maximum number of routes passingotigh the edge over all edges) is dependent on
the total number of routes, the route degree and the total number of routes should be as least
as possiblg3]. Moreover, if there is an edge between two nodes for which a route must
be defined, the route should be defined as the edge (we call such reedggsoutings
Edge routings decrease edge-load of the routing and the size of the routing tables.

Many results have been obtained for the diameter of the surviving route graph
[6,10,11,13] As far as we use minimal-length routings for general graphs, we can not
expect good behavior for the diameter of the surviving route graph, say constant diame-
ter [4]. It is also shown that the graph connectivity does not help to reduce the diameter
of the surviving route graph if only minimal-length routings are considg¢4¢dThere-
fore, we must consider non-minimal-length routings to obtain efficient fault-tolerant ones
for k-connected graphs. Farnodek-connected graphs, &, kK — 1)-tolerant routing and
a (3, k — 1)-tolerant routing can be constructednif> k% andn > 2k?, respectively[9].

A (2, k — 1)-tolerant routing can be constructed for everpodek-connected graph such
thatn > 7k3[log,n] [15]. However, in these routings, the route degree of most nodes
isn —1 and it is undesirable. Stronger results have been known-fayde biconnected
graphg12]; We can construct &, 1)-tolerant routing with @n) routes for every:-node
biconnected grapfil2]. It can be shown that the routing is optimal in the sense that not
only the diameter of the surviving route graph but also the total number of routes in the
routing are the minimum.

In this paper, we show the following results which improve the previous ones with
respect to the route degree and the total number of routes.
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(1) For everyz-nodek-connected graph such that> 2k2, we can construct €3, k — 1)-
tolerant routing. in which the route degree is(®,/n ) and the total number of routes
is O(kn).

(2) For everyn-node biconnected graph, we can constru¢d,d)-tolerant edge-routing
2/ in which the route degree is(Q7 ) and the total number of routes iS®).

(3) For everyn-node biconnected graph, we can constru,d)-tolerant routinges in
which the total number of routes is(@ and a(2, 1)-tolerant routingo, in which the
route degree is Q/n) and the total number of routes iSQ/n ).

We improve the(3, k — 1)-tolerant routing shown if9] to the routings so that the
route degree of. is reduced to @./n) with preserving the total number of routes. We
also show that the diameter of the surviving route graph.fa optimal among routings
with the route degree @./n) if n > 2k? andk = o(n1/%). In the case that = 2, we obtain
a stronger result than the general case.

The routingp1 does not improve the previous result. However, the idea to define
is different from the previous ones and it induces the rougipghat is the first(2, 1)-
tolerant routing with route degree(Qn ) for biconnected graphs. We also show that the
total number of routes in the routing is the minimum among2, 1)-tolerant routings
with route degree Q/n).

2. Preliminary

In this section, we give definitions and terminology. We refer readef8]ttor basic
graph terminology.

Unless otherwise stated, we deal with an undirected géagh(V, E) that corresponds
to a network. For a node of G, Ng(v) = {u | (v,u) € E} and deg (v) = |[Ng(v)|.
deg; (v) is calleddegreeof v and if G is apparent it is simply denoted by deg. For
anode set C V, the subgraph induced liy is the maximal subgraph @ with the node
setU and denoted byr (U). A graphG is k-connectedf there existk node-disjoint paths
between every pair of distinct nodes@h For a nodey € V and a node sdff C V — {v},
v-U fanis a set offU| node-disjoint paths from to all nodes ofU. Usually 2-connected
graphs are callediconnected graphs

Thedistancebetween nodes andy in G is the length of the shortest path between
andy and is denoted by digx, y). Thediameterof G is the maximum of dig(x, y) over
all pairs of nodes irG and is denoted by (G). Let P(u, v) and P (v, w) be a path fronu
to v and a path from to w, respectively. In general, even if both(u, v) and P (v, w) are
simple, the concatenation @&(«, v) and P (v, w) is not always simple. Thus we consider
two kinds of concatenation: one is a usual concatenation (denotéd:ayw) - P(v, w))
and the other is a speciabecatenation (denoted b§(u, v) © P (v, w)), which is defined
as the shortest path fromto w in the graphP (u, v) U P (v, w) to make the concatenated
path simple.

