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IRCADIAN OSCILLATORS IN THE EPITHALAMUS
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bstract—The habenula complex is implicated in a range of
ognitive, emotional and reproductive behaviors, and re-
ently this epithalamic structure was suggested to be a com-
onent of the brain’s circadian system. Circadian timekeep-

ng is driven in cells by the cyclical activity of core clock
enes and proteins such as per2/PER2. There are currently
o reports of rhythmic clock gene/protein expression in the
abenula and therefore the question of whether this structure
as an intrinsic molecular clock remains unresolved. Here, us-

ng videomicroscopy imaging and photon-counting of a
ER2::luciferase (LUC) fusion protein together with multiunit
lectrophysiological recordings, we tested the endogenous cir-
adian properties of the mouse habenula in vitro. We show that
circadian oscillator is localized primarily to the medial portion
f the lateral habenula. Rhythms in PER2:: LUC biolumines-
ence here are visualized in single cells and oscillations con-
inue in the presence of the sodium channel blocker, tetrodo-
oxin, indicating that individual cells have intrinsic timekeeping
roperties. Ependymal cells lining the dorsal third ventricle also
xpress circadian oscillations of PER2. These findings estab-
ish that neurons and non-neuronal cells in the epithalamus
xpress rhythms in cellular and molecular activities, indicating
role for circadian oscillators in the temporal regulation of

abenula controlled processes and behavior. © 2010 IBRO.
ublished by Elsevier Ltd.

ey words: lateral habenula, medial habenula, ependymal,
eriod 2, electrophysiology, bioluminescence

he hypothalamic suprachiasmatic nuclei (SCN) are piv-
tal in controlling daily and circadian rhythms in physiology
nd behavior (Rusak and Zucker, 1979). The SCN circa-
ian clock is synchronized to environmental light cues
aptured by rods, cones and melanopsin-containing retinal
anglion cells (mRGCs), and relayed directly to the SCN
ia the retinohypothalamic tract (Rollag et al., 2003; Guler
t al., 2008; Hatori et al., 2008). Both in vitro and in vivo,
odent SCN neurons sustain circadian rhythms in sponta-
eous electrical activity, with peak firing rates recorded
uring the middle of the projected day (Brown and Piggins,
007). Two key developments have led to a significant
eappraisal of the extent of the mammalian brain’s circa-
ian system. First, studies of tissue from transgenic rodent

Corresponding author. Tel: �44-161-275-3897; fax: �44-161-275-3938.
-mail address: hugh.piggins@manchester.ac.uk (H. D. Piggins).
bbreviations: cpm, counts per minute; Hb, habenula; LD, light/dark
ycle; LHb, lateral habenula; LHbL, lateral portion of the lateral habe-
ula; LHbM, medial portion of the lateral habenula; LUC, luciferase;
Hb, medial habenula; mRGCs, melanopsin-containing retinal gan-
lion cells; MUA, multiunit activity; NMDA, N-methyl-D-aspartic acid;

Open access under CC BY license. 
S
ER2, period 2; PMT, photomultiplier tube; SCN, suprachiasmatic
uclei; TTX, tetrodotoxin; ZT, zeitgeber time.

306-4522/10 © 2010 IBRO. Published by Elsevier Ltd.
oi:10.1016/j.neuroscience.2010.06.015
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odels bearing bioluminescent (luciferase, or luc) report-
rs driven by clock genes/proteins, have unmasked a
ange of circadian oscillators of varying strength in other
rain areas (Abe et al., 2002; Granados-Fuentes et al.,
004; Hiler et al., 2008; Guilding et al., 2009; Wang et al.,
009). Second, investigation of the central projections of
RGCs reveals that circadian photic information is directly

onveyed to extra-SCN brain sites (Hattar et al., 2006).
ollectively, these findings indicate that circadian pro-
esses in the brain are not exclusive to the SCN, and the

dentification of such extra-SCN sites is a key goal in
ircadian neurobiology (Guilding and Piggins, 2007).

