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Abstract-The expectation of a dynamical variable satisfying a general nonlinear diffusion equation 
with small random fluctuations about an equilibrium point is found to order cz. The dependence 
of the magnitude and direction of shift of the mean from the equilibrium on the properties of the 
nonlinear term is established. 

1. INTRODUCTION 

There has been much interest recently in stochastic effects in nonlinear dynamical systems [l]. 
Nonlinear partial differential equations with random forcing terms have particularly attracted 
much attention. Such equations have occurred in various areas of physics and biophysics. 
One important application in physics has been in the stochastic quantization of field theor- 
ies [2-41, whereas similar equations, and in particular the Ginzburg-Landau equation, have arisen 
in stastistical mechanics [5,6]. In biophysics, nonlinear random diffusions arise when considering 
randomly occurring conductance changes in nerve cell membranes. Deterministically, the voltage 
changes accompanying conductance changes at the microscopic or macroscopic level can be pre- 
dicted using the Hodgkin-Huxley equations [7]. A system of equations with similar properties is 
that of Fitzhugh-Nagumo, whose reduced form coincides with a Ginzburg-Landau equation. The 
reduced form of that equation with white noise stimulation has been considered previously [S]. 

In this paper, we will give a result for the general nonlinear diffusion driven by two-parameter 
white noise: 

111 = UZZ + g(u) + cl%:, (1) 

where {W(z,t), t E (-co,oo), i 2 0) is a standard 2-parameter Wiener process, i.e., a Gaussian 
process with 

E(Wz, W(Y, s)) = fin(s, Y) min(s,t), 

(I is a small real constant, and g is a function at least twice differentiable at equilibrium points, 
~0, where g(u0) = 0. The domain of u(t,t) is -oo < a < x _< b 5 oo and t 5 0. The second 
mixed partial derivative w = W,t is called ‘L-parameter white noise and we have formally 

W(z,t) = = 
JJ 

t 

W(Y, s) ds dY. 
0 0 

We will demonstrate that when a dynamical system is randomly perturbed, as in equation (l), 
about an asymptotically stable point ue, then the mean value of U(Z, t), denoted by E(u(z, t)), is 
shifted above or below the equilibrium point according to whether the second derivative g”(u0) 
is positive or negative. This phenomenon occurs even though the additive noise has zero mean. 
Expressions will be given from which the displacement can be calculated. 
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2. DERIVATION AND DISCUSSION 

Since c is small, we put 

kc1 

(2) 

assuming that initially u(z,a) = ue for all z E [a, b], and that suitable boundary conditions are 
given at z = a and z = b. It is further assumed that uc is an asymptotically stable solution 
with g’(us) < 0. We note that the added noise in (1) has zero mean but that an added constant 
simply has the effect of changing ue. To obtain E(u) to order c2 we need E(ur) and E(~1z). 

Substituting (2) in (1) and equating coefficients of powers of E gives a sequence of stochastic 
partial differential equations for the uk, whose first two members are 

u1,t = Ul,rt + s’(uo) Ul + Wztr (3) 

s”(Uo) 2 
U2,: = U2,r.z + g’(u0) u2 + TU’. 

Each equation in the sequence is linear and has the same kernel. Existence and uniqueness of 
solutions of (1) and a mode of convergence of the perturbative expansion (2) have been established 
previously [9]. 

Equation (3), which is linear, has been studied in detail [lo]. Its solution, since ui(t, 0) = 0, 
almost surely, is t b 

Ul(Z, q = JJ ‘3~ Y; t - s) ~WY, s), 
0 a 

where the integral is a stochastic integral with respect to a two-parameter 
and G is the Green’s function for 

at = %z + g’(uo)u. 

(5) 

Wiener process [ll] 

Thus, G = eg’(“o)‘G~ where GH is the Green’s function for the usual heat equation ut = Urz . 
From the properties of stochastic integrals, it follows that E(ur(z, t)) = 0. 

In addition, we have, with probability one, uz(z,O) = 0. Hence, from (4) one gets 

s”(Uo) t b 
uz(z,t) = pr 

. JJ 
G(z, y; t - s) t&y, s) dy ds. 

0 a 

Hence, we have 

qu(t, t)) = uo + ;rwuo) 1’ J” G(t, y;t - s)E[u:(y,s)] dyds + O(P). (6) 
a 

Since E(uf) can be found from the integral representation of ur, an explicit expression for E(u) 
to order c2 is readily obtained. 

Now G(t, y;t - s) > 0 for all z and for all t > 0. Furthermore, u: is nonnegative with 

probability 1, so the integral in the expression for uz is positive and so is its expectation. Thus, 
E(uz) has the sign of g”(u0). This enables one to write 

E(u) = uo + ita sgn (g”(uo))lFI + O(P), 

where 

F= (g”(uo)ljotj)G(.,y;l-s)E[u:(y,s)]dyds. 
(I 

This shows that the direction of shift of the mean is up from the equilibrium point if g has a 
positive second derivative at the equilibrium point and down if the second derivative is negative. 
The magnitude of the shift is given by the above expression. 
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It is apparent that this result is true if the noise is restricted to any subset A of [a,b]. That is, 

u satifies 

ut = u,, + g(u) + IA(t) Wad, 

where IA(z) is the indicator of A defined by IA = 1, z E A, IA = 0, I $! A. Similar statements 
apply to any restriction of the time interval of application of the noise to any subset of [O,co). 

We may also consider the effects of a random impulsive forcing term such as that which arises 
when the Wiener process in (1) is replaced by the difference of two Poisson processes. Thus, 
let {II+(z,t), 2 E (-oo,oo), t > 0) and {II-(2, t), z E (--00, oo), t > 0) be two independent 
2-parameter Poisson processes v%h the same intensity, X, such that II*(z, t) are Poisson random 
variables with means Act. Then a similar result is true for the mean of solutions of 

in relation to an equilibrium point. This applies also to any case in which the Poisson processes 
are restricted to any subset of [a,b] x [O,oo). These conclusions follow by replacing dW in 
expression (5) for u~(z, t) by d(II+ - II-). A further extension is to the case of a combination of 
independent Gaussian and Poisson white noises. 

In the case of (1) with 
g(u) = u(u - a)(1 - u), 

where 0 < a < 1, we obtain the Ginzburg-Landau equation of statistical mechanics [5] or the 
Fitzhugh-Nagumo equation of biophysics [12] with random perturbations. Explicit expressions 
for the mean to order c2 have been derived and evaluated on bounded intervals with Neumann 
conditions at the end points [13]. 

The displacement of the mean of u(z, t) from UO, when there is present a small random white 
noise term, has important ramifications for the measurement of the positions of equilibrium 
points in physical, chemical, and biological systems. Thus, any estimate of an equilibrium point 
of a distributed nonlinear system satisfying a diffusion equation, obtained in the presence of 
background noise which may be approximated by any of those considered here, and made by 
averaging an experimental recording, will give a value displaced away from the true equilibrium 
point in a direction which depends on the sign of the second derivative of the nonlinear term. 
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