Electronic Notes in Theoretical Computer Science 66 No. 2 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume66.html 15 pages

Simple and Efficient Translation from LTL
Formulas to Biichi Automata

Xavier Thirioux *

IRIT - LIMA, 2 rue Camichel, 31071 Toulouse, France,
Xavier.Thirioux@enseeiht.fr

Abstract

We present a collection of simple on-the-fly techniques to generate small Biichi
automata from Linear Time Logic formulas. These techniques mainly involve syn-
tactic characterizations of formulas, and yet allow efficient computations. Thus
heavily relying on such proof-theoretic issues, we can omit the classical formula pre-
simplification step, and also simulation-based post-simplification steps (aka model-
theoretic issues).

Although closely related to other similar recent works in the same topic, our
ideas have led to an implementation that performs significantly better than some
of the best available tools, such as Wring or LTL2BA. We compare our tool BAOM
(“Biichi Automata Once More”) with others, on formulas commonly found in the
literature, and on randomly generated testbenchs.

Key words: Linear Time Logic. Biichi automata. Tableaux-based
method. Syntactic characterizations of formulas.

Introduction

This paper describes several new techniques to implement an efficient transla-
tion from Linear Time Logic (LTL) specifications to Biichi automata. Our
prime motivation was to implement a new symbolic BDD-based? model-
checker [BCM™192] based upon Linear Time Logic specifications for syn-
chronous programs, especially those written in Esterel. This work extends
previous works on the Xeve model-checker [Bou97].

In our symbolic framework, a well-known solution to achieve this goal is
first to translate (the negation of) any given LTL formula into an observer (a
finite state machine) that is plugged into the original design we want to check.
Then, by symbolic forward image computations of the product system, find

1 This work was partially supported by the SYNTEL RNRT project, France.
2 BDD stands for Binary Decision Diagram.

(©2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

145

http://creativecommons.org/licenses/by-nc-nd/3.0/

THIRIOUX

an execution that meets the fairness side conditions imposed by the formula,
the so-called Biichi conditions. Though the principle is rather simple, an effi-
cient implementation that avoids exponential blow-ups during translation of a
formula into an observer is difficult to achieve. Recently, some promising new
algorithms have been found to lower the size of automata. The resulting tools,
namely LTL2BA, Wring and EqLTL (see respectively [GO01,SB00,EH00])
seemingly outperform SPIN [Hol97].

Our main contribution is to provide a new implementation (called
BAOM) that behaves linearly (in space and time) for many more formulas (es-
pecially formulas containing fairness constraints), where previous algorithms
exhibit exponential blow-ups. Moreover, we obtain automata that are in the
average smaller than with any other method. Our prototype directly builds a
Generalized Biichi Automaton from a Linear Temporal Logic formula, without
the need for intermediate data-structures. For matters of efficiency, our tran-
sitions are labelled with BDDs rather than with single atomic propositions.
Also, our automata are generalized in a mixed sense, i.e. we have fairness
conditions on states as well as on transitions, depending upon the shape of
the formula. Notice that our ideas are primarily concerned with on-the-fly
optimizations based upon syntactic relations between formulas. We also in-
troduce a notion of “merged” states in our automata, in order to factorize
sub-tableaux when possible and reduce further the number of states.

Nevertheless, our algorithm widely borrows ideas from recent tableaux
methods, from recent techniques around alternating automata, and also from
syntactic relations between formulas. Actually, we include the syntactic sim-
plification rules of [SB00] on-the-fly during the tableaux generation, and gen-
eralize in this way similar rules of [DGV99] as well as [GOO01]. Some of these
rules can also be seen as an cheap alternative to the “boolean optimization”
paradigm of [SB00], which is a general solution to remove redundant and com-
plementary sub-formulas occurring in tableaux. In our case, this simplification
may introduce new fairness constraints on transitions, as in [GOO01].

