A note on the Harris-Kesten Theorem

Béla Bollobás ${ }^{\text {a,b }}$, Oliver Riordan ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
${ }^{\mathrm{b}}$ Trinity College, Cambridge CB2 1TQ, UK
${ }^{\mathrm{c}}$ Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, UK

Received 22 January 2006; accepted 30 June 2006
Available online 28 March 2007

Abstract

A short proof of the Harris-Kesten result that the critical probability for bond percolation in the planar square lattice is $1 / 2$ was given in [B. Bollobás, O.M. Riordan, A short proof of the Harris-Kesten Theorem, Bull. London Math. Soc. 38 (2006) 470-484], using a sharp-threshold result of Friedgut and Kalai. Here we point out that a key part of this proof may be replaced by an argument of Russo [L. Russo, An approximate zero-one law, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 61 (1982) 129-139] from 1982, using his approximate zero-one law in place of the Friedgut-Kalai result. Russo's paper gave a new proof of the Harris-Kesten Theorem that seems to have received little attention.

© 2007 Published by Elsevier Ltd

Let \mathbb{Z}^{2} be the planar square lattice, i.e., the graph with vertex set \mathbb{Z}^{2} in which each pair of nearest neighbours is joined by an edge. Let $X=E\left(\mathbb{Z}^{2}\right)$ be the edge-set of \mathbb{Z}^{2}, and let $\Omega=\{-1,+1\}^{X}$. We write $\omega=\left(\omega_{e}\right)_{e \in X}$ for an element of Ω, and say that the edge e is open (in the state ω) if $\omega_{e}=+1$, and closed if $\omega_{e}=-1$. An event $A \subset \Omega$ is local if it depends on only finitely many coordinates. As usual, let Σ be the sigma-field generated by local events, and let \mathbb{P}_{p} be the probability measure on (Ω, Σ) in which each edge is open with probability p, and these events are independent. Let $\theta(p)$ be the \mathbb{P}_{p}-probability that the origin is in an infinite open cluster, i.e., an infinite connected subgraph C of \mathbb{Z}^{2} with every edge of C open. In 1960, Harris [3] proved that $\theta(1 / 2)=0$; in 1980, Kesten [5] showed that $\theta(p)>0$ for $p>1 / 2$, establishing that $p_{c}=1 / 2$ is the 'critical probability' for this model. A short proof of these results was given in [1], using a sharp-threshold result of Friedgut and Kalai [2], itself based on a result of Kahn, Kalai and Linial [4].

[^0]In 1982, Russo [6] proved a general sharp-threshold result (weaker than the more recent results described above) and applied it to percolation, to give a new proof of the 'equality of critical probabilities' for site percolation in \mathbb{Z}^{2}. Although Russo does not explicitly say this, his application applies equally well to bond percolation, giving a new proof of the Harris-Kesten Theorem that seems not to be well known. Here we shall present Russo's general sharp-threshold result, and then give a complete version of his application, to bond percolation in \mathbb{Z}^{2}.

Replacing the appropriate section of [1] with this argument gives an even simpler proof of the Harris-Kesten Theorem; we are grateful to Professor Ronald Meester for bringing this to our attention.

An event $A \subset \Omega$ is increasing if $\omega \in A$ and $\omega_{e} \leq \omega_{e}^{\prime}$ for every e imply $\omega^{\prime} \in A$, i.e., if A is preserved when the state of one or more edges is changed from closed to open. An edge e is pivotal for an event A if changing the state of e affects whether or not A holds. Let $\delta_{e} A$ be the event that e is pivotal for A, so $\omega \in \delta_{e} A$ if and only if exactly one of ω^{+}, ω^{-}is in A, where $\omega^{ \pm}$ are the states that agree with ω on all edges other than e, with $\omega_{e}^{+}=1$ and $\omega_{e}^{-}=-1$. In [6], Russo proved the following result about the product measure \mathbb{P}_{p}; in this result the structure of \mathbb{Z}^{2} is irrelevant, i.e., the ground-set X can be any countable set.

