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A test of the performance of two probabilistic classifiers (random forests and multinomial logit models)
in automatically defining cancer cases has been carried out on 5608 subjects, registered by the Venetian
Tumour Registry (RTV) during the years 1987–1996 and manually checked for possible second cancers
that occurred during the 1997–1999 period.

An eightfold cross-validation was performed to estimate the classification error; 63 predictive variables
were entered into the model fitting. The random forest allows to automatically classify 45% of subjects
with a classification error lower than 5%, while the corresponding error is 31% for the multilogit model.
The performance of the former classifier is appealing, indicating a potential drop of manually checked
cases from 1750 to 960 per incidence year with a moderate error rate. This result suggests to refine
the approach and extend it to other categories of manually treated cases.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In most cancer registries, the evaluation of available diag-
nostic evidence and the decision about whether to register a
case or not is carried out exclusively by registration techni-
cians. Only in a relatively small number of registries, a substan-
tial part of cases are accepted in an automatic fashion [1] and
manual evaluation is restricted to those cases whose evidence
is not concordant or is insufficient. The main reason for adopt-
ing automatic decision procedures is that they allow for a
reduction of the unitary cost (i.e. cost per registered case) of
a registration system.

Each registry has implemented its own set of automatic
acceptance rules but, in almost all instances, the share of auto-
matically registered cases is far from 100%. Therefore, the ques-
tion arises about whether and how feasible it is to further
reduce the burden of manual registration.

In the Venetian Tumour Registry (Registro Tumori del Veneto,
RTV), which has relied on automatic evaluation programmes since
its beginning [2,3], the percentage of automatic acceptance on the
total number of registered cases is around 55%. Approximately,
8000 subjects per registration year must be manually evaluated,
on a population base of two million residents.
ll rights reserved.
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Three types of rejection account for most of manually defined
cases:

1) About 30% are rejected because referred only by hospital dis-
charge records, without confirmation by pathology records
and/or death certificates;

2) In 27% of instances, the programme is unable to choose
among a series of disagreeing diagnoses;

3) In another 22% of cases, the programme does not state
whether a second cancer really occurred or not, since recent
diagnoses are discordant with a previously registered
cancer.

The remaining occurrences sum up to 21%, and include various
types of situations, like childhood cases and unlikely or rare
tumours.

In general, cases are manually evaluated when the available
diagnoses do not agree or their diagnostic base is regarded as
‘‘weak”, i.e. not precise or not very reliable. An experienced cancer
registrar may very often draw a conclusion about the case by sim-
ply using the same information submitted to the decision pro-
gramme, otherwise further information sources (clinical records,
diagnostic records in verbal form) are examined. Informative
items, already available but not exploited by the decision pro-
gramme, like surgical interventions and therapies, can often be
decisive to define the case. To embed the solving rules applied by
the registrar into a computer programme, however, may be quite
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difficult, since the situations are more complex than those solved
by the existing programmes.

As an alternative to algorithms based on deterministic rules, we
could think of applying probabilistic models, commonly used for
forecasting in several contexts but poorly considered in automatic
cancer registration. Case definition can be seen as a classification
problem in a ‘‘supervised learning” frame [4]. In simpler words,
we may classify a subject as an incident cancer case rather than
a ‘‘false positive”, based on the available diagnostic evidence, and
other relevant characteristics (age, sex, treatment) using a conve-
nient statistical model, fitted on a set of subjects already manually
classified and referred to as ‘‘training” set. The resulting model is
used to classify a second set of subjects, always with known clas-
sification, and called ‘‘test” set, in order to determine the classifica-
tion error. If such an error is sufficiently low, the model can be
applied to new candidates.

To reduce the probability of underestimating the classification
error, more than one test set is generally used. This is usually done
by deriving several training and test sets from the available data
(‘‘learning” set), using cross-validation or bootstrap sampling.

The present paper deals with an exploratory application of such
an approach to the third category of manually evaluated subjects,
formerly outlined with regard to RTV.
2. Methods

A summary of data processing steps is shown in Fig. 1.