Related works come in many flavours, but are principaly concerned with
improvements of the tableau method described in [VW94] and [GPVW95].
In [EHOO] the authors present an algorithm in three steps : first a rewriting
step, followed by a standard translation and finally a simulation-based opti-
mization. In [SB00], the same kind of techniques are applied, yet with totally
different rewriting rules and with simulation relations that can be computed
more efficiently. In [GOO01], the authors also reuse the same set of rewrit-
ing rules as in [SB00], and consider very simple on-the-fly simplification rules
that avoid fixpoint computations necessary in simulation-based methods. The
simplification process, though simple, is still efficient due to a specific trans-
lation based upon alternating automata where fairness constraints exclusively
concern transitions.

Finally, all these works point out the ability to simplify in some cases the

146

THIRIOUX

fairness constraints of the SCCs? of the generated automata, for instance by
the recursive removing of the unfair terminal SCCs.

The roadmap : section 1 introduces preliminary notions and reminds
the original tableaux method. Section 2 presents our new revisited tableaux
algorithm that builds a first version of a Biichi automaton from a LTL formula.
This algorithm splits in four parts :

(i) Use modified tableaux rules to generate a basic automaton (section 2.1);
(ii) Normalize and simplify transitions (section 2.2);
(iii) Detect unfair SCCs and simplify the automaton (section 2.3);
(iv) Merge transition-equivalent states (section 2.4).

Thereafter, section 3 presents a classical post-simplification phase to reduce
the number of states. Finally, we show in section 4 some promising results
of our prototype and compare them with other similar tools, and then we
conclude in section 5.

1 Preliminaries

We define here a variant of Biichi automata, also called Generalized Biichi
Automata, with multiple acceptance conditions on the states as well as on the
transition edges. Labels are located on the transition edges, and are boolean
formulas (denoted below as B(AP)) built from a set of atomic propositions
AP(*). We make use of a data structure to represent the edges (thus replacing
the traditional § function) because we actually need to distinguish between
different transition edges with different fairness constraints and compatible
labels. Notice that we treat uniformly state and transition fairness.

Definition 1.1 A GBA is a five-tuple :
A= <AP7Q7QO>E7F>

where AP s the set of atomic propositions, Q) is the finite set of states, Qg C @
is the set of initial states, £ C Q x B(AP) x Q is the set of edges, and F C
B(Q U E) is the set of acceptance conditions, expressed as logical constraints.
A (generalized) transition function § € B(AP) — 29 — 29 can be recovered
from E as :

o(p,gs) =1{d' | 3a.1,d.a € gs N (g, l.d') € ENfEp— 1}
As p and | are encoded as BDD, we can easily decide whether = p — 1
holds or not.
A run of A is an infinite sequence o = (qo,io,%0);{q1,%1,t1);... where
g € Q, ty € E and i, C AP, such that for all k >0 :

te = (@i, by Q1) AN i = Ui

3 SCC stands for Strongly Connected Component.
4 For X a set of ground terms, B(X) denotes its boolean closure.

147

THIRIOUX

A run o is accepting if for each F € F, we have infinitely many k’s such
that :

b, Qo1 = F
Finally, an automaton A accepts an infinite word of input events i =
io, 1, ... over (247)%, whenever there exists an accepting run of A :

o = (qo %0, to); (q1, i1, t1); - - -
Its language L(A) is the set of infinite words it accepts.

Multiple initial states and multiple acceptance conditions are not manda-
tory, but are considered here only for convenience with respect to the overall
model-checking process in which the translation step occurs.

Definition 1.2 The linear time logic (LTL) is built from propositional logic
by adding temporal operators, yielding the following syntax :

LTL = AP

B(LTL)
LTL U LTL
LTL R LTL

|
|
|
| O LTL

O is the “next-time” operator, U is the (strong) “until” operator and R is the
“release” operator. R and U are dual of each other. Usual O (“always”) and &
(“eventually”) operators are defined as O¢p = False R ¢ and O¢p = True U ¢.