Let G = (V, E) be a graph and let and y be nodes ofG. Define Pg(x, y) to be
the set of all simple paths from the nogl€o the nodey in G, and P(G) to be the set
of all simple paths inG. A routing is a partial functionp:V x V — P(G) such that
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p(x,y) € Pg(x,y)(x # y). The path specified to be(x, y) is called theroute fromx
to y. For the routep (x;_1, x;) (1 <i < p), define[p(xo, x1), p(x1,x2), ..., p(xp—1, Xp)]
to be p(xo,x1) - p(x1,x2) - p(xp-1,xp)(p = 1). We call [p(xo,x1), p(x1,x2), ...,
p(xp_1,x,)] aroute sequence of lengghfrom xo to x,.

ForagraplG = (V, E), let F C VUE be aset of nodes and edges called a sktudfs.
We call F N V(= Fy) andF N E(= Fg) the set oinode faultsand the set oédge faults
respectively. If an object such as a route or a node set does not contain any elerfignt of
the object is said to biault free

For a graphG = (V, E), a routingp on G and a set of fault(= Fy U Fg), the
surviving route graphR(G, p)/F, is a directed graph with node sét— Fy and edge set
E(G,p, F)={{x,y) ] p(x,y)is defined and fault frgeIn what follows, unless confusion
arises we use notations for directed graphs as the same ones for undirected graphs.

In the surviving route grapR(G, p)/ F, whenF = {J the graph is called the route graph.
In the route graph, the outdegree of a neds calledthe route degree of a nodeand the
maximum of the route degree of all nodes is calleel route degree of the routing The
number of directed edges in the route graph corresponds to the total number of routes
in the routingp. If the number of edges in the route graphristhe routingp is called
m-route-routingor simply m-routing.

For a graphG = (V, E) and a routing, if for any edge(x, y) in G such thaf (x, y) is
defined, the route (x, y) is assigned to the edge,is callededge-routing

A routing p is bidirectionalif p(x, y) = p(y, x) for any node paicx, y) in the domain
of p. If a routing is not bidirectional, it is callednidirectional Note that if the routing
is bidirectional, the surviving route gragt(G, p)/F can be represented as an undirected
graph.

Given a graphG and a routing property, a routingp on G is optimalwith respect to
P if maxgst, ri<k (D(R(G, p)/F)) is minimum over all routings o satisfyingP. Note
that from the definition of the optimality, iD(R(G, p)/ F) is 2 for any set of faultg” such
that|F| < k, the routing is obviously optimal with respect to any property. If the property
P is known, we simply call the routing is optimal.

Lemma 2.1[1]. LetG = (V, E) be ann-node directed graph. If the maximum outdegree
of G is d and the diameter of is p, then|E| = Qn?/dP~1).

3. Optimal routing for k-connected graphs

In this section, we show that for-nodek-connected graphs with > 2«2, we can
construct a(3, k — 1)-tolerant bidirectional edge-routing such that the route degree is
O(k+/n) and the total number of routes inis O(k%x) and we show that the routirigis
optimal with respect to the route degree akQn ) if n > 2k? andk = o(n'/).

The routings fork-connected graphs are based on the following two properties
[9,11,15]

Lemma3.1[8].LetG = (V, E) be ak-connected graph. Ldi be any node set df such
that|U| =k and letv be any node ir¥ — U. Then there is a-U fan.
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Fig. 1. The partition of nodes i6'.

Letu € U. The path fronw to u in v-U fan is denoted byPin(v, u; U). If there is an
edge betweemn andu in U, the pathPign(v, u; U) in thev-U fan can be changed to this

edge[4].

Lemma 3.2 [7]. Let G = (V, E) be ak-connected graph. Leis, vo, ..., vx be distinct
nodes andus, ap, ..., a; be positive integers such th@f;lai = |V|. Then there is a
partition V1, Vo, ..., Vi of V such thatv; € V;, |V;| = a; and the induced subgrapfi(V;)
is connectedfor =1, 2, ..., k.