2.1. Learning set and outcome variable

The exercise was carried out on a set of 5608 subjects, regis-
tered as cancer cases during the period 1987–1996. All were scru-
tinized by RTV registration personnel to update the incidence data
Fig. 1. Summary of variable mod
for the 1997–1999 period, for new diagnoses that were discordant
with previously registered tumours.

Usually, one of these diagnoses is the most likely to be regis-
tered as a new cancer. Such site was individuated, by ordering dis-
cordant sites by combination of diagnostic sources, base of
diagnosis and number of diagnoses reporting the site. For example,
a diagnosis referred both from hospital discharge and pathology
records has higher evidence than one based on a pathology source
alone, which in turn has higher evidence than one reported exclu-
sively by a hospital discharge record.

The outcome variable was categorized into the following four
levels:

1. PREV: case confirmed as prevalent with no relevant modifica-
tions (3048 subjects, 54.4%);

2. NEW1: case confirmed and adding a new cancer (except for
non-melanotic skin cancers), corresponding to the recent diag-
nosis with strongest evidence (1905 subjects, 34%);

3. NEW2: case confirmed and adding a new cancer (except for
non-melanotic skin cancers), not corresponding to the recent
diagnosis with strongest evidence, or adding more than one
cancer (266 subjects, 4.8%);

4. MOD: case whose registered cancer was substantially modified
or not confirmed, irrespective of the possible recognition of a
further cancer (389 subjects, 6.9%).

The analysis was focused on assessing to what extent the auto-
matic identification of the first two outcomes allows acceptable er-
ror rates.

To this aim, we chose to use multinomial logistic models [5] and
random forests [6], since, they allow to identify those predictive vari-
ables playing a major role in classification; an issue of great interest,
particularly in an exploratory phase, which other methods, like dis-
criminant analysis and neural networks, are not well suited to.
elling and classifier fitting.
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2.2. Predictive variables

The predictive variables entered into the classification models
are listed in Table 1. The following definitions and terms apply to
several variables:

� Tumour sites are coded following the ICD-9 nomenclature [7];
� Histological groups are those groups of malignant neoplasms

considered to be histologically ‘different’ for the purpose of
defining multiple cancers [8];

� Diagnostic base is coded using five ordinal levels: 0 = only death
certificate, 1 = clinical, 2 = cytological, 3 = histology of metasta-
sis, 4 = histology or autopsy of primary site;

� The combination of sources reporting a diagnosis is coded using
six ordinal levels: 1 = DC, 2 = H, 3 = P, 4 = H + DC, 5 = H + P or
DC + P, 6 = H + P + DC (where H, P, DC indicate, respectively, hos-
pital discharge records, pathology records, and death
certificates);

� Indicator variables assume only values 1 or 0, depending on the
existence of the named characteristic.

The items related to the recent diagnoses are grouped according
to a categorization, applied by the evaluation programme in use
[2,3], and based on the level of agreement with the registered tu-
mours. In short, a diagnosis may be:

� concordant, when the site is the same as a registered cancer;
� compatible, when reporting:

- an ill-defined or unknown primary cancer site or a
metastasis;

- a non melanotic skin cancer or a non malignant tumour;
- some primary sites different from a neighbouring registered

site;
- discordant, when reporting a primary site different from all

registered sites, and neighbouring with none of them.

Three particular groups of informative items were drawn from
hospital discharge records:

� diagnosis-related group of hospitalization (DRG) mentioning a
tumour;

� codes of the ICD-9 supplementary classification of factors influ-
encing health status (V codes) mentioning a tumour;

� chemotherapy and radiotherapy treatment, derived from DRG, V
codes or medical procedures ICD-9 CM codes.

These items were associated to the registered cancer or to a re-
cent diagnosis, according to the ICD-9 site reported in the same
discharge record.