Theorem 1. For every $\varepsilon>0$ there is an $\eta>0$ such that if A is an increasing local event with

$$
\mathbb{P}_{p}\left(\delta_{e} A\right)<\eta
$$

for every $e \in X$ and every $p \in[0,1]$, then there is a $p_{0} \in[0,1]$ with

$$
\mathbb{P}_{p_{0}-\varepsilon}(A) \leq \varepsilon \quad \text { and } \quad \mathbb{P}_{p_{0}+\varepsilon}(A) \geq 1-\varepsilon
$$

As in [1], by a k by ℓ rectangle we mean a rectangle $[a, b] \times[c, d]$ with $a, b, c, d \in \mathbb{Z}$ and $b-a=k, d-c=\ell$. We identify a rectangle with the corresponding subgraph of \mathbb{Z}^{2}, including the boundary. A rectangle R has a horizontal open crossing if there is a path in R consisting of open edges, joining a vertex on the left-hand side of R to one on the right; we write $H(R)$ for this event. Our starting point will be the following consequence of the Russo-Seymour-Welsh Lemma (see [1] and the references therein): there is a constant $c>0$ such that

$$
\begin{equation*}
\mathbb{P}_{1 / 2}(H(R)) \geq c \tag{1}
\end{equation*}
$$

for any $3 n$ by n rectangle R. This is essentially the case $\rho=3$ of Corollary 7 in [1]. (The latter result has an irrelevant restriction to n even; the present statement is immediate from the case $\rho=4$ of this result.)

Our aim is to deduce Lemma 11 of [1], restated below.
Lemma 2. Let $p>1 / 2$ be fixed. If R_{n} is a $3 n$ by n rectangle, then $\mathbb{P}_{p}\left(H\left(R_{n}\right)\right) \rightarrow 1$ as $n \rightarrow \infty$.
It is well known that Lemma 2 implies Kesten's Theorem; see [1]. We shall deduce Lemma 2 from (1) using Theorem 1 and Harris's result, that $\theta(1 / 2)=0$. We shall need the concept of the dual lattice $\left(\mathbb{Z}^{2}\right)^{*}$: this is the planar dual of the graph \mathbb{Z}^{2}, having a vertex for each face of \mathbb{Z}^{2}, and an edge e^{*} for each edge e of \mathbb{Z}^{2}, joining the two vertices corresponding to the faces of \mathbb{Z}^{2} in whose boundary e lies. We take e^{*} to be open if and only if e is closed. The following argument is based on that of Russo [6].

Proof of Lemma 2. Let $p_{1}>1 / 2$ be fixed. Let D be a constant to be chosen below, and let R be a $3 n$ by n rectangle with $n \geq 2 D+1$. Suppose that $\omega \in \delta_{e} H(R)$, and define $\omega^{ \pm}$as above. Note that e must be an edge of R, as $H(R)$ depends only on such edges. Then, in ω^{+}there is an
open path in R from the left-hand side to the right using the edge e. Hence, in ω, the endpoints of e are joined by open paths to the left- and right-hand sides of R. One of these paths must have length at least $(3 n-1) / 2 \geq D$. Thus, for any p,

$$
\begin{equation*}
\mathbb{P}_{p}\left(\delta_{e} H(R)\right) \leq 2 \mathbb{P}_{p}(0 \rightarrow D), \tag{2}
\end{equation*}
$$

where $0 \rightarrow D$ is the event that there is an open path of length D starting at the origin. Our assumption that e is pivotal also implies that $H(R)$ does not hold in ω^{-}. It follows (by Lemma 3 of [1]) that in ω^{-}there is an open path in the dual lattice joining the top of R to the bottom, using the edge e^{*}. Hence, in the dual lattice, one of the endpoints of e^{*} is in an open path of length at least D. As edges of the dual lattice are open independently with probability $1-p$, it follows that

$$
\begin{equation*}
\mathbb{P}_{p}\left(\delta_{e} H(R)\right) \leq 2 \mathbb{P}_{1-p}(0 \rightarrow D) \tag{3}
\end{equation*}
$$