First we considek-connected graphs with at leagt®nodes, and later we extend the
result fork-connected graphs with at leagt?hodes.

Let G = (V, E) be ann-nodek-connected graph such that> 4k%. FromLemma 3.2
there arek disjoint connected graph@i, Ga, ..., G which contain disjoint node subsets
V1, Va, ..., Vi suchthalV,| =n/kforg=12,... k. LetU, be a subset oV, such that
|U,| = /n and let each, be partitioned intoy/n/2k! sets with each 2 nodes. These
sets are denoted hy[g, ¢] (1 < ¢ < /n/2k). Furthermore, eacl/[g, £] is partitioned
into two sets with cardinalitiek. These sets are denoted &iyg, ¢; 0] andU|g, ¢; 1]. Let
W=V-— U’;:l U, and letW be partitioned inta/n/2k sets. These sets are denoted by
Wi, Wa, ..., Wﬁ/zk. The partition ofV is shown inFig. 1

A bidirectional routing) is defined as follows:

(1) Forx e Weandy e Ulg, ¢; 0] (1< g <k, 1< €< /n/2k),
)\,()C, y):)\'(yvx): Pfan(xv yv U[gvevo])

1 For simplicity, we assume thatn/2k is an integer.
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No. of def. Outdegree of node No. of routes
1. k2 (x € W) k2n —k3n

2k —2k% (x € U[g, ;0)  kn—k2/n
2. Jn—1lxeUg) nk — /nk
3. k2 —k(x € Ulg, £;i]) K2 n —kyn
4. k2 —k(x € Ulg. £:i]) K2 /n — k/n

Fig. 3. The outdegree and the number of routesifor

(2) Forx,yeU; (1< g <k),
A(x,y) = A(y, x) = a shortest path betwearandy in G(Vy).

(3) Forx e Ulg1, ¢;ilandy e Ulgz, £;i] (1< g2 < g1 <k, 1< €< /n/2k,i=0,1)
Ax, y) =A(y, x) = Pran(x, y; Ulg2, ¢; i]).

(4) Forx e Ulg1, ¢; i1l andy € Ulg2, € i2] (1< g2 < 81 <k, 1< €< /n/2k, i1 #i2)
AMx,y) =A(y,x) = Pran(y, x; Ulga, ¢; i1]).

Fig. 2shows the routes in. Fig. 2does not show'-U[g1, £1; 0] fan(z’ € Ulgz, £1; 1])
andy’-Ulgo, £1; 1] fan(y’ € U[g1, £1; 1]) for the lack of space. Because of the property of
v-U fan, A is an edge-routingig. 3 shows the outdegrees dfand the number of routes
defined ini. It can be verified that the node with the maximum degree g[ig, ¢; 0] and
the route degree df is (2k + 1)4/n — 2k — 1 = O(k+/n), and the total number of routes in
ris (k2 + 2k)n + (—k3 — k2 — 2k)/n = O(k?n).

From the definition of., the next lemma holds.
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Lemma3.3.LetG = (V, E) be ak-connected graph on which the routiinds defined. For
any nodex and any node sdl/, such thatx ¢ Uy, there arek node-disjoint routes from
to k nodes inU,.

Theorem 3.4. Let G = (V, E) be ann-nodek-connected graph such that> 4k2. The
routingA on G is (3, k — 1)-tolerant.

Proof. Let F be a faulty set withF| < k and letR = R(G, »)/F. Since|F| < k and the
number of node setg, is k, there is a node séf; such thatG(V;) contains no elements
of F. Letx andy be arbitrary non-faulty distinct nodes ih— F'.

Casel. Suppose that,y € U;. SinceU; C V; and the route\(x, y) is defined in
G(Vr), M(x, y) is fault free. Thus, dig(x, y) = 1.

Case2. Suppose that € Uy andy ¢ U;. FromLemma 3.3 there arek node-disjoint
routes between andk nodes inU;. Since|F| < k, there is a fault free route betwegn
and an node, say, in U;. SinceA(x, w) does not contain any fault iR, disg (x, y) = 2.