2.3. Multinomial logistic models

To reduce computational problems caused by sparse data, a
multinomial logistic analysis was carried out considering only
three classes, by grouping the two less frequent outcomes
(NEW2 and MOD). On the whole learning set, logistic regressions
were fitted for the logits of the aggregate class versus NEW1 and
of class PREV versus NEW, using the LOGISTIC procedure of the
SAS package [9]; in addition to the complete model (63 variables),
another three models were fitted, using only the relevant predic-
tive variables detected by stepwise (31 variables), backward (37
variables) and forward (36 variables) selection.

The importance measure used to rank variables is Wald {2

[5,10], a statistic usually used to test the significance of a specific
variable. The partial effect of a variable, on the target outcome
probabilities, is expressed by the regression coefficient of the logit
of PREV versus NEW1.

2.4. Random forest classifiers

Considering all the four outcomes, a random forest of 500 clas-
sification trees was ‘‘grown” on the learning set and the predictive
variables were ranked by a measure of importance, called ‘‘mean
decrease in accuracy”; another two forests of the same size were
then grown, using only the 32 and 42 most important variables.
The ‘‘random Forest” package for R environment [11] was used
for calculations.

The mean decrease in accuracy is the average, over all trees, of
the difference between the number of correct classifications ob-
tained using the actual values of a variable and the number ob-
tained using random permutations of them. On average, this
difference is expected to be high when a variable has a strong dis-
criminating power, because the classifier fails more often when the
true values are substituted by random ones.

The effect of a variable on each target outcome probability is de-
scribed by a partial dependence function, which associates, to each
value of the variable concerned, the average over the subjects
exhibiting that value of the logits of the predicted probabilities
for the specific outcome.

2.5. Cross-validation

To estimate the classification error and the proportion of cases
automatically assigned to the classes PREV and NEW1, an eightfold
cross-validation has been performed.

Firstly, the learning set was partitioned according to the regis-
tered cancer site in fourteen strata, plus a further stratum for mul-
tiple cancers; subsequently, each stratum was randomly split into
eight subsets of equal size (in total 701 subjects per set). Thus, each
fold should be representative of the whole learning set, since each
registered cancer site appears with the same proportion. The strata
list includes: oral cavity, colon and rectum, other digestive organs,
larynx, lung, breast, soft tissues and melanoma, female genital or-
gans, prostate, urinary organs, lymphomas, leukemias and myelo-
mas, other specified site, ill-defined or unknown site.

Secondly, for each subset, the following steps were iterated:

a. The cases falling into the other seven sets were used as a
training set and all the models, mentioned in the previous
paragraphs, were fitted;

b. The fitted models were applied to the subjects belonging to
the current fold, used as a test set, in order to calculate the
predicted probabilities of the two target outcomes;

c. Each case was then assigned to one of such outcomes, if the
corresponding probability was greater or equal to a given
threshold P. Such an attribution was compared with the man-
ual outcome, to individuate wrong classifications. Varying P
from 0.50 to 0.99, two curves were determined for each model:
- The error curve, which shows the variation in the percent-

age of individuals wrongly classified over the classified
ones (error rate);

- The efficacy curve, which shows the variation in the pro-
portion of individuals classified in the test set (classifica-
tion rate).

Thirdly, the two curves were averaged over the eight subsets, to
obtain the mean error and mean efficacy curves, as well as the
curves of their standard errors and coefficients of variation (ratio
of the standard error to the mean).

Finally, a ‘‘trade-off” curve was obtained for each model, by
matching the mean error rate and the mean classification rate hav-



Table 1
Predictive variables used for classification

Variable group Description Label

Demographic data Gender SEX
Age class at the incidence date of the earliest tumour with worst behaviour
registered

AGE

Registered tumours Number of further primary cancers, not melanotic skin cancers excluded NPRIM2
Number of not malignant tumours and not melanotic skin cancers NIGN
Site or group of sites of the first primary cancer CLASTUM1
Site or group of sites of the second primary cancer CLASTUM2
Histological group of the first primary cancer ISTGRUP1
Histological group of the second primary cancer ISTGRUP2
Highest diagnostic base among primary cancers BASE

