Objective: To estimate the cost-effectiveness of conducting genetic testing in first-degree relatives of patients with Hypertrophic Cardiomyopathy (HCM), Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), Long QT Syndrome (LQTS), Brugada Syndrome (BrS) or Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT).

Methods: A Markov model was developed to determine the cost per life-year gained (LYG) and the symptom-free years (SFT) gained by using genetic testing in first-degree relatives of patients with these cardiomyopathies. The comparator was the real world clinical practice (with no genetic testing) for all gene-related cardiomyopathies.

Results: Genetic testing prevents sudden cardiac death (SCD) in asymptomatic first-degree relatives of patients with established inherited cardiopathies. The objective is to estimate the cost-effectiveness of conducting genetic testing in first-degree relatives of patients with Hypertrophic Cardiomyopathy (HCM), Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), Long QT Syndrome (LQTS), Brugada Syndrome (BrS) or Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT).

Conclusions: In all scenarios, genetic testing was cost-effective compared with usual practice. Sensitivity analyses confirmed the consistency of results.

PND33

Cost-Effectiveness Analysis of Genetic Testing of First-Degree Relatives at Risk of Sudden Cardiac Death Due to Gene-Related Cardiomyopathies in Spain: Preliminary Results

Fernández I1, García-Pavía P2, Ripoll T3, Boldeanu A4, Gracia A5, Ramirez de Arellano A5, Far V6, and regarding HCMT, ARVC and BrS was almost equally effective and less costly compared with usual practice. Sensitivity analyses confirmed the consistency of results.

Conclusions: Compared to current practice with no screening, genetic testing in first-degree relatives at risk of SCD is cost-effective for HCM, ARVC, BrS, CPTV and LQTS in Spain.

PND34

Long-Term Effects on Costs and Quality Adjusted Life Years of Patients with Relapsing-Remitting Multiple Sclerosis Treated with Laquinimod: Results Based on the ALLEGRO and BRAVO Trials

LONG-TERM EFFECTS ON COSTS AND QUALITY ADJUSTED LIFE YEARS OF PATIENTS WITH RELAPSING-REMITTING MULTIPLE SCLEROSIS TREATED WITH LAQUINIMOD: RESULTS BASED ON THE ALLEGRO AND BRAVO TRIALS

Lange A1, Tuomari A1, Kobelt G2, Lindgren M3

OBJECTIVES: The objective is to estimate the efficacy and cost-effectiveness of conducting genetic testing in first-degree relatives of patients with HCM, ARVC, BrS or CPTV.

Methods: A Markov model was developed to determine the cost per QALY and the symptom-free years gained by using genetic testing in first-degree relatives of patients with these cardiomyopathies. The comparator was the real world clinical practice (with no genetic testing) for all gene-related cardiomyopathies.

Results: Genetic testing prevents sudden cardiac death (SCD) in asymptomatic first-degree relatives of patients with established inherited cardiopathies. The objective is to estimate the cost-effectiveness of conducting genetic testing in first-degree relatives of patients with Hypertrophic Cardiomyopathy (HCM), Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), Long QT Syndrome (LQTS), Brugada Syndrome (BrS) or Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT).

Conclusions: In all scenarios, genetic testing was cost-effective compared with usual practice. Sensitivity analyses confirmed the consistency of results.

Conclusions: Compared to current practice with no screening, genetic testing in first-degree relatives at risk of SCD is cost-effective for HCM, ARVC, BrS, CPTV and LQTS in Spain.