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Abstract The binding of urokinase (u-PA) to its cell surface 
receptor (u-PAR) is critical for tumor cell invasion. Here, we 
report that the disruption of this binding by an u-PAR antagonist 
ATF-HSA inhibits in vitro the motility of endothelial cells in a 
dose-dependent manner. This inhibition was also observed when 
the cells were first stimulated with potent angiogenic factors, 
including bFGF or VEGF. [3H]thymidine incorporation assay 
demonstrated that ATF-HSA did not affect the cell proliferation. 
ATF-HSA was more potent than plasmin inhibitors, suggesting 
that it exerts its effects not solely by inhibiting the remodeling of 
the extracellular matrix. In fact, analysis of the cell shape change 
during migration revealed for the first time that its effect is 
related to a decrease in cell deformability. These results suggest 
that u-PAR antagonist may be a new approach to control angio- 
genesis. 
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I. Introduction 

The urokinase-type plasminogen activator (u-PA) and its 
receptor (u-PAR), a 55 kDa glycoprotein linked to the cell 
membrane by a glycosylphosphatidylinositol anchor, plays an 
important role in cell migration and tissue remodeling. Migrat- 
ing cells distribute u-PAR selectively on the leading edge of the 
membranes and concentrate u-PA secreted either by themselves 
or by neighbouring stroma cells. The binding of u-PA to its 
receptor in turn greatly potentiates plasminogen/plasmin con- 
version on the cell surface [1]. This is an important observation 
because plasmin is a wide range serine protease which can 
directly degrade some of the components of the extracellular 
matrix, such as fibronectin or laminin, but can also promote 
local degradation of the stroma by converting inactive zymo- 
gens into active metalloproteinases [2,3]. It was also recently 
reported that u-PA/u-PAR is involved in cell adhesion by medi- 
ating cell attachment to vitronectin, a process which can occur 
with or without u-PA [4,5]. Furthermore, this attachment can 
be upmodulated by the binding of either u-PA or its amino- 
terminal fragment (ATF) which is implicated in the binding to 
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u-PAR [4,6]. |n  addition, u-PA activates the hepatocyte growth 
factor which is involved in angiogenesis [7]. Therefore, the 
u-PA/u-PAR system controls cell migration at multiple levels. 
For these reasons, u-PAR antagonists are viewed as potent 
antimetastatic agents. 

The involvement of u-PA/u-PAR in endothelial cell migra- 
tion is suggested by the demonstration that migrating endothe- 
lial cells secrete u-PA and express u-PAR and that u-PA secre- 
tion and u-PAR expression can be upregulated by stimulating 
the endothelial cells with basic fibroblast growth factor (bFGF) 
or vascular endothelial growth factor (VEGF) [8-12]. This is 
further confirmed by a recent study using u-PA / deficient 
mice which revealed a reduced reendothelialization after vascu- 
lar trauma in these mice [13]. This finding further strengthens 
the relationship between fibrinolysis system and angiogenesis. 
Because angiogenesis controls the processes of tumor develop- 
ment and metastasis [14], it is important to evaluate to what 
extent disruption of u-PA-binding to u-PAR can inhibit endo- 
thelial cell migration. 

We previously reported the design of a yeast-derived u-PAR 
antagonist in which the amino-terminal part of u-PA, ATF, was 
associated to human serum albumin (ATF-HSA). Apart from 
specifically displacing urokinase from its cell surface receptor, 
the hybrid molecule could also inhibit pro-urokinase-depend- 
ent plasminogen activation in the presence of u-PAR-bearing 
cells as well as in vitro tumor cell invasiveness [15]. In this study, 
we addressed the effect of the blockage of u-PAR by ATF-HSA 
or anti-u-PAR antibodies on the migration of endothelial cells 
and compared its effect with that of aprotinin, a potent inhibi- 
tor of plasmin. VEGF and bFGF were included in this study 
to stimulate the migration of endothelial cells and we found that 
u-PA/u-PAR disruption also reduced the motility of stimulated 
endothelial cells. The mechanisms by which the ATF-HSA 
molecule exerts its effects are discussed. 