Recent diagnoses concordant with a registered cancer Number of concordant diagnoses NUM_CON
Indicator of difference in histological group with respect to the registered
cancer

ISTDIF_CON

Highest diagnostic base among concordant diagnoses BASE_CON
Sources of concordant diagnoses SOUR_CON

Recent diagnoses not concordant with registered cancers Proportion of recent diagnoses not concordant PERC_NOCON
Indicator of difference in histological group with respect to the registered
cancer

ISTDIFF

Time interval between the last registered cancer and the most discordant
diagnosis

DATDIF_D

Recent diagnoses not concordant but ‘‘compatible” with registered
cancers

Number of diagnoses referring cancer of oral cavity or larinx C10
Number of diagnoses referring cancer of digestive organs C11_14
Number of diagnoses referring cancer of respiratory organs C15_16
Number of diagnoses referring cancer of female genital organs C17_18
Number of diagnoses referring cancer of prostate or urinary organs C19
Number of diagnoses referring lymphoma or leukaemia C20_22
Highest diagnostic base among ‘‘compatible” diagnoses BASE_CMP
Sources of ‘‘compatible” diagnoses SOUR_ CMP

Recent diagnoses reporting metastasis, ill-defined or unknown
primary cancer site

Number of diagnoses reporting ill-defined or unknown primary cancer site D195_199
Number of diagnoses reporting metastasis of lymphnodes D196
Number of diagnoses reporting metastasis of respiratory or digestive organs D197
Number of diagnoses reporting metastasis of other organs D198
Highest diagnostic base BASE_MU
Sources of diagnoses SOUR_ MU

Recent diagnoses reporting a well-defined primary cancer different
from all registered cancers

Number of discordant diagnoses NDIA_D
Discordant site with highest evidence ICD9_DIS1
Diagnostic base of the site with highest evidence BASE_DIS1
Sources of the discordant site with highest evidence SOUR_ DIS1
Discordant sites with second highest evidence ICD9_DIS2
Diagnostic base of the site with second highest evidence BASE_DIS2
Sources of the discordant site with second highest evidence SOUR_ DIS2
Discordant site with third highest evidence ICD9_DIS3

Recent diagnoses reporting not melanotic skin cancer or not
malignant tumours

Number of diagnoses reporting not melanotic skin cancer D173
Number of diagnoses reporting benign tumour D210_229
Number of diagnoses reporting carcinoma ‘‘in situ”, uncertain, unknown
behaviour tumour

D230_239

Highest diagnostic base BASE_NM
Sources of diagnoses SOUR_NM

DRG codes associated with a concordant diagnosis Number of hospitalizations reporting a medical DRG mentioning tumour DRG_M_CON
Indicator of surgical DRG mentioning tumour DRG_C_CON
Number of hospitalizations reporting DRG not compatible with the
associated diagnosis

DRG_NOCMP_CON

DRG codes associated with the discordant cancer site with highest
evidence

Number of hospitalizations reporting a medical DRG mentioning tumour DRG_M_DIS1
Indicator of surgical DRG mentioning tumour DRG_C_DIS1
Indicator of DRG not compatible with the associated diagnosis DRG_NOCMP_DIS1

DRG codes associated with other discordant cancer sites Indicator of surgical DRG mentioning tumour DRG_DIS2
Indicator of DRG not compatible with the associated diagnosis DRG_NOCMP_DIS2

DRG or ICD-IX V codes reporting anamnesis of cancer Indicator of DRG reporting anamnesis of cancer DRG_ANAM
Frequence of V codes compatible with a registered cancer V_CMP
Frequence of V codes compatible with the discordant site having highest
evidence

V_DIS1

Indicator of V codes compatible with a discordant site having lower
evidence

V_DIS2

Indicator of V codes compatible with not compatible with any recent
diagnosis or registered cancer