The case that ¢ U; andy ¢ U; can be proved similar to case 2 by usiogmma 3.3
and it holds that dig(x, y) =3. O

For ann-nodek-connected graph, ifi < n < 4k?, set|U,| = 2k instead of U, | = /n
in the definition. In this case the total number of routes is O(k%) = O(k2n) and the route
degree oh is O(k?) = O(k+/n). Therefore, the following theorem holds.

Theorem 3.5. Let G = (V, E) be ann-nodek-connected graph. I > 2«2, we can con-
struct a(3, kK — 1)-tolerant bidirectional edge-routing such that the total number of routes
is O(k?n) and the route degree ®(k./n ). This routing is optimal with respect to the route
degree ofO(k+/n) if n > 2k? andk = o(n*/%).

Proof. The optimality ofz can be shown as follows. K = o(n'/%) the least number of
routes in(2, k — 1)-routings with route degree of @,/n) is w (n*/3) from Lemma 2.10n
the other hand, it = o(n1/8), the total number of routes inis o(n*3). O

In the case that = 2, we will show in the next section that for evetynode bicon-
nected graph we can construct{® 1)-tolerant bidirectional edge-routing such that the
total number of routes is @) and the route degree is(Qn ).

4. Optimal routingsfor biconnected graphs
4.1. Paths by using-t numbering

Optimal routings for biconnected graphs are based on s-t numktétimdhich charac-
terize biconnected graplis2,14]

Given an edgés, t) of a biconnected grap&y = (V, E), a bijective functiong: V —
{0,1,...,]V|—1=n — 1} is called ans-t numberingf the following conditions are sat-
isfied:
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st-path:Pp [z, s] - (s, t) - Pr[t, y](z < y)

____-------.__..‘.‘___._.—-—._

Cad h/
x " Sy Y

—'----7----....

s-path:Pp[z,s] ® Ppls,y] t-path: Py{z, t] © Prlt, y]

Fig. 4. Three kinds of paths;path,z-path andsz-path.

e g(s)=0,gt)=n—1,and
e every nodev € V — {s, ¢t} has two adjacent nodesandw such thatg(u) < g(v) <
g(w).

In what follows, we assume that the node seGoik s-t numbered and it is denoted by
{0,1,...,n—1},wheres =0andr =n — 1.
For a nodev in G, we define two path®;[v, r] and Pp[v, s] as follows:

(1) Prlv,t] = (vo(=v),v1,...,vp(=1)), wherev; = maX{u | u € Ng(vi—1)} (1 <i <
p), and

(2) Pplv, sl = (vo(=v),v1,...,v4(=5)), wherev; = minfu | u € Ng(vi—1)} (1 <i <
q)-

Since we treat unidirectional routings, we consider directions for undirected paths.
Therefore, for exampleP;[v, t] denotes the path from to ¢ and the path from to v
of the same one is denoted By([z, v].

Note that if (v, s) and (v, ¢) are inE, Pp[v,s] = (v,s) and P;[v, t] = (v, t) from the
definition.

From the definition of the s-t numbering, two patPdqv, 1] and Pp[v, s] are well de-
fined andP;[x, t] and Pp[x, s] are node-disjoint for any nodg# s, t).

We define the following concatenated paths witfs and Pps. Letx andy be arbi-
trary distinct nodesPq[x, y], P[x, y] and Py [x, y] are defined a®p[x,s] ® Ppls, yl,
Prlx,t1® Pylt, ylandPplx, s]- (s, t) - Pr[t, y] (if x < y)andP;[x,t]-(¢,s)- Ppls, y] (if
x > y), respectively, and they are callegath,r-path andsz-paths, respectivelyg. 4).

4.2. Optimal(3, 1)-tolerant routing)’

In this section, for every biconnected graph we construct an-@uting’ with route
degree @,/n) such that the diameter of the surviving route graph is three for any one fault.
We also show that the routing is optimal in/)-routings with route degree@Qn).

