
European Journal of Combinatorics 31 (2010) 1372–1384

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Minimal identifying codes in trees and planar graphs with
large girth
David Auger
Télécom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13, France

a r t i c l e i n f o

Article history:
Received 7 May 2009
Accepted 12 October 2009
Available online 19 January 2010

a b s t r a c t

Let G be a finite undirected graphwith vertex set V (G). If v ∈ V (G),
let N[v] denote the closed neighbourhood of v, i.e. v itself and all
its adjacent vertices in G. An identifying code in G is a subset C of
V (G) such that the setsN[v]∩C are nonempty andpairwise distinct
for each vertex v ∈ V (G). We consider the problem of finding the
minimum size of an identifying code in a given graph, which is
known to be NP-hard. We give a linear algorithm that solves it in
the class of trees, but show that the problem remains NP-hard in
the class of planar graphs with arbitrarily large girth.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

By a graph we mean a finite, undirected graph, without loops and multiple edges. If G is a graph,
we denote respectively by V (G) and E(G) the sets of vertices and edges of G. An edge {x, y} ∈ E(G)
with x, y ∈ V (G) will be simply denoted by xy. We refer the reader to [3] for basic notions such as
adjacent vertices, paths, cycles and connectivity. Let us just recall that a tree is a connected graph with
no cycles, and that the girth of a graph G is the smallest possible length of a cycle in G.
The closed neighbourhood of a vertex v ∈ V (G) is the set NG[v] (or simply N[v] when there is

no ambiguity) containing v and all its adjacent vertices in G. We recall that the degree of a vertex
v ∈ V (G) is the number d(v) of vertices w ∈ V (G) such that vw ∈ E(G). The maximum degree of
G is the maximum possible degree of a vertex in G. Finally, a graph is planar if it can be drawn in
the plane in such a way that its edges do not cross. For precise definitions and additional background
about graphs, we refer the reader once again to [3]. Readers will also need basic knowledge of notions
of algorithmic complexity such as polynomial reduction and NP-completeness; for these notions we
refer them to [7].

E-mail address: auger@telecom-paristech.fr.

0195-6698/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2009.11.012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82025333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
mailto:auger@telecom-paristech.fr
http://dx.doi.org/10.1016/j.ejc.2009.11.012

D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384 1373

In this paper,whatwe call a code is simply a set of verticesC ⊆ V (G), andwe refer to its elements as
codewords. A codeword c in a code C is said to cover a vertex v if v ∈ N[c]; we say that v is covered by
C if it is covered by at least one codeword. If v,w are distinct vertices in V (G), we say that a codeword
c ∈ C separates v andw, or v fromw, if c covers exactly one of these two vertices.
An identifying code in G is a code C ⊆ V (G) such that all the sets

N[v] ∩ C

for v ∈ V (G) are nonempty and pairwise distinct.
Equivalently, C is an identifying code if every vertex v of G is identified by C, i.e. if v is covered by

C and separated from every other vertex of G by at least one codeword.
The notion of an identifying code was introduced in [9] with the original motivation of achieving

fault diagnosis for multiprocessor systems. The general idea is the following: assume that vertices
in the graph are processors, and that a codeword is a processor equipped with a sensor, with the
ability to detect a faulty processor if it is in its closed neighbourhood. Then if there is at most one
faulty processor and if every codeword sends us one bit of information, relating to whether it detects
a faulty processor or not, the fact that C is an identifying code enables us to find out, from the |C| bits
of information received, whether there is a fault in the graph, and also to deduce its position if there
is one.
It was proved in [5] that the problem of finding the minimum size of an identifying code in a given

graph is NP-hard. In the following sections, we first provide a linear algorithm which computes the
minimum size of an identifying code in a given tree, and then exhibit some classes of graphs, in a
certain sense as close as desired to the class of trees, where the problem of finding the minimum size
of an identifying code remains NP-hard. For combinatorial results concerning minimal identifying
codes in trees, see [1] and [2]. One can also find results for identifying codes in some graphs with high
girth in [10].
Algorithms for similar coding problems in trees are known: see [4] for an algorithm computing

a minimal identifying code in an oriented tree, and [6] and [12] for algorithms computing minimal
locating–dominating codes.
For a comprehensive bibliography concerning identifying codes and locating–dominating codes,

see [11].