V_ALT

Indicator of V codes compatible with reporting execution of diagnostic
procedures to ascertain cancers

V_OSS

Chemiotherapy Indicator of association with a registered cancer CHT_CON
Indicator of association with the discordant site having highest evidence CHT_DIS1
Indicator of association with another discordant diagnosis or no association CHT_DIS2

Radiotherapy Indicator of association with a registered cancer RT_CON
Indicator of association with the discordant site having highest evidence RT_DIS1
Indicator of association with another discordant diagnosis or no association RT_DIS2
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ing the same threshold P. This curve synthesizes the information
needed to assess the usefulness of a classifier. In fact, it indicates
the cost, in terms of error, we must accept for automatically clas-
sifying a given share of subjects (and achieving a corresponding
reduction in registrars work).

3. Results

In Fig. 2 the mean error curves associated to the estimated mod-
els are shown. Random forests always classify with a markedly
lower error than the multilogit models; for example, choosing a
probability greater or equal to 0.85, the error for the first class of
models is around 3.7%, while that of the second ranges between
7.4% and 8.1%.

For all models, the variability of error rates is not very high; the
coefficients of variation are always lower than 20%, when errors
are higher than 2%, and decrease to less than 10% at a 3.5% rate.

Considering as acceptable a mean classification error lower than
5%, the trade-off curves of Fig. 3 show that we could automatically
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decide up to 32% of cases, using multilogit models, and at least 45%,
using random forests (RF); thus, the latter classifiers clearly give a
better performance.

Defining as ‘‘best” classifier the model which exhibits the high-
est classification rate, for a given error rate, we found that the opti-
mal model is the RF including:

- all the 63 variables (complete model), for error rates lower
than 4%;

- only the 42 most important variables, for error rates between
4% and 5%.

Actually, it is quite possible that the complete model over-fits
the data and, therefore, extremely low errors (2% or less) are unre-
alistic, when applying the classifier to a different data set. More-
over, in most instances, the error rates of the more parsimonious
model differ from those of the complete model less than the stan-
dard error, when the P threshold is less or equal to 0.90 (see Fig. 2).
These arguments suggest to choose the more parsimonious model,
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for practical use, and to regard a rate around 3% as a likely lower
bound for the classification error.

3.1. Scrutiny of misclassified subjects

A mean error lower than 5%, for RF models, occurs at a 0.82 pre-
dicted probability (Fig. 2) and corresponds to 114 misclassifica-
tions, on the whole learning set.

From the scrutiny of these subjects, two relevant findings have
emerged:

(a) Thirty-four cases (30%) had correctly classified recent
diagnoses and the majority of them (29 subjects) fall into
the category labelled as MOD (which accounts for 33 mis-
classifications). This means that the registrar has modified
the information about the already registered cancer, but
he/she has taken the same decision as the classifier,
regarding the acceptance of a second tumour.
(b) The classifier regularly fails to detect second cancers on
the same site but with a different morphology. In this rare
situation, the recent diagnosis appears concordant with
the registered cancer to all respects, except for the histo-
logical group. This kind of error accounts only for 9% of the
misclassifications, but it is systematic and, likely, beyond
the ‘‘learning” ability of any model.

3.2. Importance and role of predictive variables

Table 2 lists the 31 most important predictive variables of each
model and their rank. Seven of them are in the first ten ranks in
both models, so exhibiting prominent importance:

� three variables relate to the diagnoses suggesting a second
cancer: absolute frequency, diagnostic sources and site
(NDIA_D, SOURCES_DIS1, ICD9_DIS1);



Table 2
Most important predictive variables

Variable group Variable label Random forest Multinomial logit model

Rank Mean decrease in
accuracy � 1000

Rank Partial effect measure
(Wald X2)

Degrees of
freedom

Demographic data SEX 27 2.10 28 9.41 2
AGE 22 4.48 Not significant

Registered tumours NIGN >31 25 10.96 2
NPRIM2 >31 30 8.12 2
CLASTUM1 5 24.39 3 207.06 28
ISTGRUP1 8 12.89 8 55.63 12
BASE 15 9.02 6 88.78 2