2. Materials and methods 

2.1. Materials 
Monoclonal (#3936) and rabbit polyclonal antibodies raised against 

u-PAR were purchased from America Diagnostica (Greenwich, CT). 
Both types of antibodies inhibit the binding of u-PA to u-PAR. Aprot- 
inin was purchased from Bayer Pharma (Puteaux, France). The ATF- 
HSA chimeric protein is a Kluyveromyces-secreted u-PAR antagonist 
which has been previously described and characterized [15]. It is a 
genetic conjugate comprising human serum albumin (HSA), followed 
by the 1-135 amino-terminal fragment (ATF) of human urokinase. 
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Control Kluyveromyces-secreted HSA was purified as for the ATF- 
HSA hybrid. 

2.2. Cell culture 
Human umbilical vein endothelial cells (HUVEC) were isolated from 

fresh umbilical cords and cultured in 10-cm culture dishes with medium 
199 supplemented with 20% FCS, 2 mmol/1 L-glutamine, 105 IU/1 pen- 
icillin and 100 mg/l streptomycin (Gibco, Paisley, UK). HUVEC were 
used at passage 1 after the cells reached confluence. 

2.3. Migration assay of endothelial cells 
The migration assay was performed essentially as previously de- 

scribed [8]. After reaching confluence, HUVEC were removed from half 
of culture space by a cell scraper to stimulate their migration in a Rose 
chamber. The cells were then washed with the culture medium and fresh 
culture medium was added. The following agents were were perfused 
into the closed chamber to stimulate or inhibit cell migration: basic 
fibroblast growth factor (bFGF) (R & D systems, Abingdon, UK), 
vascular endothelial growth factor (VEGF, provided by Dr. J. Plouet, 
UPR 9006, CNRS, Toulouse, France), aprotinin, ATF-HSA, or anti- 
bodies specific to u-PAR. Cell motility was recorded by microcinemato- 
graphic techniques. The displacement of the cell migration frontier was 
recorded every 5 min for 2 days. The migration rate of the cells was 
determined by measuring the displacement of the migration edges dur- 
ing this incubation period. 

2.4. Cell deformability analysis 
Quiescent confluent endothelial cells have a typical oval shape. Upon 

entering into a migrating phenotype, their shape becomes irregular due 
to the emission of pseudopods. The length of perimeter of the cell is 
indeed proportional to the cell migration rate. In addition, the faster 
the cells migrate, the more frequently the cells change their shape. These 
principles allowed us to determine the cell deformability during migra- 
tion by continuous shape-recording using microcinematography. We 
determined the shape factor (SF) of individual cells by measuring the 
ratio of the cell perimeter to the cell surface (SF = perimeter2/4Hsur - 
face; SF = 1 for a circle, while higher values are obtained when the cells 
emit their pseudopods). SF is, therefore, indicative of the deformability 
of the cells during migration. Following microcinematography, the 
images were processed in a Samba 2005 analyser (AlcateI TITN, Greno- 
ble, France). SF determination was performed for randomly selected 
endothelial cells incubated in the presence of ATF-HSA (100 nmol/l) 
or recombinant HSA (control, 100 nmol/l) for a duration of 1 3 h with 
10-rain intervals. Statistical studies was performed using Student's 
t-test. 

2.5. Incorporation of [3H]thymidine 
Cells were cultured in the presence or absence o fbFGF (20/~g/l), with 

or without 500 nmol/l ATF-HSA for 24 h. 1 mmol/t of [3H]methyl 
thymidine (Amersham) was then added and the cells were further incu- 
bated for 18 h. Samples were collected using a Skatron harvester (Ska- 
tron, Lier, Norway) and incorporated [3H]thymidine was measured in 
a liquid scintillation counter. Experiments were done in triplicate. 