2. An algorithm for minimum identifying codes in trees

In this section we prove the following result:

Theorem 1. There exists a linear algorithm which computes the minimum size of an identifying code in a
given tree.

2.1. Almost identifying codes

For the algorithm mentioned in Theorem 1 we will need the following notion: if G is a graph and
A ⊆ V (G), we say that a subset C of V (G) is an A-almost identifying code of G if the sets

C ∩ N[v]

are all nonempty and pairwise distinct for all v in V (G) \ A. Thus an ∅-almost identifying code is just
an identifying code.
In an A-almost identifying code, the vertices in A can be chosen as codewords and thus used to

identify vertices in V (G)\A, but do not need to be identified. If v ∈ V (G), wewrite v-almost identifying
for {v}-almost identifying.
Consider a graph G, a vertex v ∈ V (G) and a v-almost identifying code C. We say that:

- C satisfies the id property (for identifying) if C is an identifying code in G;
- C satisfies the co property (for code) if v ∈ C;
- C satisfies the adj property (for adjacent) if v is adjacent to a codeword;

1374 D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384

- C satisfies the fn property (for favoured neighbour) if there exists a neighbour w of v such that
N[w] ∩ C = {v}; in this case we say that w is the favoured neighbour of v, in the sense that v
is the only codeword covering w; since C is v-almost identifying, v admits at most one favoured
neighbour;
- C satisfies id, co, adj or fn respectively if C does not satisfy properties id, co, adj or fn.

There exist dependence relationships between these properties; for instance the reader will easily
check that:

- if C satisfies fn, then it satisfies co;
- if C satisfies id, then it satisfies co or adj;
- if C satisfies id, co and fn, then it must satisfy adj.

2.2. Main and auxiliary functions

Let a tree T be given and let v ∈ V (T). An identifying code of T can be viewed as a v-almost
identifying code in T satisfying property id; we denote by

fid(v, T)

the minimum size of such a code. More generally, if Πi denotes a possible property of a v-almost
identifying code for 1 ≤ i ≤ k (like id, co, etc.), we denote by

fΠ1,...,Πk(v, T)

the minimum size of a v-almost identifying code in T satisfying all the propertiesΠi for 1 ≤ i ≤ k; if
such a code does not exist, the function takes the value+∞.
We need to consider 17 functions; the first 10 we call main functions and the latter 7 auxiliary

functions. Table 1 gives the list of the main functions, whereas auxiliary functions are given in Table 2;
this table also gives simple formulas showing how auxiliary functions can be computed from main
functions.

2.3. The algorithm AIC

The algorithmmentioned in Theorem1 consists in choosing (randomly) a vertex v1 in a given graph
T and computing the values of the 17 main and auxiliary functions on (v1, T), and then computing
fid(v1, T) by

fid(v, T) = min


fid,co,adj,fn(v1, T),
fid,co,adj,fn(v1, T),
fid,co,adj (v1, T),
fid,co,adj(v1, T).

Remember that this value is the minimum size of an identifying code in T . In order to do this we
define an algorithm AIC (for almost identifying code) which returns the values of the 17 main and
auxiliary functions for a given pair (v1, T), where T is a tree and v1 a vertex of T .
Algorithm AIC recursively computes the values of the 17 functions in smaller and smaller trees. It

uses the following facts:

− First, if T consists of a single vertex v1, then the values of the 17 functions are easy to compute;
these values are given in Table 3 (used in line 2 of the algorithm).

− Second, one can compute the values of the 7 auxiliary functions on (v1, T) from the values of the
10 main functions on (v1, T), using the formulas given in Table 2 (used in line 8 of the algorithm).

− Finally, if T consists of at least two vertices, then the vertex v1 has at least one neighbour v2 in T ;
this is the central step of the algorithm where we use recursion. If we remove the edge v1v2 from
T , we obtain two trees T1 and T2 respectively containing v1 and v2 (see Fig. 1). We claim that the
values of the 10 main functions on (v1, T) can be computed from the values of the 17 main and
auxiliary functions on (v1, T1) and (v2, T2). The formulas showing how this can be done are given
in Table 4. This is used in line 7 of the algorithm.