Recent diagnoses concordant with a registered cancer NUM_CON 11 10.95 22 14.02 22
ISTDIF_CON >31 18 18.44 2
BASE_CON 17 6.42 24 11.51 2
SOUR_CON 13 10.42 10 40.94 2

Recent diagnoses not concordant
with registered cancers

PERC_NOCON 6 14.13 19 17.16 2

ISTDIFF 9 12.49 5 112.16 2
DATDIF_D 12 10.95 11 37.18 2

Recent diagnoses not concordant but
‘‘compatible” with registered cancers

C10 >31 14 27.66 2
C11_14 28 1.72 16 23.88 2
C19 24 2.76 15 23.96 2
C17_18 31 7.27 2
C20_22 31 1.26 21 14.09 2
BASE_CMP 10 11.68 Not significant
SOUR_CMP 7 13.31 9 55.49 2

Recent diagnoses reporting metastasis,
ill-defined or unknown primary cancer site

D197 23 3.04 13 33.52 2
D198 30 1.46 29 9.38 2
BASE_MU 21 4.48 23 11.97 2
SOUR_MU 19 5.49 Not significant

Recent diagnoses reporting a well-defined
primary cancer different from all registered cancers

NDIA_D 2 54.07 4 124.44 2
ICD9_DIS1 3 42.96 2 338.00 40
BASE_DIS1 4 32.12 Not significant
S0UR_DIS1 1 88.30 1 388.74 2
ICD9_DIS2 14 9.49 7 84.36 18
BASE_DIS2 18 6.05 Not significant
S0UR_DIS2 16 6.84 12 36.82 2
ICD9_DIS3 29 1.56 Not significant

Recent diagnoses reporting not malignant tumours D230_239 >31 26 10.26 2
DRG codes associated with a concordant diagnosis DRG_M_CON 25 2.42 Not significant

DRG_NOCMP_CON >31 Not significant
DRG or V codes associated with a discordant cancer site DRG_M_DIS1 20 5.37 Not significant

DRG_C_DIS1 26 2.25 17 21.48 2
DRG_N0CMP_DIS2 >31 20 14.37 2
V_DIS1 >31 27 10.49 2

Variables marked in bold are in the first ten ranks.
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� two items relate to the registered cancer: site and histologi-
cal group (CLASTUM1, ISTGRUP1);

� two variables concern the similarity of new diagnoses to the
registered cancer: indicator of histological difference and
diagnostic sources indicating a ‘‘compatible” site (ISTDIFF,
SOURCE_CMP).

The influence of a variable on the classification outcome is re-
flected by the sign and magnitude of regression coefficients (b),
for the multilogit model, and by the trend of partial dependence
functions (p.d.f.), for the random forest.

When higher values of the variable imply a higher probability of
class PREV against NEW1, the corresponding b is positive and the
p.d.f. of class PREV increases, while that of NEW1 decreases. In-
stead, a negative b and opposite trends of the p.d.f. reflect increas-
ing probabilities of class NEW1 against PREV.

Due to space limitations, results are reported only for a few
variables.

The probability of a diagnosis being accepted as a second cancer
increases when the combination of reporting sources (SOURCES_-
DIS1) or the frequency it occurs (NDIA_D) increase; b values for
the logit of PREV over NEW1 are, respectively, �0.98 and �0.35,
while the p.d.f. for class NEW1 increases and that for PREV de-
creases (Figs. 4 and 5). These are common-sense indications; a
diagnosis is more plausible when frequently reported and referred
by more sources.

Furthermore, the probability of accepting a second cancer:

- increases, when the site referred by the new diagnosis
(ICD9_DIS1) is prostate or breast, since the b values for the
logit of PREV over NEW1 are �1.56 and �0.75;

- decreases, when the referred site is peritoneum or bones, an
ill-defined site of the digestive or respiratory apparatus,
brain and nervous system, soft tissues and melanoma; b val-
ues are 4.76, 2.66, 1.34, 1.53, respectively. All of these are fre-
quent metastatic sites.