We briefly recall here the standard tableaux method [VW94 GPVW95], as
we use it as a basis for our own extension. Each state of the automaton denotes
and identifies a LTL formula in negative normal form, i.e. where negation has
been pushed down the parse tree of the formula. Then, from a given state,
the transition function is computed by means of semantic expansion rules.
These rules consist in applying from left to right the following equalities to
the state-formula, through the expansion function Exp :

Exp(prop) = prop
¢) =09¢
¢ V) = Exp(¢) V Exp(¢)
¢ AY) = Exp(¢) A Exp(v)
Ezp(¢p U ¥) = Exp(v V (¢ A O(o U ¥)))
Exp(¢p Ry) = Exp(v A (¢ V O(d R ¥)))

Thus, starting with a formula ¢, we first expand it and then put it into dis-
junctive normal form. Each conjunctive term ¢ = ¢ Ay ... will constitute a
next state. According to the above rules, each v is either an atomic proposi-

Exp
Exp
Exp

©
(
(
(

148

THIRIOUX

tion ap; or a next-time formula ()#;. Hence, the 1-state will be labelled by a
formula 6, A 65 ... whereas the transition edge from the ¢-state to the i-state
will be labelled by a propositional formula ap; A aps

As usual, transitions labelled with unsatisfiable propositions are removed,
thus removing unreachable states as well.

The initial states are built from expansion of the root formula. Multiple
initial states can be avoided if the initial formula is not expanded. This may
increase or decrease the number of states, depending upon the formula (see
theorem 2.13).

Finally, as for the Biichi acceptance conditions, for each ¢U occurring in

state-formulas, there exists an acceptance formula Fair 45Uy, On states

Fairyy, = \[{a€ QU gq v ¢ €q}

Then, for this particular kind of formulas on states, the condition for a run
to be accepted boils down to the following statement : for each set Fair sUy>

we have infinitely many g;’s such that ¢, = Fair sUy-

2 Tableaux method revisited

In the remainder, we propose different steps aiming at reducing the size of
automata. All these improvements are relative to a pervasive automaton
M = (AP,Q,Qo, E,F) assumed at each step to be the result of previous
transformations. To ease the description of our method, we define a notion of
substitution on sets as :

S[e | ¢ = {(5\{6});;;} ifees

2.1 Ezpanding tableauz rules

When designing this new algorithm, our main goal was to obtain small and
deterministic automata from a standard tableaux-based method.

We now define a temporal approximation of a LTL formula, driven by a
positive integer, denoted as [¢]?. This approximation is a formula representing
exactly the finite d-prefixes of infinite words identified by ¢.

Definition 2.1 For any ¢ € LTL under negative normal form and d > 0, we

149

THIRIOUX

define the function [¢]? as below :

[ap]? = ap

[ov Y]t =[]V Y]

[oAY]? = [8]7A o]

[¢ Uyl?=[vV(6AO(e U y))
[0 RY]? = [vA(6VO(¢ R ¥))?
[O¢]° = True
[Oo1*t = Ofe]*

Lemma 2.2 For any ¢ €LTL and any d > 0, we have : ¢ = [¢]¢ and also
OV ([=¢1'AY) & ¢V .

Proof (sketch) The implication is proved by structural induction on ¢. The
equivalence then follows.

We can now modify the expansion rules taking into account this finite
approximation. Indeed, given any integer d, we can use the following new
rules for U and R, where =7 and —¢ are put in negative normal form :

Exp(¢ U) = Exp(y V (¢ A ([~0]? A O(6 U ¥))))
Exp(¢ R) = Exzp(y A (¢ V ([¢]1 A O(¢ R ¥))))

Theorem 2.3 For any ¢ €LTL and any d > 0, let My be the automaton
produced using revised expansion rules, then L(M) = L(Mg).

Proof (sketch) The automata are produced according to semantic expansion
rules so that they exactly accept words denoted by state-formulas. Then
lemma 2.2 is used to convert revised formulas to standard ones, proving that
M and M, accept the same language.