One such candidate is the habenula (Hb). This epitha-
amic complex is anatomically divided into medial (MHb)
nd lateral (LHb) regions and it is implicated in learning,
emory, attention, sleep/wake cycles and anxiety (Le-

ourtier and Kelly, 2007; Geisler and Trimble, 2008; Hiko-
aka et al., 2008). Building on earlier reports of retinal

nnervation of the rodent Hb (Cooper et al., 1993; Qu et al.,
996), mRGCs were recently found to innervate the mouse
Hb region (Hattar et al., 2006). In vivo rat Hb neurons
lter discharge activity in response to retinal illumination in
pattern resembling that of mRGC activation (Zhao and
usak, 2005). Further, in ex vivo brain slices, LHb (but not
Hb) neurons may sustain circadian rhythms in electrical
ctivity (Zhao and Rusak, 2005). Thus, the rodent Hb has
ome SCN-like properties, but currently, there are no re-
orts of rhythmic clock gene/protein expression in the Hb
nd therefore the potential for molecular circadian time-
eeping properties in this structure remains unknown.

Here using videomicroscopy imaging and photon-
ounting of PER2::LUC fusion protein bioluminescence
ogether with multiunit electrophysiological recordings, we
nvestigate the endogenous circadian properties of the

ouse Hb in vitro.

EXPERIMENTAL PROCEDURES

nimals

dult male mPer2Luc knock-in mice (PER2::LUC, University of
anchester breeding colony; Yoo et al., 2004) were maintained
nder a 12-h light/12-h dark (LD) cycle, with ad libitum access to

ood and water. Temperature was maintained at �18 °C and
umidity at �40%. Zeitgeber time (ZT) 0 was defined as lights-on
nd ZT12 as lights-off. Animals were group housed for at least 2
eeks prior to experimentation. All procedures were carried out in
ccordance with the UK Animals (Scientific Procedures) Act 1986.

ulture preparation

ice were culled by cervical dislocation following halothane an-
sthesia (Concord Pharmaceuticals, Essex UK), at a range of
imes spanning the LD cycle (ZT 2.3–23.3 inclusive, Suppl. Fig.

1) to enable assessment of the effect of the time of culture prepa-

nse. 

https://core.ac.uk/display/82024984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hugh.piggins@manchester.ac.uk
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ation on the phase of peak PER2::LUC activity. For procedures
onducted during the dark period, animal handling and brain extrac-
ion were conduced with the aid of night vision goggles to prevent
xposure of animals to visible light. Coronal SCN or mid bilateral
abenula (corresponding to the region between ��1.70��2.10 mm
regma; Paxinos and Franklin, 2001) slice cultures (300 �m thick)
ere prepared, and micro-dissected tissue was cultured as previ-
usly described (Hughes et al., 2008; Guilding et al., 2009).

uminometry

otal bioluminescence was recorded for up to 12 days from indi-
idual brain slice cultures with photomultiplier tube (PMT) assem-
lies (H8259/R7518P; Hamamatsu, Welwyn Garden City, UK)
oused in a light-tight incubator (Galaxy R�, RS Biotech, Irvine,
cotland) maintained at 37 °C. Photon counts were integrated for
9 s every 1 min. All bioluminescence data were detrended by
ubtracting a 24 h running average from the raw data and
moothed with a 3 h running average.

ioluminescence imaging

ioluminescence emission was imaged with an Olympus LV200
uminescence microscopy system (Olympus, Japan) fitted with a
ooled Hamamatsu C9100-13 EM-CCD camera using a 20�0.4
A Plan Apo objective (Olympus). The LV200 incubator was
aintained at 37 °C in darkness. A transmitted light image was

ecorded prior to the start of each imaging run to aid anatomical
ocalization of bioluminescence. Acquired images were transferred to
mageJ (version 1.37a, NIH, USA) and a region of interest tool was
sed to delineate discrete areas (MHb, LHb, ependymal cells of the
hird ventricle, and single cells) and assess relative bioluminescence
ver time. Putative single cells were identified and distinguished from
ackground noise and isolated cosmic events by their characteristic
ize, shape and temporal expression profile.

etrodotoxin and forskolin treatment

o assess the contribution of sodium-dependant action potential
eneration on the maintenance of bioluminescence rhythms in the
b, explants were cultured with a voltage-gated sodium channel
locker, tetrodotoxin (TTX; 0.5 �M, Sigma, Poole, UK) in the
edium. Tissue viability following damping of bioluminescence

hythms was assessed by treatment of cultures with the adenylate
yclase activator, forskolin (10 �M, Sigma), 3–8 days following
ulture. Treatment was performed as a complete medium change
o fresh, forskolin-containing culture medium, otherwise identical
o initial Dulbecco’s Modified Eagle’s medium (DMEM; Sigma)
ased culture medium.