Theorem 4.1. Let a routingoe on G be anO(n)-routing. If the route degree of is at most
o(n), D(R((G,0)/{f}) = 3forany faultf.
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Proof. We show that this statement ksl even if there is no fault ir. Assume that the
diameter of the route graph is at most 2. The least number of edges of a graplodés
with degreek and diameter 2 i2(n2/ k) from Lemma 2.1 Since the route degree ofis
o(n), the number of edges in the route graph musbly). It is a contradiction. O

We construct an Qr)-routing A’ with route degree Q/n) which attains the lower
bound inTheorem 4.1The routing)’ is a hierarchical one based on the optimal rouing
in [14].

We assume that a biconnected grapk= (V ={s =0, ...,t =n — 1}, E) has at least
5 nodes. We divide the nodes 6finto ¢ = |n/p] sections of sizgp each except the last
section. Note that the last section contains at mpst 2 nodes. For each section denoted
by V; (1<i < ¢), the least numbered node and the largest numbered node are denoted by
s; andt;, respectively. Note that=s1 andr = 1.

routing 1’

(1) Forx e V; (1<i <) suchthak; <x <1,
M (x,8) = Pslx, 51, A (si, x) = Py[si, x],
MN(x, ) = Plx, 4], M, x) = Plt, x],and
M (x,si41) = Pslx, sipal, M (si41. x) = Py[sip1. x] (if i < £) and
MN(x,ticy) = Plx, ti—1], M (ti—1, x) = Plti—1, x] (if 1 < i).
(2) Fori, j (1<i<j<¥),
A (si,sj) = Pslsi,s;1, M (sj, ) = Ps[sj,s;] and
Mt 1)) = Pt 11, M (1, ) = Pyt ;]
(3) Fori, j (1<i<j<0),

(s1. 7¢) ifi=1andj=¢,
, Pg[s1,t;1(= Ppls1,t;]) ifi=21andj#¢,
MOLIDZA gl = (Prlsil)  if i £ 1andj=¢,
Py[si, 1] otherwise
and
(¢, 51) ifi=1andj=¢,
, Pgltj, s1](= Ppltj,s1]) ifi=1andj#¢,
MUSD=N pol sil(= Prltesi]) i i #1andj = ¢,
P2, il otherwise

(4) Forx andy such that the routes (x, y) = A'(y, x) are defined in (1)—(3), ifx, y) € E
then)/(x, y) = A/ (v, x) is changed tdx, y).

Itis easily verified that is a bidirectional edge-routing and ari#O+ ¢2)-routing with
route degree @ + ¢). Thus, if¢ = |\/n] then)’ is an Qn)-routing with route degree
O(y/n).

Except that(x, y) € E and f = (x, y), we can assume thgtis a node because ff is
an edge we can consider that one of the endpointg f faulty. We write f € [a, b] if
feVanda< f<b.
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In the case thatx, y) € E and f = (x, y): if A'(x, y) is not defined then it is trivial.
Otherwise, from the definition of we have two cases, ()e V; andy € {s;, ;, si—1, ti—1}
for somei and (2)x, y{s;,s;j, t,t;} for i # j. We can easily find a route sequence of
length 3 that are fault free.

Theorem 4.2. Let G be a biconnected graph with at leastnodes. ThemD(R(G, \')/
{fH < 3forany faultf in G.

Proof. Let R = R(G, \)/{f}. Letx andy be any pair of distinct nonfaulty nodesdn

(1) Suppose that =s andy =¢. If f is not the edgés, ¢) then disk (s, r) = 1. Other-
wise, forany; € {s;, 1;} (1 <i < £), the route sequeng&’(s, z), ' (z, )] cannot contairy .
Thus, disk (s, 1) < 2.

(2-1) Suppose that=s andy € {s;,t;}(1 < j <fandy#t)orx e {s;,1;} (1 <i < ¢
andx # s) andy = ¢. For the former case, since there are two node-disjointroute sequences
A (s, y)and[M (s, 1), A (¢, y)], disg (x, y) < 2. The latter case can be proved similarly.