For our specific usage, using a great value of d may increase the number of
different states, as the [.]¢ operator generates new next-time sub-formulas.
Though, due to the extra constraints upon transitions introduced by the pre-
fix formulas, this may also increase the deterministic flavour of the resulting
automaton, that is we obtain at an early stage many more incompatible tran-
sitions, which later on we won’t have to compare (see theorem 2.9).

After some conclusive experiments showing that the average number of
states tend to increase as d does, we decided for the time being to restrain
our choice to d = 0, leading to a good balance between a small overhead
and a better overall performance. For instance, with formulas under the form
Ai—; xOCOpi, regarding N as a parameter, our method can save upto an
exponential number of states with respect to the Wring tool, or proceed ex-
ponentially faster than the LTL2BA tool (we obtain the same automaton in

150

THIRIOUX

this case®).

We now assume that each state denotes a conjunctively interpreted set of
formulas, instead of a single conjunctive formula.

Let ¢ < 1 be a relation of syntactic implication between two formulas,
similar to the ones presented in [SB00] and [DGV99]. This relation will greatly
help us in reducing the size of automata. Notice that this relation doesn’t
expand temporal operators, so that its computational cost is moderate.

Definition 2.4 For any ¢,v €LTL, we define the relation ¢ < 1 as the
smallest fizpoint of the following rules :

False < ¢ ¢ < True
VP2 <=1 <YPANp2 <Y P<VYiNP2=9<P1 NP <1y
PSPV =0 <Y1 Vo< ih P1IANP <=1 <YV <V
P1Rp2 < <=2 < ¢ < P1Uyg <= ¢ < 1o
P1Ro2 < 1Ry <= @1 < h1 A g < ha|d1Uda < 1Uyg <= 91 < h1 A go < 4o

This definition allows us to remove weak formulas from states, and there-
fore to reduce in many cases the number of different states, by the mean of
the following theorem.

Theorem 2.5 Let ¢ = {¢1,¢9,...,0,} € Q be a state such that 1 < ¢o.
Let ¢' denote the set {¢a,...,¢n}. Then LIM) = L(M') with the automaton
M = (AP, Q',Qy, E', F') defined below :
« Q"=0Qld | g
* Qo= Qld' | ¢
s B = {(%rca ldest[q/ | Q]> | <qSI“C7l7qut> € E}
{Fairgld' | g | Fairy € F} if ¢1 # U
« F = F|Fairy, | Fairg,] else, with

fair;sl = fair(fn [(]/ | Q] N (_'q/V{<QSrca [, stt> S | Qast 7 Q})

Proof (sketch) As our implication relation is easily proved to be sound, the
two automata accept the same language, disregarding fairness constraints. In
the case the removed formula ¢; is an until formula and thus involves a change
in acceptance conditions, we report the fairness of ¢; onto all the incoming
transition edges of state ¢’. Hence we mimic the standard situation where
fairness is on state q.

=4 . . .
° As shown in test cases presented in section 4.

151

THIRIOUX

2.2 Normalizing transitions

Once the outgoing transition edges from a given state are built, we proceed
with a normalization step in which we factor transitions. This factorization is
possible (and simple) because we use BDDs to represent transition labels.

Definition 2.6 Assuming that ¢ € LTL is such that Fairy € F and q,q¢' € Q,
we define the following global fair (and unfair) labeling functions between two
states :

lola.d') =V{lIt={q,l,d) € ENt,{ | Fairy}

bantain (¢, ¢') = VL[t = {q,1,¢') € ENVFairy € Ft,q | Fairg}
With these functions, we can define our normalization step.
Theorem 2.7 Let us define the automaton M' = (AP,Q, Qq, E', F') :

* E'={{¢,1,q) | 1 =1o(q,q) VI = lungaix (9,) }
o F'={Fair) | Fairy € F} with

Fairg =\{t Nq' |t =(q,l,q') € E' Nl =14(q,q)}
Then L(M) = L(M).