xtracellular recording

abenula slice cultures (350 �m thick), corresponding to the
ame bregma location as used for the bioluminescence cultures,
ere prepared during the early lights-on phase (ZT 1–3) and
aintained using methods similar to those described earlier

Brown et al., 2006). Slices were transferred to an interface style
rain slice chamber continuously perfused (�1.5 ml/min) with
xygenated (95% O2/5% CO2) aCSF supplemented with 0.0005%
entamicin (Sigma) and warmed to 36�1 °C. Slices were transil-

uminated and visualized under a dissecting microscope, and
icromanipulators were used to precisely guide electrode tips
nto the medial part of the LHb (LHbM; Fig. 5E). Extracellular
ultiunit activity (MUA) was recorded for at least 48 h, using
CSF-filled suction electrodes. Slice viability was tested 72–96 h
fter preparation by addition of a 5 min pulse of 10 �M (N-methyl-
-aspartic acid (NMDA; Sigma) to the perfusing aCSF; NMDA
aused an acute elevation in cell discharge activity (Suppl. Fig.

2). Multiunit signals were differentially amplified (�20,000) and p
andpass filtered (300–3000 Hz) via a Neurolog system (Digi-
imer, UK), digitized (25,000 Hz) using a micro 1401 mkII interface
Cambridge Electronic Design (CED), Cambridge, UK) and re-
orded on a PC running Spike2 version 6 software (CED).

Using Spike2, single unit activity was discriminated offline
rom these MUA recordings as previously described (Brown et al.,
006). Briefly, single units were discriminated on the basis of
aveform shape, principal components-based clustering, and the
resence of a clear refractory period in an interspike interval
istogram. With these criteria we were able to successfully isolate
p to two single units per recording.

ata analysis

olecular and electrophysiological rhythms were analyzed using
urve fitting software (Clockwise, developed in house by Dr. T.
rown) as previously described (Bechtold et al., 2008). Processed
ioluminescence data were assessed with Clockwise to determine
he significance of circadian variation in PER2::LUC expression.
eriod (peak-peak and trough-trough averaged), phase (peak
ER2::LUC expression during the interval between 24 and 48 h in
ulture), amplitude (peak-trough 24–48 h after culture) and rate of
amping (the number of cycles observed before bioluminescence

evels reached the level of dark current noise (�10%), previously
etermined for each individual PMT), were assessed manually by
wo experienced, independent researchers blinded to conditions.
eriod and phase measurements were subsequently confirmed
ith Clockwise and in all cases were found to be in close agree-
ent with manually assessed data. Paired and unpaired t-tests

Excel; P�0.05 required for significance) were used as appropri-
te to determine statistically significant differences. Rayleigh anal-
sis was used to assess clustering of the times of peak electrical
nd molecular activity (El Temps; Dr. A. Díez-Noguera, Barce-

ona, Spain, significance set at P�0.05).

RESULTS

e investigated circadian rhythmicity in the Hb using lon-
itudinal electrophysiological recordings of neuronal activ-

ty and assessment of PER2::LUC bioluminescence emis-
ions from adult mouse brain slice cultures in vitro. Both
reparations enabled investigation of the endogenous cir-
adian properties of the tissue since they are devoid of any

nput from the SCN or other known circadian oscillators.

ircadian rhythms of PER2::LUC bioluminescence in
he Hb complex

o determine the circadian characteristics of the Hb com-
lex, we performed long-term luminometry of PER2::LUC
xpression recorded in PMTs for up to 12 days. Seventy
our percent of Hb slice cultures (25/34) displayed circa-
ian rhythms in PER2::LUC emission, with a mean period
f 22.65�0.6 h (Fig. 1; significance determined by Clock-
ise rhythm analysis software; P�0.05). Slices showed up

o three circadian cycles in PER2::LUC bioluminescence
efore damping to apparent arrhythmicity (Fig. 1F; mean
uration before damping 1.5�0.1 cycles). Forskolin, an
ctivator of adenylate cyclase, is commonly used to evoke
hythms in damped circadian oscillators. Forskolin treat-
ent (10 �M) restarted damped rhythms in all Hb slices
onitored in PMTs (Fig. 1A; n�11). Rayleigh analysis of

he phase of peak PER2::LUC in the Hb in vitro during the
4–48 h window after slice preparation revealed that peak

hase was not significantly correlated with either ZT (Fig.
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A; n�25, r�0.105, P�0.759) or with time of culture prep-
ration (Fig. 2B; r�0.333, P�0.064).