D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384 1375

Algorithm 1 AIC
Input: a tree T and a vertex v1 of T .
Output: the list ` of the values of the 17 main and auxiliary functions on (v1, T).
1: if v1 has degree 0 in T then
2: initalize ` (Table 3);
3: else
4: let v2 be a neighbour of v1 in T ;
5: let T1 and T2 be the trees respectively containing v1 and v2 as vertices, obtained from T by

deletion of the edge v1v2;
6: let l1 =AIC(v1, T1) and l2 =AIC(v2, T2);
7: compute the 10 main functions on (v1, T) from l1 and l2 (Table 4);
8: compute the 7 auxiliary functions on (v1, T) from the main functions on (v1, T) (Table 2);
9: end if
10: return the list ` of the values the 17 main and auxiliary functions on (v, T).

Table 1
List of main functions.

Number Function

1 fid,co,adj,fn
2 fid,co,adj,fn
3 fid,co,adj
4 fid,co,adj
5 fco,adj,fn
6 fco,adj,fn
7 fco,adj,fn
8 fco,adj,fn
9 fco,adj
10 fco,adj

Fig. 1. The trees T1 and T2 resulting from the deletion of the edge v1v2 .

The first two facts are easy to check; only the last one needs a proof. Since proving all cases in
Table 4 could be long and tedious, we give hereafter a detailed proof of the first formula as a corollary
to Lemma 2; the proofs of all other cases are similar. However, we give in the Appendix an exhaustive
list of figures that can be used to check all cases.

Lemma 2. Let T be a tree and v1v2 be an edge of T . Let T1 and T2 be the trees, respectively containing v1
and v2 as vertices, obtained from T by deletion of the edge v1v2. Let C be a code in T and Ci = C ∩ V (Ti)
for i ∈ {1, 2}. Then C is a v1-almost identifying code in T with properties id, co, adj, fn if and only if C1
is a v1-almost identifying code in T1 and C2 is a v2-almost identifying code in T2, and one of the following
assertions is satisfied:

(i) C1 satisfies id, co, adj, fn and C2 satisfies co, adj ;
(ii) C1 satisfies co, adj, fn and C2 satisfies co, adj ;

1376 D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384

Table 2
List of auxiliary functions.

Number Function

11 fco,adj(v, T) = min
{
fco,adj,fn(v, T),
fco,adj,fn(v, T)

12 fco,adj(v, T) = min
{
fco,adj,fn(v, T),
fco,adj,fn(v, T)

13 fco,fn(v, T) = min
{
fco,adj,fn(v, T),
fco,adj,fn(v, T)

14 fco,fn(v, T) = min
{
fco,adj,fn(v, T),
fco,adj,fn(v, T)

15 fco(v, T) = min
{
fco,adj(v, T),
fco,adj(v, T)

16 fco(v, T) = min


fco,adj,fn(v, T),
fco,adj,fn(v, T),
fco,adj,fn(v, T),
fco,adj,fn(v, T)

17 fid,co(v, T) = min

fid,co,adj,fn(v, T),fid,co,adj,fn(v, T),
fid,co,adj(v, T)

Table 3
Initialization of the 17 functions on a single vertex.

Number Function Value Number Function Value

1 fid,co,adj,fn +∞ 10 fco,adj 0
2 fid,co,adj,fn +∞ 11 fco,adj 1
3 fid,co,adj 1 12 fco,adj +∞

4 fid,co,adj +∞ 13 fco,fn +∞

5 fco,adj,fn +∞ 14 fco,fn 1
6 fco,adj,fn +∞ 15 fco 0
7 fco,adj,fn +∞ 16 fco 1
8 fco,adj,fn 1 17 fid,co 1
9 fco,adj +∞

(iii) C1 satisfies id, co, adj, fn and C2 satisfies co, adj;
(iv) C1 satisfies co, fn and C2 satisfies co, adj.

Proof. This case is depicted in Fig. A.1 in the Appendix.
Suppose first that C is a v1-almost identifying code in T with properties id, co, adj, fn.
Observe that when going from T to T1, only v1 in T1 loses a neighbour in the operation and so in T1,

for v 6= v1, we have NT1 [v] ∩ C1 = NT [v] ∩ C; thus C1 is a v1-almost identifying code in T1. A similar
argument shows that C2 is a v2-almost identifying code in T2.
Next consider the code C2; elementary logic implies that one of the four possibilities (co and adj),

