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Abstract

A short proof of the Harris–Kesten result that the critical probability for bond percolation in the planar
square lattice is 1/2 was given in [B. Bollobás, O.M. Riordan, A short proof of the Harris–Kesten Theorem,
Bull. London Math. Soc. 38 (2006) 470–484], using a sharp-threshold result of Friedgut and Kalai. Here we
point out that a key part of this proof may be replaced by an argument of Russo [L. Russo, An approximate
zero–one law, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 61 (1982) 129–139] from 1982, using his
approximate zero–one law in place of the Friedgut–Kalai result. Russo’s paper gave a new proof of the
Harris–Kesten Theorem that seems to have received little attention.
c© 2007 Published by Elsevier Ltd

Let Z
2 be the planar square lattice, i.e., the graph with vertex set Z

2 in which each pair
of nearest neighbours is joined by an edge. Let X = E(Z2) be the edge-set of Z

2, and let
Ω = {−1,+1}X . We write ω = (ωe)e∈X for an element of Ω , and say that the edge e is open
(in the state ω) if ωe = +1, and closed if ωe = −1. An event A ⊂ Ω is local if it depends on
only finitely many coordinates. As usual, let Σ be the sigma-field generated by local events, and
let Pp be the probability measure on (Ω ,Σ ) in which each edge is open with probability p, and
these events are independent. Let θ(p) be the Pp-probability that the origin is in an infinite open
cluster, i.e., an infinite connected subgraph C of Z

2 with every edge of C open. In 1960, Harris
[3] proved that θ(1/2) = 0; in 1980, Kesten [5] showed that θ(p) > 0 for p > 1/2, establishing
that pc = 1/2 is the ‘critical probability’ for this model. A short proof of these results was given
in [1], using a sharp-threshold result of Friedgut and Kalai [2], itself based on a result of Kahn,
Kalai and Linial [4].
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In 1982, Russo [6] proved a general sharp-threshold result (weaker than the more recent
results described above) and applied it to percolation, to give a new proof of the ‘equality of
critical probabilities’ for site percolation in Z

2. Although Russo does not explicitly say this,
his application applies equally well to bond percolation, giving a new proof of the Harris–Kesten
Theorem that seems not to be well known. Here we shall present Russo’s general sharp-threshold
result, and then give a complete version of his application, to bond percolation in Z

2.
Replacing the appropriate section of [1] with this argument gives an even simpler proof of

the Harris–Kesten Theorem; we are grateful to Professor Ronald Meester for bringing this to our
attention.

An event A ⊂ Ω is increasing if ω ∈ A and ωe ≤ ω′
e for every e imply ω′ ∈ A, i.e., if A

is preserved when the state of one or more edges is changed from closed to open. An edge e is
pivotal for an event A if changing the state of e affects whether or not A holds. Let δe A be the
event that e is pivotal for A, so ω ∈ δe A if and only if exactly one of ω+, ω− is in A, where ω±
are the states that agree with ω on all edges other than e, with ω+

e = 1 and ω−
e = −1. In [6],

Russo proved the following result about the product measure Pp; in this result the structure of
Z

2 is irrelevant, i.e., the ground-set X can be any countable set.

Theorem 1. For every ε > 0 there is an η > 0 such that if A is an increasing local event with

Pp(δe A) < η

for every e ∈ X and every p ∈ [0, 1], then there is a p0 ∈ [0, 1] with

Pp0−ε(A) ≤ ε and Pp0+ε(A) ≥ 1 − ε.

As in [1], by a k by � rectangle we mean a rectangle [a, b] × [c, d] with a, b, c, d ∈ Z and
b − a = k, d − c = �. We identify a rectangle with the corresponding subgraph of Z

2, including
the boundary. A rectangle R has a horizontal open crossing if there is a path in R consisting of
open edges, joining a vertex on the left-hand side of R to one on the right; we write H (R) for
this event. Our starting point will be the following consequence of the Russo–Seymour–Welsh
Lemma (see [1] and the references therein): there is a constant c > 0 such that

P1/2(H (R)) ≥ c, (1)

for any 3n by n rectangle R. This is essentially the case ρ = 3 of Corollary 7 in [1]. (The latter
result has an irrelevant restriction to n even; the present statement is immediate from the case
ρ = 4 of this result.)