(2-2) Suppose that e {s;, t;} andy e {s;,¢;} (1 <i < j <L, x #s andy #1).

If f=(s,1) or fel[s,x], NM(x,t =1t and A (y,r = t;) are fault free. Thus,
disg (x, y) < 2. Similarly, if f €[y, ] sincer’(x,s =s1) andA'(y, s = s1) are fault free
disg(x, y) < 2. Otherwise { € [x, y]), A/(x, s1), A'(s1,2¢) and A’'(y, ;) are fault free.
Thus, dig (x, y) < 3.

(3) Supposethat € V; — {s;, t;} andy e V; — {s;,1;} (1 <i < j < {) suchthag(x) <
g(y).

If f=(s,t)orfels x],sincer(x, ;) andr/(y, ;) are fault free, dig(x, ) <1 and
disg(y,t;) < 1. Also since)’(1;, ;) does not contain the fault, digx, y) < 3. Similarly,
disg (x, y) < 3 holds for the case that € [y, r]. Otherwise ( € [x, y1), 2 (x, si), A" (s, 1})
and)’(y, r;) are fault free. Thus, djgx, y) < 3.

(4) Otherwisex € V; andy € V; (1 <i < j < ¢) such that either € {s;,#;} or y €
{sj,1;}. The cases that=s; ands; < y < t; andthat; <x < andy =¢; can be proved
similar to the case (3). For the case that ¢; ands; < y < t;, except thatf e [x, y]
we can prove similar to the case (3). In the case that[x, y], if 1 <i andi < ¢ then
AN (x,ti—1), M(ti—1,5;41) andA’(y, sj41) are fault free. Thus, djgx, y) <3.Ifi=1or
i =¢,then) (x =s1,10), A (t¢, 1) and)/(y, t;) (if i = 1) andA’(x =s;, s1), A" (s1, 1¢) and
N (v, to) (if i =¢) are fault free, respectively. Thus, dis, y) < 3.

The case thaf; < x <1 andy =¢; can be treated symmetricallyD

For a biconnected graph with at most 4 nodes, it is easily proved that an edge-routing
for G is (3, 1)-tolerant. Therefore, theflowing theorem holds.

Theorem 4.3. For everyn-node biconnected grapi, we can construct &3, 1)-tolerant
edge-routing onG in which the total number of routes 8(n) and the route degree is
O(4/n). This routing is optimal with respect 1(n)-routings with route degre®(/n).
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4.3. Optimal routingo

As far as the authors have known, there do not efdst — 1)-tolerant routings for
k-connected graphs with their route degre@ (n ). Although the case that> 3 is still
open, we show that we can construgal)-tolerant edge-routing for biconnected graphs
such that its route degree ig(#n) and the total number of routes i®/n ). This routing
is optimal because it i€, 1)-tolerant. Fron_Lemma 2.1 in order to defing2, 1)-tolerant
routings with route degree(@n ), the total number of routes must Bgn./n). Thus, the
total number of routes in the routing shown here attains the lower bound.

Let G = (V, E) be a biconnected graph withnodes. Assume that > 18 andV is
divided into |n/18| groups of 18 nodes each and the last group made up of the remaining
(n mod 18 nodes. Each group except the last one is divided into two parts with 9 nodes
each.

Foranodev e V, letq = v div18,r = v mod 18,¢ = r div 9 and¢ = r mod 9. Each
nodev is represented asy; g, (i, j)1, where 0< g < [n/18], g = 0,1 and(, j) is the
ternary representation éf(0 < i, j < 2).

We define the routing for G based on the ternary representaiigry) of £ of each node
as follows: Letx andy be represented d8,; gx, (ix, jx)] and[gy; gy, (iy, jy)1, respec-
tively. The routeo(x, y) is defined as shown iRig. 5. The route fromx to y is determined
based ory, andi,. For example, ifj, = 0 andi, = 2 then the'-path fromx to y is used to
definep(x, y) and j, = 2 andi, = 0 then thesz-path fromx to y is used to defing (x, y)
and so on. The routing is well-defined. It is a unidirectional andnr — 1)-routing and its
route-degree is — 1.