To assess the autonomy of PER2 rhythms in the Hb,
e impaired action potential-dependent synaptic commu-
ication between cells with TTX. 0.5 �M TTX, a concen-
ration which completely inhibits action potential production
n the LHb (data not shown), did not alter PER2::LUC
ioluminescence rhythms (Fig. 1B). Seventy five percent
f Hb slices in TTX-containing media (6/8) displayed cir-
adian rhythmicity, comparable to the percentage of rhyth-
ic slices in non-TTX recording media (74%). The period
f slices in TTX-containing media was 23.18�1.5 h, mean
uration before damping was 1.6�0.2 cycles and the am-
litude was 99�12.3 counts per minute (cpm). None of these
ircadian parameters were significantly different to those re-
orded from cultures maintained in normal medium (Fig.
D–F; all P�0.05; unpaired t-test). The effects of forskolin
timulation persisted when the culture medium also con-
ained 0.5 �M TTX, indicating that this action is also indepen-
ent of sodium-dependent action potentials (Fig. 1B).

ircadian rhythms of PER2::LUC bioluminescence in
he SCN

MT recordings of PER2::LUC bioluminescence expres-
ion from SCN cultures (n�9) were all rhythmic, with peak

ig. 1. Circadian rhythms in PER2::LUC expression in Hb (A, B) and
counts per minute) in a Hb slice culture. Exposure to forskolin (10 �M
n the presence of 0.5 �M TTX. (C) PER2::LUC emission from an SC
n�34) and TTX containing medium (n�8), recorded in PMTs. There a
ollowing culture with 0.5 �M TTX.
ioluminescence at ZT10.9�0.4 and a mean period of w
3.8�0.25 h (Fig. 1C). There was no significant difference
n estimated period between SCN and Hb cultures re-
orded in PMTs (P�0.05) probably due to the variability of
eriod between Hb slices, however, oscillations of
ER2::LUC bioluminescence in the SCN were of signifi-
antly higher amplitude than in the Hb (SCN mean ampli-
ude: 3995�660 cpm, Hb mean amplitude 119�15 cpm;
�0.00001) and were maintained for the full 7 days of

ecording, by which time oscillations had not damped to
aseline (Fig. 1C). Rayleigh analysis revealed that peak
hase of PER2::LUC expression was robustly correlated
ith ZT (Fig. 2C; n�9, r�0.948, P�0.00001) and not with

ime of culture preparation (Fig. 2D; r�0.0366, P�0.358).
owever, consistent with Yoshikawa et al. (2005), while
eak phase did not correlate with a specific time after
ulture preparation, there was a significant effect of time of
ay of culture on the phase of PER2 expression: cultures
repared in the day consistently peaked earlier (Suppl. Fig.
3, peak phase 9.6�0.23 h) than those prepared at night

peak phase 11.5�0.33 h, P�0.01 versus day).

ircadian rhythms of PER2::LUC bioluminescence
isualized in the epithalamus

o determine the anatomical location of PER2::LUC ex-
ression within the Hb complex, whole Hb slice cultures

slice cultures. (A) Detrended PMT recording of PER2::LUC emission
d oscillations. (B) Relative PER2::LUC bioluminescence in a Hb slice
ulture. (E, F) Circadian characteristics of Hb slice cultures in control
nificant differences in period (D), amplitude (E) or rate of damping (F)
SCN (C)
) restarte
N slice c
ere imaged in real time with an EM-CCD camera.
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ER2::LUC expression was consistently visualized in the
edial portion of the LHb (LHbM), in a central band radi-
ting into the lateral portion of the LHb (LHbL) and in the
pendymal cell layer lining the walls of the dorsal third
entricle (Fig. 3A, Movie 1). PER2::LUC bioluminescence
as also observed in the MHb, adjacent to the dorsal third
entricle, though levels of expression here were much
ower than in the LHb or ependymal cell layer.