Let $0<\varepsilon<\min \left\{\left(p_{1}-1 / 2\right) / 2, c\right\}$ be arbitrary, where $c>0$ is a constant for which (1) holds. Let $\eta=\eta(\varepsilon)$ be as in Theorem 1. For any p we have $\mathbb{P}_{p}(0 \rightarrow D) \searrow \theta(p)$ as $D \rightarrow \infty$. Hence, by Harris's Theorem (Theorem 8 in [1]), $P_{1 / 2}(0 \rightarrow D) \rightarrow 0$, so we may choose D such that $\mathbb{P}_{1 / 2}(0 \rightarrow D) \leq \eta / 3$. As the event $0 \rightarrow D$ is increasing, for $p \leq 1 / 2$ we have

$$
\mathbb{P}_{p}(0 \rightarrow D) \leq \mathbb{P}_{1 / 2}(0 \rightarrow D) \leq \eta / 3 .
$$

Using (2) for $p \leq 1 / 2$ and (3) for $p \geq 1 / 2$, it follows that for any $p \in[0,1]$ and any edge e in R we have

$$
\mathbb{P}_{p}\left(\delta_{e} H(R)\right) \leq 2 \eta / 3<\eta
$$

As $H(R)$ is an increasing local event, and $\delta_{e} H(R)$ is empty for edges outside R, the conditions of Theorem 1 are satisfied. Hence, $\mathbb{P}_{p}(H(R))$ increases from at most $\varepsilon<c$ to at least $1-\varepsilon$ in some interval of width at most $2 \varepsilon<p_{1}-1 / 2$. As $\mathbb{P}_{1 / 2}(H(R)) \geq c$ by (1), it follows that $\mathbb{P}_{p_{1}}(H(R)) \geq 1-\varepsilon$. In other words, we have shown that for $p_{1}>1 / 2$ and $\varepsilon>0$ fixed and R_{n} a $3 n$ by n rectangle, we have $\mathbb{P}_{p_{1}}\left(H\left(R_{n}\right)\right) \geq 1-\varepsilon$ if n is large enough. As $\varepsilon>0$ is arbitrary, this completes the proof.

In Section 5 of [1], the Friedgut-Kalai sharp-threshold result is used to deduce from (1) a result (Lemma 9 in [1]) that is somewhat stronger than Lemma 2. This stronger form was used in the first proof of Kesten's Theorem given in [1]; however, in [1] two more very simple proofs are given, both of which need only Lemma 2.

Acknowledgements

We would like to thank Professor Ronald Meester for drawing Russo's paper to our attention, and pointing out that Russo's proof may replace the relevant argument in [1]. The research of B. Bollobás is supported in part by NSF grant ITR 0225610.

References

[1] B. Bollobás, O.M. Riordan, A short proof of the Harris-Kesten Theorem, Bull. London Math. Soc. 38 (2006) 470-484.
[2] E. Friedgut, G. Kalai, Every monotone graph property has a sharp threshold, Proc. Amer. Math. Soc. 124 (1996) 2993-3002.
[3] T.E. Harris, A lower bound for the critical probability in a certain percolation process, Proc. Cam. Philos. Soc. 56 (1960) 13-20.
[4] J. Kahn, G. Kalai, N. Linial, The influence of variables on Boolean functions, in: Proc. 29th Annual Symposium on Foundations of Computer Science, Computer Society Press, 1988, pp. 68-80.
[5] H. Kesten, The critical probability of bond percolation on the square lattice equals $1 / 2$, Comm. Math. Phys. 74 (1980) 41-59.
[6] L. Russo, An approximate zero-one law, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 61 (1982) 129-139.

[^0]: E-mail addresses: B.Bollobas@dpmms.cam.ac.uk (B. Bollobás), O.Riordan@dpmms.cam.ac.uk (O. Riordan).