3 .  R e s u l t s  

3.1. Cell motility 
In this study, wound  crea t ion  was used to induce cell migra-  

tion. Cell migra t ion  rate was calculated with the data  of  the 
shift ing of  migra t ion  edges. The  effect of  b F G F  and  V E G F  in 
endothel ia l  cell moti l i ty  was first evaluated.  As expected, these 
two wel l -known angiogenic  factors were able to accelerate en- 
dothel ial  cell migra t ion  in a dose-dependent  manner .  At  opti-  
mal  concen t ra t ion  (20/zg/1), each angiogenic  factor  can increase 
cell moti l i ty  by 2-fold. The  ampl i tude  of  this effect was maxim al 
af ter  24 h for b F G F ,  while it was 36 h for V E G F  at the opt imal  
concent ra t ion .  These condi t ions  were thus retained when 
b F G F  and  V E G F  were used t h r o u g h o u t  this study. 

The effect of  specifically b locking the b inding u-PA to its cell 
surface receptor  for  endothel ia l  cells mobil i ty  was then investi- 
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Fig. 1. Inhibition of HUVEC migration by blockage of the u-PAR. 
(A) Inhibition of HUVEC migration in the absence of angiogenic factor 
by 
ATF-HSA at the indicated concentrations and aprotinin at 2/~mol/1. 
After wound creation, ATF-HSA and aprotinin (2/1moll1) were added 
to the culture and the displacement of migration frontier was recorded 
after 24 b. (B) Inhibition of HUVEC migration in the presence o fbFGF 
(20 ,ug/1) by ATF-HSA hybrid and a monoclonal antibody specific to 
u-PAR (10 rag/l). The displacement of the migration frontier was re- 
corded after 24 h incubation. (C) Inhibition of HUVEC migration in 
the presence of VEGF (20/1g/l) by ATF-HSA (100 nmol/1) and by a 
polyclonal antiserum raised against u-PAR (1:100 dilution). The dis- 
placement of migration frontier was recorded after 36 h incubation 
(n -> 4, mean + S.E.M.). *P < 0.05. 

gated. As shown in Fig. 1, the A T F - H S A  molecule inhibi ted the 
migra t ion  of  endothel ia l  cells in a dose-dependent  manner ,  even 
when  migra t ion  was s t imulated with opt imal  concent ra t ions  of 
b F G F  (Fig. 1A,B) or V E G F  (Fig. 1C). H U V E C  migra t ion  was 
also significantly inhibi ted when  monoc lona l  or polyclonal  an- 
t ibodies directed against  u -PAR at sa turable  concent ra t ions  
were used, while r ecombinan t  HSA and irrelevant  immuno-  
globulins had  no  effect. Apro t in in ,  a potent  p lasmin inhibi tor ,  
also inhibi ted endothel ia l  cell migra t ion  but  showed limited 
effect even at a very high concen t ra t ion  (2 ,umol/l), which effi- 
ciently blocks plasmin activity (K~ = lnmol/1) (Fig. 1A). 

3.2. Cell proliferation 
The cell migra t ion  rate is usually associated with the cell 

prol i ferat ion rate, since mos t  growth factors s t imulate bo th  cell 
prol i ferat ion and  migrat ion.  F o r  this reason, the effect of  ATF-  
HSA on endothel ia l  cell prol i ferat ion was also evaluated using 
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Fig. 2. Cell shape change in control endothelial cells and ATF-HSA- 
treated endothelial cells. HUVEC cells were cultured to confluence. A 
wound was then created to induce cell migration. HSA (control cells) 
or ATF-HSA was infused at 100 nmol/l into the Rose chamber. After 
recording the cell migration, cell images was transfered to an image- 
analyser. The two series of the images given by image-analyser are 
showed here to represent the difference of the dynamic shape change 
of HSA- (control) or ATF-HSA-treated cells during a period of 200 rain 
migration. Each series contains 6 images of the contour of one cell 
during its migration, but recorded at different times after wound crea- 
tion as indicated. 

[3H]thymidine incorporat ion assay. The results showed that 
A T F - H S A  had no effect on endothelial cell proliferation: 
[3H]thymidine incorporat ion was at same rate either in the 
presence or in the absence of  A T F - H S A  (2200 + 50 cpm vs. 
2150 + 120 cpm, n = 6, mean + S.D.). Stimulatory effect of  
b F G F  was also not  influenced by the presence of  the u-PAR 
antagonist  (6450 _+ 250 cpm vs. 6300 + 190 cpm for control,  
n -- 6, mean +_ S.D.). Thus, ATF-HSA-media ted  inhibition of  
cell migrat ion was not due to an inhibition o f  cell proliferation. 