Proof (sketch) This normalization may reduce the number of transition
edges between two states® but has no effect on the language of M since we
factorize edges with respect to fairness constraints. The only case to which we
must pay attention is when a given transition edge is fair regarding at least
two different constraints. Then we must split it into (at least) two different
edges with the same label, each satisfying only one fair constraint. But for any
accepted word, if an original edge of M would be triggered infinitely often,
the resulting edges of M’ could also be triggered infinitely often, each in turn.
The converse also holds. So finally £(M) = L(M).

Notice that in the above theorem, we can indeed easily simplify the fairness
constraints, in order to keep only transition fairness. Actually, defining :

.7-"ai7":z> = \/{t ‘ t= <q7l7q/> € El ANl = l¢>(Q7 q,>}

would also yield the same result. But we decided to keep both kinds of fair-
ness information because this allows to implement simpler algorithms in our
prototype.

The next step consists in trying to determinize transitions from any given
state, i.e. to modify their labels so that their pairwise intersection becomes
empty. This usually leads to a lesser number of (smaller) transition edges,
and allow in practice further simplifications (see theorem 2.13). Besides, the
structure of the automaton is then more easily amenable to efficient model-
checking algorithms. Actually, the deterministic flavour of an automaton is a

6 After this operation, there always exist less than |F|+ 1 different transition edges between
any two states.

152

THIRIOUX

salient feature in symbolic model-checking, because it appears to have a great
influence on efficiency of partitioned states space exploration algorithms for
instance.

Definition 2.8 We classically extend the notion of implication between for-
mulas to an implication between states. For any q,q € Q, we define :

¢<q¢ =V¢eqdIpecqp<¢

Theorem 2.9 Let us considert; = {(q,l1,q1) € E and also ty = {(q,l2,q2) € E.
Now assume q1 < qa, I3 Ny # False and :

VFairy, € Fti,q1 = Fairy = ta,q2 = Fairy

Then the automaton M’ = (AP,Q,Qo, E', F') defined below :
o E'=E[t) | t1] with t, = (q,l1 A —l2, 1)
e F'=F

is such that L(M) = L(M'). We remove the new transition t| from E' and
set F' = {Fairy[False | t}] | Fairy, € F} if ly A —ly = False holds.

Proof (sketch) Following definitions 2.4 and 2.8, ¢; < ¢y implies £(q;) C
L(g2). So, we can safely remove from ¢; the input events that are common
with to. The fairness constraints don’t need to be changed (but in case of
mere removal) since it is easier to reach ¢y through ¢, than to reach ¢; through
t; w.r.t. fairness constraints, and l; V Iy = (I3 A —ls) V l3. Hence, if we had
an accepted word passing from ¢ to ¢; through [; A l, we know that it would
also be accepted via ¢s.

2.8 Detecting unfair SCCs

Our last but one on-the-fly step can simplify the fairness constraints on states,
by early detecting of certain unfair SCCs, i.e. SCCs where at least one fairness
constraint is never satisfied for any of its states, or transient SCCs, i.e. SCCs
with only one state and no self loop. Besides, we define a syntactic under-
approximation of unfair and transient SCCs.

Definition 2.10 For q € Q, we define the following FairLoop and Unstable
predicates” :

Unstable(q) = 3¢ € q.¢ # True A =FairLoop(¢, q)

FairLoop(¢,q) = 3 = 1Ris € g0 =10V ¢ < 1y

Lemma 2.11 For any q € Q, such that Unstable(q), then the SCC of q is
either transient or unfair.

7 For any formulas ¢ and v, ¢ < 1 denotes the subterm relation, but for negated atoms.
That is, for p an atomic proposition, we have p £ —p.

153

THIRIOUX

Proof (sketch) By contradiction. Assume the SCC of ¢ is fair. Then, follow-
ing the expansion rules, each non-R formula ¢ must be (transitively) generated
by the right-hand side ¢ of a R formula, which are the only fair looping op-
erators in LTL. Hence, because we don’t change the shape of formulas when
expanding them, it is necessary to check ¢ < 1. Therefore, Unstable(q) does
not hold. As a conclusion, an accepted run cannot remain stuck in the SCC
of an unstable state.