(co and adj), (co and adj) and (co and adj) must happen. In all cases, since C satisfies co and v1 is a
vertex of T1, the code C1 will satisfy co.
If C2 satisfies co, adj (top left square in Fig. A.1), since v2 6∈ C2 and C satisfies adj, the code C1

must satisfy adj. Since v2 6∈ C, it cannot contribute to identifying v1 in T and so C1 must satisfy id.
Finally, since C is v1-almost identifying and v2 is a favoured neighbour of v1, no favoured neighbour
for v1 is allowed in T1: thus C1 satisfies id, co, adj and fn.
If C2 satisfies co, adj (top right square in Fig. A.1), since C satisfies id, the vertices v1 and v2 must

be separated by a codeword of C, which is either a neighbour of v1, distinct from v2, or a neighbour of
v2, distinct from v1; but sinceC2 satisfies adj the second possibility cannot happen and soC1 satisfies
adj. Next, since C satisfies fn and C2 satisfies co, the favoured neighbour of v1 is not v2, and so C1
must satisfy fn. Thus C1 satisfies co, adj and fn.

D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384 1377

Table 4
Recurrence formulas for main functions.

1 fid,co,adj,fn(v1, T) = min


fid,co,adj,fn(v1, T1)+ fco,adj(v2, T2),
fco,adj,fn(v1, T1)+ fco,adj(v2, T2),
fid,co,adj,fn(v1, T1)+ fco,adj(v2, T2),
fco,fn(v1, T1)+ fco,adj(v2, T2)

2 fid,co,adj,fn(v1, T) = min

fco,adj,fn(v1, T1)+ fco,adj(v2, T2),fid,co,adj,fn(v1, T1)+ fco,adj(v2, T2),
fco,fn(v1, T1)+ fco,adj(v2, T2)

3 fid,co,adj(v1, T) = fid,co,adj(v1, T1)+ fco,adj(v2, T2)

4 fid,co,adj(v1, T) = min


fco,adj(v1, T1)+ fid,co,adj(v2, T2),
fid,co,adj(v1, T1)+ fid,co,adj(v2, T2),
fco,adj(v1, T1)+ fid,co,adj,fn(v2, T2),
fco(v1, T1)+ fid,co,adj,fn(v2, T2)

5 fco,adj,fn(v1, T) = min


fco,adj,fn(v1, T1)+ fco,adj(v2, T2),
fco,adj,fn(v1, T1)+ fco,adj(v2, T2),
fco,adj,fn(v1, T1)+ fco,adj(v2, T2),
fco,fn(v1, T1)+ fco,adj(v2, T2)

6 fco,adj,fn(v1, T) = min
{
fco,fn(v1, T1)+ fco(v2, T2),
fco,adj,fn(v1, T1)+ fco,adj(v2, T2)

7 fco,adj,fn(v1, T) = min
{
fco,adj,fn(v1, T1)+ fco,adj(v2, T2),
fco,adj,fn(v1, T1)+ fco,adj(v2, T2)

8 fco,adj,fn(v1, T) = fco,adj,fn(v1, T1)+ fco,adj(v2, T2)

9 fco,adj(v1, T) = min
{
fco(v1, T1)+ fid,co(v2, T2),
fco,adj(v1, T1)+ fid,co,adj(v2, T2)

10 fco,adj(v1, T) = fco,adj(v1, T1)+ fid,co,adj(v2, T2)

IfC2 satisfies co, adj (bottom left square in Fig. A.1), since v2 cannot contribute to the identification
of v1 by C in T , C1 must satisfy id. Since v2 6∈ C and C satisfies adj, this must also be the case for C1.
Finally, by adj forC2, the favoured neighbour of v1 in T is not v2 and soC1 satisfies fn. ThusC1 satisfies
id, co, adj and fn.
Eventually, if C2 satisfies co, adj (bottom right square in Fig. A.1), then once again the favoured

neighbour of v1 in T must be found in T1 and C1 satisfies fn. Thus C1 satisfies co and fn.
For the converse implications, let us consider the first case: suppose thatC1 satisfies id, co, adj, fn

and C2 satisfies co, adj , and let us define C = C1∪C2, a code in T (see the top left square in Fig. A.1):

- if v ∈ V (T1)we haveNT [v]∩C = NT1 [v]∩C1, and so all vertices in V (T1) are covered by nonempty
and distinct sets of codewords from C (including v1, since C1 satisfies id);
- a similar observation can be made for vertices in V (T2) \ {v2};
- if v ∈ V (T1) and v′ ∈ V (T2) \ {v2}, then NT [v] ∩ NT [v′] is empty or equal to {v2}, but since v2 6∈ C
we conclude that vertices in V (T1) are separated from vertices in V (T2)\{v2}: a codeword covering
v cannot cover v′;
- it remains to settle the score for v2: we have NT [v2] ∩ C = {v1}, so v2 is covered by C; it is
separated from v1, since C1 satisfies adj, and separated from all vertices in V (T1) \ {v1} since these
vertices cannot be covered only by v1 (C1 satisfies fn); and finally, v2 is separated from vertices in
V (T2) \ {v2} since these vertices cannot be covered by v1.