Such indications are confirmed by the p.d.f. of Figs. 6 and 7.
Once more, these are sound results, since an error often de-

tected in the diagnostic sources consists exactly in coding meta-
static tumours as primary cancers.

Finally, the p.d.f. for BASE_DIS1 and CLASTUM1, not shown,
indicate that the probability of accepting a second cancer increases
when the new diagnosis is based on a histology, but lowers when
the registered cancer is ill-defined or concerns digestive organs,
brain, thyroid and some rare sites as bones, nose, pleura.
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4. Conclusions

The present analysis was intended to answer a preliminary
question: may we significantly increase the share of automatically
defined cases, without lowering the data quality, using probabilis-
tic classifiers?
Almost all studies, aimed at assessing the data quality of cancer
registration [1,12–15], have shown that errors of some kind affect
from 5% to 10% of registered cases; only one has reported a lower
error rate [16]. In particular, a study concerning the cases automat-
ically accepted by RTV registration system [15] gives the following
figures: 1% of undetected second cancers, 2% of prevalent cases
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Fig. 6. Partial dependence function—Variable ICD9_DIS1. (Site of the candidate second cancer).
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Fig. 7. Partial dependence function—Variable ICD9_DIS1. (Site of the candidate second cancer).
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wrongly accepted as incident, 5.2% of cases with misclassification
of the tumour site, 1.5% of ‘‘false positive” cases.

Thus, it seems reasonable to accept a 5% ceiling for the classifi-
cation error. With this assumption and looking back at the trade-
off curve in Fig. 3, we see that multinomial logistic models allow
to reduce the share of subjects to be manually evaluated by 31%
(545 cases over 1750 cases per registration year), but random for-
est models by 45% (790 cases). Both classifiers exhibit a significant
performance, but random forests clearly appear more promising.

It has also been shown that the RF model is less prone to error
than it appears at first glance, as the evaluation of recent evidence
may be correct even if the previous cancer was not well registered.
This circumstance has been concealed by the rough definition of
the residual category of the outcome variable.
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Moreover, the role played by the predictive variables and their
rank of importance agree with what could be expected based on
registrars’ experience and rationale considerations, so the model
is interpretable and not counterintuitive.

Therefore, the answer to the question seems to be affirmative
and it would be worthwhile to deepen the present analysis and
to extend this approach to the other categories of manually defined
cases. The performance of alternative methods, such as the dis-
criminant analysis, could also be tested.

As previously discussed, a more accurate definition of the out-
come variable is surely needed; the inclusion of further predictive
variables should also be considered. In particular, to extend this
approach to subjects referred only by hospital discharge records
(the largest category of manually defined cases in our Registry),
the information concerning surgical interventions and other thera-
peutic and diagnostic procedures cannot be ignored.

A concern involves second cancers on the same site that may be
detected only manually and should be excluded from automatic
classification. This could easily be done by checking the compati-
bility between morphologies.

The classifier fitted on the RTV learning set is not expected to
perform similarly when applied to data of other Registries, since
the structural features of the diagnostic sources are generally dif-
ferent. However, each Registry could apply the same methodology
on its own learning set, in order to identify a proper classifier.

Probably, the main concern about the classification techniques
outlined relates to their reliability over time, which could be
undermined by changes in the quality and coverage of the avail-
able information, as well as in diagnostic and therapeutic practices.
Major changes tend to affect the share of automatically acceptable
subjects, rather than the accuracy of classification. However, an up-
surge of the classification error can never be excluded.

It must be pointed out that the same concern involves the auto-
matic decision systems currently applied by RTV and other regis-
tries. A convenient way of detecting the faults of the automatic
classification system is to assess the quality of registered data in
a routinely way, by periodically drawing a sample of ‘‘automatic”
cases and manually defining them.
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