Theorem 2.12 Let q be an unstable state, we change the fairness constraints

by defining the automaton M' = (AP,Q,Qo, E,F') as :

o F' ={Fairy|False | q| | Fair, € F}

Then we have L(M) = L(M').

Proof (sketch) We can safely remove fairness information relative to an un-

stable state and its incoming transition edges, since an accepted word cannot
visit it infinitely often, as proved by lemma 2.11. So, £L(M) = L(M’).

2.4 Merging states

Last, but not least, we define the notion of merged states. It consists in merg-
ing some target states of some transitions with the same labels and fairness
constraints, making a compound state. This also applies to the initial states
that can be merged as one single state.

Theorem 2.13 Let us consider t; = (q,l1,q1) € E and also ty = (q,l2,q2) €
E. Now assume we have l; = lo(8) and :
VFairy € F.t1,q1 |= Fairy < ta,q = Fairg
Then the automaton M’ = (AP, @', Qo, E', F') defined below :
* Q' =QU{q}
o E'=(E\{t1,ta}) U{tia} with t12 = (g, 11, q12)
o F' ={Fairy|False | {t1,t2}] V Fairgltia A qia | t1 A q1] | Fairy € F}
is such that L(M) = L(M').
Proof (sketch) As we ensure that transitions as well as target states have
the same impact on fairness, we can merge them without modifying the set of

accepted words. Notice that the original target states are not removed, but if
they become unreachable. Then, £L(M) = L(M’).

A merged state is defined as the set of its components. In theorem 2.13, we
have thus ¢12 = {¢1, ¢2}. Ordinary states can also be defined as singleton sets.
So from now on we move up a level and assert that a state indeed represents
a set of sets of formulas.

8 These labels are identical up to BDD normalization.

154

THIRIOUX

It seems likely that states accessible through the same label have some-
thing in common, and that it may be worth trying to identify them. We only
consider identical labels, as if we would consider a more relaxed constraint
(for instance labels with a non empty intersection), this could create exponen-
tially more new states. In practice, it seems that most of the time interesting
compound states are created, and not too many of them.

Nevertheless, it may happen that some merged state in the automaton
is subsumed by its components, existing as states on their own. Then the
merged state is there superfluous and can be safely removed.

The initial state, put in DNF, can also play the role of a merged state. By
the following theorem, it can be split as any other real merged state in order
to reduce the overall number of states.

For merged states to be split back, we have to define the notion of sub-
sumption.

Definition 2.14 For any set of sets of formulas (not necessarily a actual
state) S, we define what it means to be subsumed by states of M, with the
following predicate :

Subsumed(S) <dgeR.S=q
Subsumed(S; U S3) < Subsumed(S;) A Subsumed(Ss)

Theorem 2.15 Let us consider g = q U...Uq, € Q. Assume Subsumed(q)
holds. Then the automaton M' = (AP, Q’,Qp, E', F') defined below :

« Q' =0\ {q}
(Qo\{g}) Ui} U...U{aq} if ¢ € Qo
Qo else

* B'= E\{(¢se; |, q) € E}
o F' ={Fairy|False | q] | Fair, € F}
is such that L(M) = L(M').

0Q6:

Proof (sketch) We remove a state ¢ that is exactly subsumed by others as
stated in definition 2.14, and redirect its incoming edges towards its compo-
nents, which together recognize the same language as q. Henceforth £(M) =

L(M).

This theorem can be applied on-the-fly or later when the automaton is
totally built. We chose to use it as soon as possible, in order to reduce the
complexity of the post-simplification phase, but it may be worth postponing
its use so as to process all merged states once and for all. Intermediate choices
are currently being experimented too.

155

THIRIOUX

3 Post-simplification

As for automata post-simplification phase, we remove (all but one of) identical
states, which is a pertaining step in all related works. Indeed, we haven’t
explored more general simulation relations, because they sometimes tend not
to lend themselves to efficient computations.