We have proved that C is an identifying code, i.e. a v1-almost identifying code satisfying id.
Moreover, C obviously satisfies co, adj and fn, with v2 as the favoured neighbour of v1.
We skip the proofs for the three remaining cases which are very much similar to the previous

one. �

From this lemma we directly deduce the following equality:

1378 D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384

Corollary 3. With the notation of Lemma 2, we have the following equality:

fid,co,adj,fn(v1, T) = min


fid,co,adj,fn(v1, T1)+ fco,adj (v2, T2),
fco,adj,fn(v1, T1)+ fco,adj (v2, T2),
fid,co,adj,fn(v1, T1)+ fco,adj(v2, T2),
fco,fn(v1, T1)+ fco,adj(v2, T2).

With the help of the Appendix, an interested reader can easily check all formulas given in Table 4,
and conclude that the algorithm is valid. Before ending this part, let us notice that in the execution
of the algorithm, when the function AIC (v1, T) is called, if the degree of v is at least 1 then an edge
is removed from T before computing AIC (v1, T1) and AIC (v2, T2), and thus the number of calls to
the function AIC is at most the number of edges in T . Since each step can be executed in constant
time, we conclude that the algorithm runs in linear time. Let us also note that this algorithm could be
easily modified in order to output an identifying code of minimal size (it would be sufficient in each
computation to keep track of the functions which give the minimal values), or else to compute the
number of identifying codes with minimal size in T .

3. Planar graphs with large girth

We proved in the previous section that the problem of finding the minimum size of an identifying
code can be solved in linear time in the class of trees. Since it is known that the problem is NP-hard
in the general case (see [5]), we found it interesting to narrow the gap between these two extremes.
Without loss of generality, we restrict ourselves to connected graphs. IfH is a class of graphs, let us
callMin ID-code in H the problem of deciding, for a given graph G ∈ H and an integer p, whether G
admits an identifying code of size at most p or not.
Let P 4k denote the class of connected planar graphs, with maximum degree at most 4, and girth at

least k where k ≥ 3. It should be noted that if k is large the elements of P 4k are ‘‘nearly’’ trees, in the
sense that⋂

k≥3

P 4k

is the class of trees with maximum degree 4.
We prove the following result:

Theorem 4. For all k ≥ 3, the problemMin ID-code in P 4k is NP-complete.

Let us start with a lemma.

Lemma 5. Let P = av1v2 · · · v2kb be a path on 2k+ 2 vertices, where k ≥ 1. Then:
- the minimal size of an {a, b}-almost identifying code in P which contains neither a nor b is k+ 1;
- the minimal size of an {a, b}-almost identifying code in P which contains exactly one of a and b is k+1;
- the minimal size of an {a, b}-almost identifying code in P which contains a and b is k+ 2.

Proof. Let C be an {a, b}-almost identifying code in P . For every i such that 1 ≤ i ≤ 2k − 1, the
vertices vi and vi+1 must be separated by a codeword; let us consider this as a task that has to be
fulfilled. The vertices v1 and v2k must be covered by C, giving us two other tasks, for a total of 2k+ 1
tasks. Suppose now that vi is a codeword: if i ∈ {3, . . . , 2k − 2}, it covers neither v1 nor v2k, but it
separates vi−1 from vi−2 and vi+1 from vi+2; thus vi fulfills exactly two tasks. If i ∈ {1, 2}, then vi covers
v1 but only separates the vertices vi+1 and vi+2, thus also fulfills two tasks, and a similar observation
can be made if i ∈ {2k− 1, 2k}, and for the vertices a and b.
Therefore, since we have 2k+ 1 tasks and since a given codeword fulfills exactly two of them, we

need at least
⌈ 2k+1

2

⌉
= k + 1 codewords in C. Now since C ∩ {v1, v2, . . . , v2k} is a {v1, v2k}-almost

identifying code in the path P ′ = v1v2 · · · v2k, the same observation leads to the conclusion that there
are at least k codewords in {v1, v2, . . . , v2k}: so if at most one of the vertices a, b is a codeword, we
have |C| ≥ k+ 1, and if a and b are codewords we have |C| ≥ k+ 2.