3.3. Cell deformability 
Using microcinematography recording of  the migrating en- 

dothelial cells, we observed that the cells became rigid in the 
presence of  ATF-HSA.  As shown in (Fig. 2), after wound 
creation, the shape of  HSA-treated cells quickly became irreg- 
ular with the formation of  pseudopods on moving cells while 
the shape change o f  ATF-HSA-t rea ted  cells was inhibited. This 
inhibition of  the cell shape change or the reduction of  cell 
deformabili ty prompted  us to accurately quantify this morpho-  
logical change by analysing the cell contours recorded by a 
microcinematography with an image-analyser. The quick shape 
change of  control  cells was indicated by the increase in SF 
values following the wound creation [2.3 + 0.3 (t = 0 min) vs. 
2.7 + 0.2 (t = 60 min), n = 10, P < 0.02]. In contrast, the SF of  
ATF-HSA-t rea ted  cells did not  increase as for the control cells 
[2 .3+0 .15  ( t - - 0  min) vs. 2 . 2 + 0 . 2  ( t = 6 0  min), n = 1 0 ,  
P > 0.05]. No  significant difference in SF is apparent  for HSA- 
or  ATF-HSA-t rea ted  cells before the induction of  cell migra- 
tion by wound creation. This difference in cell deformabili ty 
was observed throughout  the durat ion of  the microcinemato-  
graphic record, al though we only presented the data from a 
limited period of  time (Fig. 3). 

7. D i scuss ion  

Receptor-bound urokinase is crucial for tumor  cell and endo- 
helial cell migrat ion [1-3,11,12,16]. In this study, we investi- 
gated the effect of  blockage of  u-PAR by a yeast-secreted ATF- 
-ISA hybrid molecule in the in vitro migrat ion of  endothelial 
'.ells by microcinematography.  

We demonstrated that the motil i ty of  unstimulated endothe- 

lial cells can be inhibited in a dose-dependent manner  by dis- 
rupting the u-PA/u-PAR interaction with the A T F - H S A  mole- 
cule. This dose-dependent inhibitory effect was also observed 
with both b F G F -  and VEGF-s t imula ted  endothelial cells. This 
dose-effect range of  A T F - H S A  for inhibiting endothelial cell 
migrat ion is in good agreement with our previous results which 
showed a requirement of  about  100 nmol/1 to significantly in- 
hibit plasminogen activation by urokinase on cell surfaces and 
tumor  cell migrat ion [15]. The inhibitory effect was also 
achieved by the use of  both polyclonal and monoclonal  anti- 
bodies raised against u-PAR and which inhibit the binding of 
u-PA. These results indicated that the u-PA/u-PAR system is 
likely a crucial determinant for the motility of  endothelial cells. 

A previous study reported a proliferative effect induced by 
ATF-binding to u-PAR on an osteoblastic cell line [17]. There- 
fore, we have investigated the effect of  A T F - H S A  on the prolif- 
eration of  endothelial cells using [3H]thymidine incorporat ion 
method. Since, basal and bFGF-s t imula ted  cell proliferation 
were not  modified by the addit ion of  ATF-HSA,  we concluded 
that the inhibitory effect exerted by the A T F - H S A  molecule on 
endothelial cell migrat ion was not due to an inhibition of  cell 
proliferation. 