Theorem 3.1 Let us consider two states q1,qs € Q), with the same outgoing
transition edges, i.e. such that for anyn =1,2 andn =3 —n :

Vo = (Gn, ln, ¢) € BTtz = (¢w, 5, ¢') € E.
lh =g ANVFairy € Fit,, ¢ = Fairy, & t5q = Fairg
Without loss of generality, we assume that whenever at least one of q1 or qs

is initial, then it is q1. Then the automaton M' = (AP, Q’,Q., E', F') defined

below :

¢ Q' =0\ {g}

* Qh=Qo\{e}

* E' = {(Gsres 1, @hst) | {Gsner 1 dast) € B A qagy = Gasslan | ¢}

o F'=A{Fairy[{q1,1,qas) | (32,1, qast) € Ellqr | qo] | Fairg € F}°
is such that L(M) = L(M').

Proof (sketch) This is a classical operation in automata theory.

4 Experiments

The following examples have all been tested on a 400MHz bi-pentiumlIl PC,
with 256 Mo.

We include first some tests taken from [EH00,GOO01] (see figure 1), show-
ing the relative performances of Wring, LTL2BA and BAOM. For the sake of
simplicity, we decided to present only results of the best available tools, be-
cause they constantly outperform other tools like SPIN for instance. Likewise,
elapsed time is most of the time not shown, because all these tools usually
achieve the translation within 5 seconds, which is largely acceptable. Yet,
there exist pathological formulas such that time consumption is then expo-
nential. In this case, we precisely show elapsed time or indicate that a crash
had occurred or timeout (10 hours) had expired (7).

Then, we show some results for 3 collections of 1000 randomly gener-
ated formulas, processed with LTL2AUT, Wring and BAOM. Temporal and
boolean operators are drawn with the same probability (see figure 2).

Finally, in order to (loosely) compare BAOM to LTL2BA, though we had
only a restricted access to the LTL2BA tool via a web page, we use a testbench

9 In the above theorem, the term Fairg[{q1,!,qast) | (g2,1,qass) € E] means that the
substitution is performed for all {go,l, qast) € E.

156

THIRIOUX

for our tool generated with the same hypothesis as a similar testbench for
LTL2BA presented in [GOO01] (see figure 3). We have randomly drawn 1000
generated formulas with 10 nodes and 3 atoms.

Our prototype is entirely written in OCaML [DU], and thus time compar-
isons with other tools issued from similar works is hardly relevant due to the
extreme diversity of implementation languages (and computers). For instance,
the SPIN tool [Hol97] as well as the LTL2BA tool [GO01] and the LTL2AUT
tool [DGV99] are written in C, whereas the EqLTL tool [EH00] is written in
ML, and the Wring tool [SB00] in Perl.

Notice that transient memory requirements are not mentionned here due to
impracticability of measures. Besides, because our transformations are almost
all applied on-the-fly, memory consumption in our case is linearly bound to
the size of the resulting automaton.

LTL states(time in seconds)
formulas Wring |[LTL2BA |BAOM
examples from [EHOO]
pU(g A Or) 3 2 2
pU(g A O(rUs)) 5 3 3
pPU(@ A O A (S(s AOS(EAOC(unOOv))))))| 13 7 7
S(p A OOg) 3 2 2
O(p A O(g A OOr)) 6 4 4
(g A O(pUr)) 5 3 3
oOp Vv g 4 3 3
O(p — qUr) 3 2 2
S(pAOC(gNOO(r A OOs))) 9 5 5
Aiey s 00D 31(195)] 1 1
(pU(qUr)) V (qU(rUp)) 4 5 2
(pU(qUr)) v (qU(rUp)) v (rU(pUq)) 4 7 2
O(p — ¢U(Or Vv Os)) 4 4 4
examples from [GOO01]
((Aiz1..10 BCpi) — O(g — ©r)) T |2(36000)| 2(44)
=(p1U(p2U(...Upg)...) T [8(1200) | 8

Fig. 1. Examples excerpt from [EH00,GOO01].