D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384 1379

Fig. 2. The structure Sv linked to the vertex v of G in the proof of Theorem 4.

Conversely, it is easy to see that the codes

C1 = {v2, v4, . . . , v2k} ∪ {v3},

C2 = {a, v2, v4, . . . , v2k}

and

C3 = {a, b} ∪ {v2, v4, . . . , v2k}

are {a, b}-almost identifying with the required conditions. �

Before proving Theorem 4, let us note that one can rapidly check whether a given code in a graph
is identifying, and so the problemMin ID-code in P 4k is in the class NP for all k ≥ 3. In order to prove
its NP-completeness it remains to polynomially reduce an NP-complete problem to Min ID-code in
P 4k . We use theMin Vertex Cover in P 3 problem.
Let P 3 denote the class of planar graphs with maximum degree at most 3. We recall that a vertex

cover in a graph G is a code C ⊆ V (G) such that for every edge e = ab ∈ E(G), one has a ∈ C or a ∈ C
(or both). The following problem was proved to be NP-complete in [8]:
Min Vertex Cover in P 3:
• Instance: a planar graph G ∈ P 3, and an integer p.
• Question: is there a vertex cover C of Gwith |C| ≤ p?
Thanks to this result we can now prove Theorem 4.

Proof of Theorem 4. Let k ≥ 3. Let G ∈ P 3 and p ≥ 0 be an instance of Min Vertex Cover in P 3;
let n and m respectively denote the number of vertices and edges in G. We give a polynomial time
construction of a graph G′ ∈ P 4k such that

G admits a vertex cover of size at most pif and only if (1)
G′ admits an identifying code of size at most p+ 3n+ km.

This will settle the polynomial reduction and thus prove the theorem. The construction goes as
follows: we keep the vertices of G but remove all edges. If two vertices a, bwere adjacent in G, via the
edge e = ab, we link them in G′ by a path Pab with 2k inner vertices. Finally, we link to every vertex
v of G a structure Sv which is depicted in Fig. 2. It will be convenient, in this construction, to see V (G)
as a subset of V (G′). An example of a transformation for a simple graph is depicted in Fig. 3.
Obviously, themaximumdegree ofG′ is themaximumdegree ofG plus 1 (because of the structures

Sv) and G′ is planar if G is. We can also note that since edges of G have been replaced by paths of length
2k+ 1, the girth of G′ is at least 3(2k+ 1) ≥ k. Thus G′ ∈ P 4k if G ∈ P 3, and the construction is clearly
polynomial when k is fixed.
We now prove (1). First, assume that C is a vertex cover of G with size at most p. Since V (G) is a

subset of V (G′) we can consider C as a code in G′. Let us start with C ′ := C and add vertices to C ′ in
order to build an identifying code of G′:
- for v ∈ V (G), we add to C ′ the vertices v0, v1 and v′1 in the corresponding structure Sv;
- for every edge ab of G, since C is a vertex cover of G we must have a ∈ C or b ∈ C; let us denote
by av1v2 · · · v2kb the vertices of the path aPabb, and suppose for instance that a ∈ C: then we add
to C ′ the vertices v2, v4, . . . , v2k of Pab.

1380 D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384

Fig. 3. An example of transformation for k = 4 in the proof of Theorem 4.

Fig. A.1. Computation of fid,co,adj,fn(v1, T): four cases.

By doing so, we obtain a code C ′ with size∣∣C ′∣∣ = |C| + 3n+ km ≤ p+ 3n+ km.
It remains to see that C ′ is an identifying code of G′. One can easily see that the structures Sv take

care of covering and identifying themselves and the vertices of G; thus we just have to look at what

D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384 1381

Fig. A.2. Computation of fid,co,adj,fn(v1, T): three cases.

Fig. A.3. Computation of fid,co,adj (v1, T): one case.

happens in the paths Pab where the conclusion follows as in the proof Lemma 5. Note in particular that
since C is a vertex cover of G, for every path Pab at least one of the vertices a and b is a codeword.
Conversely, suppose that C ′ is an identifying code of G′ with size at most p+ 3n+ km. Let us recall

that the vertices of G′ can be partitioned in the following way:

V (G′) = V (G) ∪
⋃
v∈V (G)

V (Sv) ∪
⋃
ab∈E(G)

V (Pab).