Our aim is to deduce Lemma 11 of [1], restated below.

Lemma 2. Let p > 1/2 be fixed. If Rn is a 3n by n rectangle, then Pp(H (Rn)) → 1 as n → ∞.

It is well known that Lemma 2 implies Kesten’s Theorem; see [1]. We shall deduce Lemma 2
from (1) using Theorem 1 and Harris’s result, that θ(1/2) = 0. We shall need the concept of the
dual lattice (Z2)∗: this is the planar dual of the graph Z

2, having a vertex for each face of Z
2,

and an edge e∗ for each edge e of Z
2, joining the two vertices corresponding to the faces of Z

2 in
whose boundary e lies. We take e∗ to be open if and only if e is closed. The following argument
is based on that of Russo [6].

Proof of Lemma 2. Let p1 > 1/2 be fixed. Let D be a constant to be chosen below, and let R
be a 3n by n rectangle with n ≥ 2D + 1. Suppose that ω ∈ δe H (R), and define ω± as above.
Note that e must be an edge of R, as H (R) depends only on such edges. Then, in ω+ there is an
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open path in R from the left-hand side to the right using the edge e. Hence, in ω, the endpoints
of e are joined by open paths to the left- and right-hand sides of R. One of these paths must have
length at least (3n − 1)/2 ≥ D. Thus, for any p,

Pp(δe H (R)) ≤ 2Pp(0 → D), (2)

where 0 → D is the event that there is an open path of length D starting at the origin. Our
assumption that e is pivotal also implies that H (R) does not hold in ω−. It follows (by Lemma 3
of [1]) that in ω− there is an open path in the dual lattice joining the top of R to the bottom, using
the edge e∗. Hence, in the dual lattice, one of the endpoints of e∗ is in an open path of length at
least D. As edges of the dual lattice are open independently with probability 1 − p, it follows
that

Pp(δe H (R)) ≤ 2P1−p(0 → D). (3)

Let 0 < ε < min{(p1 −1/2)/2, c} be arbitrary, where c > 0 is a constant for which (1) holds.
Let η = η(ε) be as in Theorem 1. For any p we have Pp(0 → D) ↘ θ(p) as D → ∞. Hence,
by Harris’s Theorem (Theorem 8 in [1]), P1/2(0 → D) → 0, so we may choose D such that
P1/2(0 → D) ≤ η/3. As the event 0 → D is increasing, for p ≤ 1/2 we have

Pp(0 → D) ≤ P1/2(0 → D) ≤ η/3.

Using (2) for p ≤ 1/2 and (3) for p ≥ 1/2, it follows that for any p ∈ [0, 1] and any edge e in
R we have

Pp(δe H (R)) ≤ 2η/3 < η.

As H (R) is an increasing local event, and δe H (R) is empty for edges outside R, the conditions
of Theorem 1 are satisfied. Hence, Pp(H (R)) increases from at most ε < c to at least 1 − ε

in some interval of width at most 2ε < p1 − 1/2. As P1/2(H (R)) ≥ c by (1), it follows that
Pp1(H (R)) ≥ 1 − ε. In other words, we have shown that for p1 > 1/2 and ε > 0 fixed and Rn a
3n by n rectangle, we have Pp1(H (Rn)) ≥ 1 − ε if n is large enough. As ε > 0 is arbitrary, this
completes the proof. �

In Section 5 of [1], the Friedgut–Kalai sharp-threshold result is used to deduce from (1) a
result (Lemma 9 in [1]) that is somewhat stronger than Lemma 2. This stronger form was used
in the first proof of Kesten’s Theorem given in [1]; however, in [1] two more very simple proofs
are given, both of which need only Lemma 2.
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