The intuitive idea of the routing is as follows: Letx andv be arbitrary distinct nodes
and we consider the route sequence fupoto v. Since in each interval there are two nine-
node sets, at least one of them is fault-free and each node in this fault-free nine-node set
plays a role of an intermediate noden the route sequence from to v according to
the location of a fault. Since surviving routesu, z) and p(z, v) ares-path,¢-path or
st-path, the all combinations of these paths are prepared and the intermediate inode
determined according te andv. For example, ifj, =0, i, = 0, p(u, z) is s-path and
p(z, v) ist-path, the intermediate nodés chosen such that =0 andj, = 1.Lemma4.4
will show that the definition of depicted inFig. 5is sufficient to prove thap is (2, 1)-
tolerant.

Let Ilg, gl ={lg; g, (i, NI10<i<j<2}, where 0< ¢ < [n/18] — 1 andg =0,1,
and letI[¢] = I[¢q,0]U I[q, 1].

iy=0 iy=1 iy=
Jx =0 Pslx,y] Py[x, y] Pylx, y]
px,y)= jx=1  Pix,y] Pslx, y] Pgt[x, y]
Jx =2  Pylx,y] Py[x, y] Ps[x, y]

wherex = [gyx; gx, (ix, jx)] y = [gy; gy, (iy, jy)].

Fig. 5. The routingo.
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Lemma 4.4. Let G = (V, E) be a biconnected graph on which the routings defined.
For arbitrary distinct nodes andy, arbitrary two kinds of patha-path andb-path(a, b €
{s, t,st}) and any intervall[g, g], there exists a nodec I[q, g] such thato(x, z) is a-
path andp(z, y) is b-path?

Proof. Letx = [qy; &x, (ix, jx)] andy = [qy; gy, (iy, jy)]. For example, ifj;, =0,i, =1,
a =s andb = st, thenz is defined asq; g, (0,0)] € I[q, g]. From the definition ofp, we
can see thap(x, z) is defined as-path andp(z, y) is defined as-path. Formally, we
definei, andj, of z =[q; g, (i;, j:)] € Ilq, g] according taz andb as follows:

i;=jy (ifa=ys), jy +2(mod 3 (if a =) andj, + 1 (mod 3 (if a = s1),
Jo=1iy (ifb=s),iy +1(mod J (if b =1) andi, 4+ 2 (mod 3 (if b = st).

Then it can be verified that the routéx, z) is defined asi-path ando (z, y) is defined as
b-path forz € I[q, g] from the definition ofp. O

Theorem 4.5. Let G be ann-node biconnected graph such that 18. The routinge on
G is (2, 1)-tolerant.

Proof. Let f be any fault and leR = R(G, p)/{f}. Let x and y be arbitrary distinct
nonfaulty nodes irG.

Since there is one fault ir, either7[0,0] = {[0; 0, (i, j)] | 0<i < j <2} or [0, 1]
does not contairy. Without loss of generality, we can assume thgl, 1] is fault free.
Note that/[0, 1] = {9, 10, ..., 17}. There are 12 cases according to the locations, of
and[0, 1] and they can be similarly proved by usihgmma 4.4 We show one case that
x < I[0,1] < y (it means that <9 and 17< y).

Suppose that < 7[0,1] < y. If f = (x,y) € E, then fromLemma 4.4here is a node
z € I[0, 1] such thap (x, z) is anst-path ando(z, y) is ar-path and they do not contajfi
If fels=0,x—1] then fromLemma 4.4there is a node < I[0, 1] such that both
p(x,z) andp(z, y) aret-paths and their routes are fault free flife [x + 1, 7], then from
Lemma 4.4there is a node € 1[0, 1] such thato (x, ) is ans-path ando(z, y) is az-path
and they are fault free. The cases thfat [18,y — 1] and f € [y + 1, =n — 1] can be
proved similarly. Therefore digx, y) <2. O

The routingp is not an edge-routing because there is a casdtha) € E andp(x, y)
is defined as ak¢-path. However, it can be changed into an edge-routing as follows. Since
both ans-path and a-path fromx to y become an edge ik, y) € E from the definition, if
p(x,y) is defined by ant-path and(x, y) € E, thenp(x, y) is defined as the edge, y).
We can show that the modifigdis (2, 1)-tolerant.