157

THIRIOUX

10 nodes || 15 nodes || 20 nodes

3 atoms 3 atoms 5 atoms
method |states|time |states|time|/states| time
LTL2AUT| 6698 | 127s||11086|453s||25528|2740s
Wring | 4043 | 203s || 4830 |534s|| 7748 [1973s
BAOM | 3026 [3.45s| 3318 |6.5s || 4723 | 40s

Fig. 2. Comparison between LTL2AUT, Wring and BAOM.

method |formulas|lavg. time max. time|avg. states|max. states
LTL2BA| 200 0.01 0.04 4.51 39
BAOM | 1000 0.003 0.09 3.06 16

Fig. 3. Loose comparison between LTL2BA and BAOM.

5 Conclusion

We have succeeded in devising an efficient algorithm, based upon syntactic
considerations, with techniques designed to be used on-the-fly. This shows
that a careful examination of parse trees of formulas can lead to similar or
better results than a posterior: simulation-based methods. In real-life appli-
cations, efficiency is also due to the heavy use of BDDs in our data-structures,
but this advantage doesn’t really show up in our test cases due to the small
number of atomic propositions. The main original factors of improvement
over other similar tools are the introduction of finite d-prefixes in our revised
expansion rules and also the fairness paradigm we have developed in conjunc-
tion with the syntactic implication between formulas. Yet, a more careful
study of the relationship between values of d, shape of formulas and size of
resulting automatas should obviously be carried out. As for the merging states
techniques, it appears to have an impact in case of quasi-redundant or incom-
patible sub-formulas (this is often the case for randomly generated formulas),
but don’t usually come into play for short hand-written specifications.

Notice that the current implementation of our tool hasn’t been specifically
geared towards efficiency since it was developped in a purely functional setting
(except for the BDD package). More efficient techniques such as hash-caching
(as used in BDD algorithms) should be developped in order to deal with parse
trees of very large formulas.

Indeed, for the time being the good ratio between more involved syntactic
algorithms (being under examination) and practical efficiency is not clearly
worked out, all the more because previous works mainly focused upon model-
theoretic methods. We claim nevertheless that the syntactic level can offer

158

THIRIOUX

much more information, with a reasonable cost.

The benchmarks we have conducted tend to support this claim, though
these tests mostly concern random formulas. In order to get interesting bench-
marks, we would like to test only “sensible” specifications (i.e. used in indus-
trial contexts for instance), which seems to be a delicate task, being known
that a large database of such specifications is not yet available.

Acknowledgement

The author would like to thank kindly Robert de Simone for fruitful discus-
sions and collaboration.

References

[BCM192] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. Symbolic model checking: 10e20 states and
beyond. Information and Computation, 98(2):142-170, 1992.

[Bou97] Amar Bouali. Xeve: an esterel verication environment (version v1.3).
Technical Report RT-0214, INRIA Sophia-Antipolis, December 1997.

[DGV99] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved
automata generation for linear temporal logic. In International
Conference on Computer Aided Verification, pages 249-260, 1999.

[DU] Documentation and User’s. The objective caml system release 3.02.

[EHO00] Kousha Etessami and Gerard J. Holzmann. Optimizing buchi automata.
In International Conference on Concurrency Theory, pages 153-167,
2000.

[GOO01] Paul Gastin and Denis Oddoux. Fast ltl to bchi automata translation,
2001.

[GPVW95] Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In Protocol
Specification Testing and Verification, pages 3-18, Warsaw, Poland,
1995. Chapman & Hall.

[Hol97] Gerard J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279-295, 1997.

[SB00] Fabio Somenzi and Roderick Bloem. Efficient bchi automata from 1t
formulae. In International Conference on Computer Aided Verification,
pages 53-65, 2000.

[VWO94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite
computations. Information and Computation, 115(1):1-37, 1994.

159