The mechanisms involved in the inhibitory effect mediated 
by the A T F - H S A  hybrid or the antibodies against u-PAR can 
be multifactorials. First, modulat ion of  cell surface u-PA activ- 
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Fig. 3. SF evolution in ATF-HSA-treated endothelial cells HUVEC 
cells were cultured to confluence. A wound was then created and HSA 
(A) or ATF-HSA (B) was infused at 100 nmol/l into a closed Rose 
chamber and the migration frontier was photographed at 10-min inter- 
val. The recorded cell shapes within the scope were treated with a 
Samba 2005 Image-analyser. Each curve represents the SF values of a 
randomly selected individual cell in the migration frontier. 
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ity may be involved. It has previously been shown that plasmin- 
ogen activation by scu-PA was greatly enhanced when both 
molecules were bound to their respective surface receptors [1]. 
Bound u-PA could activate plasminogen which in turn could 
promote the direct degradation/remodeling of the extracellular 
matrix as this proteolytic process is essential for cell mobility 
[2]. This u-PA activity is involved also in the in situ activation 
or liberation of angiogenic factors, such as H G F  and b F G F  
[7,12]. However, the inhibit ion of plasmin generation by our 
hybrid molecule is certainly not  the only mechanism to explain 
the ATF-HSA-induced inhibit ion of endothelial cell migration 
because aprotinin inhibits plasmin with K i about  1 nmol/l, while 
at 2 gmol/1 its effect was less efficient than the u-PAR antago- 
nists on the inhibit ion of cell motility. Second, modulat ion of 
cell adhesion by u-PAR antagonists may also be involved as it 
has been shown that both u-PA and u-PAR binds to vitronectin 
[4,5]. Interestingly, u-PAR affinity for vitronectin is modulated 
by the binding of u-PA or its amino-terminal  fragment [4]. This 
cell at tachment may be limited in time when u-PA is bound to 
u-PAR because the complex u-PA/u-PAR can be internalized 
[18]. In such model, the saturation of u-PAR by the anti-u-PAR 
antibodies or the ATF-HSA hybrid would decrease cell motility 
by disrupting a cont inuous loop of adhesion and detachment 
during cell movement.  This interpretation is in good agreement 
with our result of  a decreased deformability of endothelial cells 
in the presence of ATF-HSA or anti-u-PAR antibodies. Cell 
deformability during migration was directly observed with mi- 
crocinematography technique. This method allowed us to de- 
termine SF evolution during cell movement  in order to describe 
a dynamic process of membrane  extension and retraction. The 
significant reduction by ATF-HSA of the rate of SF change 
during endothelial cell movement  supports the hypothesis that 
u-PA/u-PAR interaction is involved in the adhesion and de- 
adhesion process of cell movement  [4]. However, the list of  the 
biological events induced by u-PA/u-PAR interaction are still 
growing. For  example, a mechanism of u-PAR-mediated me- 
chanical force transfer has been recently suggested by the study 
in which an increased stiffness of cell membranes of myoblasts 
induced by u-PAR specific antibodies was observed [19]. u- 
PAR-mediated transmission of signals has also been suggested 
[20]. Most importantly, the recent demonstrat ion that u-PAR, 
flz-integrin and Src-kinase form a single complex on cell surface 
suggested a u-PAR-mediated coordinated action of extracellu- 
lar proteolysis, adhesion and cell activation at the right time 
and place during cell movement  [21]. In that respect, our results 
imply that u-PAR antagonists could interfere with a variety of 
actions that occur during cell movement.  Further  studies are 
needed to illustrate these speculations. 

To produce clinical benefits, antimetastatic drugs would 
likely have to inhibit both tumor invasion and angiogenesis [13]. 
The ATF-HSA molecule of this study can disrupt the binding 
of u-PA to u-PAR and inhibits both tumor cell invasiveness [15] 
and endothelial cell migration, even when the latter were stim- 
ulated with major tumor-associated angiogenic factors, such as 
b F G F  or V E G F  [22]. This inhibitory effect on endothelial cell 
migration is particularly interesting for angiogenesis which is 
an absolute requirement for both tumor growth and metastasis, 
while u-PAR is not  ubiquitously present on the tumor cells. 

Because of specificity of species for u-PAR recognition by u- 
PA, the antiangiogenic property of human ATF-HSA could 
not  be studied in vivo with available angiogenesis model. Fur- 
ther studies with u-PAR antagonist  of non-human origin will 
answer whether uPAR blockage will exhibit ant i tumoral  and 
antiangiogenic effects in vivo. 
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