In the proof ofTheorem 4.5we only use the routes between nodes[id], from nodes
in 7[0] to other nodes and from nodes not/ifd] to nodes in/[0]. Thus, we can obtain a

2t may be possible that = z or y = z. It can occur thak, y € I[g, g]. In this case an empty path is consid-
ered to bez(b)-path, respectively.
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(2, 1)-tolerant unidirectional edge-routing in which the total number of routes is(@®
as follows.

routing p1

Letx andy be represented 48,; g«, (ix, jx)]1 andlq,; gy, (iy, jy)1, respectively same
as inp. p(x,y) is defined as shown ikig. 5if (g. =g, =0), (¢x # 0 andg, =0) or
(¢qx =0 andqy # 0)

Theorem 4.6. Let G be ann-node biconnected graph such that: 18. The routinge; on
G is (2, 1)-tolerant edge-routing witld(n) routes.

4.4. Optimal routing with route degremsn)

We construct g2, 1)-tolerant routingoez with route degree Q/n) for n-node bicon-
nected graphs by modifying the routipg

Let G = (V, E) be ann-node biconnected graph. We assume that each nadé; is
denoted byg,; g, (ix, jx)] Same as ip. We can assume that there is an integguch that
(n/18=¢?) 3 Thus,q, can be represented liy~, ¢X), where 1< gL, R < ¢ = /n/18.

routing p2

Let x and y be represented dgx = (qy,4:); &x, (ix, jx)] @andqy = [(gy, 43); &y,
(iy. Jy)1, respectivelypz(x, y) is defined as shown ifig. 5if ¢, = g, orgX =4

In the routingpy, the routeos(x, y) is defined ifx andy are in the same intervdlq] or
the right partz X of ¢, and the left parg L of ¢, are equal. From the definition p$, we can
verify that the route degree is(Qn). We can show that the routing is (2, 1)-tolerant
by usingLemma 4.4and the following lemma.

Lemma4.7. Letx = [q: = (g1, 45); & (ix, j)l andy =gy = (¢}, ¢): gy, (iy. jy)] be
arbitrary distinct nodes o&; on whichp, is defined. Then, one of the following conditions
holds.

(1) gx =gy, thatis,x andy are in the same grouplg. = g, ].

(2) ¢f =q}, thatis, the routes from to nodes in/[g,] are defined.

(3) There is a groupl[¢.] such thay f = ¢/ and ¢ = ¢}, that is, the routes from to
nodes in/[¢,] and from nodes iri[¢.] to nodes in/[g, ] are defined.

The total number of routes defined ia is O(n\/n ), because the route degree of each
node is(y/n). FromLemma 2.1the total number of routes is at led{(n./n) to define
(2, 1)-tolerant routings with route degree((n ) The routingp, attains the lower bound
of the total number of routes.

Since in the case that< 18 we can construct @, 1)-tolerant edge-routing for-node
biconnected grapH42], the following theorem holds.

3 Otherwise, we choos& < n/18 < (£ + 1)2 and consider? groups. Each of the remaining at mogt-2 1
groups is merged into each &4 groups, where at mos¥2- 1 groups contain 36 nodes instead of 18 nodes.
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Theorem 4.8. Let G be ann-node biconnected graph. We can constr@&tl)-tolerant
edge-routing orG with O(n+/n ) routes and route degre®(/n ).

5. Concluding remarks

We have shown three optimal edge-routings with smaller routing tables. It is an inter-
esting open question whether or not there exist$2ah — 1)-tolerant routing with route
degree Qk./n) for n-nodek-connected graph& ¢ 3). Itis also an interesting open ques-
tion whether or not there exists &8, 1)-tolerant bidirectional routing with route degree
O(4/n) for n-node biconnected graphs.
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