Then:

- for every v ∈ V (G), consider the vertices of Sv: v1 and v2 must be separated, so we must have
v0 ∈ C ′, and v2, as well as v′2, must be covered, so v1 ∈ C ′ or v2 ∈ C ′, and v′1 ∈ C ′ or v′2 ∈ C ′; all
in all, there are at least three codewords of C ′ in each Sv;
- for every edge ab ∈ E(G), by Lemma 5 the path Pab must count at least k+ 1 codewords if neither
a nor b belongs to C ′, whereas it must count at least k codewords in the general case.

Let q be the number of bad edges of G for the vertex cover, i.e. edges ab ∈ E(G) such that a 6∈ C ′

and b 6∈ C ′. Then we have∣∣C ′ ∩ V (G)∣∣ ≤ ∣∣C ′∣∣− 3n− (k+ 1)q− k(m− q)

1382 D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384

Fig. A.4. Computation of fid,co,adj(v1, T): four cases.

Fig. A.5. Computation of fco,adj,fn(v1, T): four cases.

and so since
∣∣C ′∣∣ ≤ p+ 3n+ km it follows that∣∣C ′ ∩ V (G)∣∣ ≤ p− q.

Thus C ′ ∩ V (G) is a code in G which may not be a vertex cover; but if we add q vertices to C (one for
every bad edge), we get a vertex cover of Gwith size at most p. �

D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384 1383

Fig. A.6. Computation of fco,adj,fn(v1, T): two cases.

Fig. A.7. Computation of fco,adj ,fn(v1, T): two cases.

Fig. A.8. Computation of fco,adj ,fn(v1, T): one case.

Fig. A.9. Computation of fco,adj(v1, T): two cases.

1384 D. Auger / European Journal of Combinatorics 31 (2010) 1372–1384

Fig. A.10. Computation of fco,adj (v1, T): one case.

Appendix

In the following (Figs. A.1–A.10), codewords are in black, whereas white vertices are not
codewords. An ellipse around some vertices with the label ‘fn ’ means that one of these vertices is
a favoured neighbour of v1 or v2.

References

[1] N. Bertrand, I. Charon, O. Hudry, A. Lobstein, 1-identifying codes on trees, Australasian Journal of Combinatorics 31 (2005)
21–35.

[2] M. Blidia, M. Chellali, F. Maffray, J. Moncel, A. Semri, Locating–domination and identifying codes in trees, Australasian
Journal of Combinatorics 39 (2007) 219–232.

[3] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, 2008.
[4] I. Charon, S. Gravier, O. Hudry, A. Lobstein, M. Mollard, J. Moncel, A linear algorithm for minimum 1-identifying codes in
oriented trees, Discrete Applied Mathematics 154 (2006) 1246–1253.

[5] I. Charon, O. Hudry, A. Lobstein, Minimizing the size of an identifying or locating–dominating code in a graph is NP-hard,
Theoretical Computer Science 290 (2003) 2109–2120.

[6] C.J. Colbourn, P.J. Slater, L.K. Stewart, Locating dominating sets in series parallel networks, Congressus Numerantium 56
(1987) 135–162.

[7] M.R. Garey, D.S. Johnson, Computers and Intractability: AGuide to the Theory ofNP-Completeness, Freeman, San Francisco,
1979.

[8] M.R. Garey, D.S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM Journal on Applied Mathematics 32
(4) (1977) 826–834.

[9] M.G. Karpovsky, K. Chakrabarty, L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Transactions
on Information Theory 44 (1998) 599–611.

[10] T. Laihonen, On cages admitting identifying codes, Eurpoean Journal of Combinatorics 29 (2008) 737–741.
[11] A. Lobstein, Bibliography on identifying, locating–dominating and discriminating codes in graphs, http://www.infres.enst.

fr/∼lobstein/debutBIBidetlocdom.pdf.
[12] P.J. Slater, Domination and location in acyclic graphs, Networks 17 (1987) 55–64.

http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf

	Minimal identifying codes in trees and planar graphs with large girth
	Introduction
	An algorithm for minimum identifying codes in trees
	Almost identifying codes
	Main and auxiliary functions
	The algorithm A I C

	Planar graphs with large girth
	Appendix
	References