Continuous recordings of PER2::LUC activity were
ade from 11 slices for up to 10 days in vitro. Circadian
scillations of PER2::LUC bioluminescence were ob-
erved in the LHb in 10 cultures and in the ependymal
ayer in 8. (Fig. 3, Movie 1). The average period of oscil-
ations differed significantly between the LHb and the
pendymal cell layer (LHb: 21.3�0.5 h, ependymal:
3.9�0.9 h; P�0.05, t-test; Fig. 4F). This near 24 h peri-
dicity in epithalamic ependymal cells is similar to that
bserved in mediobasal hypothalamic ependymal cells
Guilding et al., 2009). In the MHb, very weakly rhythmic
emporal expression of PER2::LUC bioluminescence was
bserved in 5 of 11 cultures, and appeared linked to the
aves of expression radiating up the ependymal cell layer

period 24�0.9 h; Movie 1, Figs. 3 and 4), and hence may
eflect expression in ependymal tanycytes projecting into
his structure (Cupedo and de Weerd, 1985). Forskolin
reatment restarted damped rhythms in the ependymal cell

ig. 2. Rayleigh vector plots showing the phase of peak PER2::LUC
xpression in vitro recorded in PMTs, calculated as the time of peak
ioluminescence after culture preparation or geographical ZT, in Hb
nd SCN slice cultures prepared at different times throughout the LD
ycle. The phase of peak PER2::LUC expression in the Hb is not
orrelated with ZT (A) or time after culture preparation (B), while in the
CN it is correlated with ZT (C) but not time after culture preparation

D). Filled circles indicate the phase of peak bioluminescence in indi-
idual slice cultures. Direction of arrow indicates the mean phase
ector, its length indicates the significance of phase clustering, with the
urrounding box indicating the variance of phase. The inner broken
ine indicates the significance threshold of P�0.05.
ayer to a much greater extent than in the LHb (Fig. 3), t
ighlighting potential functional differences between these
wo oscillators.

Rayleigh vector plots of peak PER2::LUC biolumines-
ence indicated that the phase of the circadian rhythms did
ot correlate with ZT or the time after culture preparation in
ither the LHb (Fig. 1G; ZT: r�0.485, P�0.096, time after
ulture: r�0.281. P�0.457) or the ependymal cell layer
Fig. 1G; ZT: r�0.258, P�0.519, time after culture: r�
.269, P�0.491). While the small area of the ependymal

ayer generates clear circadian oscillations, the larger area
f the LHb contributes most to the overall bioluminescence
hythm from the whole slice culture, demonstrated by the
dentical phasing of PER2::LUC rhythms in the LHb and in
he whole tissue area (Fig. 3C, D). Single cells were visible
n the LHbM in five of our recordings. Of 69 cells discrim-
nated, 91% were rhythmic, with an average period of
2.2�0.2 h (Figs. 3F and 4F). The phases of peak
ER2::LUC expression (measured at 24–48 h after cul-

ure) in single cells were significantly clustered in each
ndividual slice (all P�0.05; Rayleigh analysis), which pre-
umably underlies the whole tissue rhythmicity at this time.
ery occasionally, faint cells were observed in the MHb;
owever these could not be tracked because lumines-
ence here was at the edge of our detection limits (see
ovie 1).

To examine the autonomy of molecular timekeeping in
ndividual regions and cells from action potential depen-
ent synaptic communication, we imaged Hb slice cultures

n the presence of 0.5 �M TTX (n�3). Both the LHb and
pendymal cell layer continued to display circadian rhyth-
icity following impairment of synaptic communication,
ith periods similar to those recorded in non-TTX treated
lices (LHb: 21.9�0.07, ependymal: 23.9�0.15 h; P�
.05), yet still significantly different from each other
P�0.01, unpaired t-test, Fig. 4F). The weak oscillations in
he MHb persisted in the presence of TTX, once again
losely associated with the oscillations observed in the
pendymal cell layer. Individual cells were visible in the
HbM in all of these recordings. Of 45 cells discriminated,
9% were rhythmic, with an average period of 22.4�0.14
(Fig. 4F). These cells continued to express circadian

hythms for up to 9 days (the maximum duration of record-
ngs), indicating that single cells are sustained oscillators
hich do not rely on sodium dependent synaptic commu-
ication for the maintenance of rhythms.

ircadian variation in spontaneous discharge activity
n the LHbM

o determine if rhythmic expression of PER2::LUC in the
b was accompanied by circadian variation in spontane-
us discharge activity, population and single cell electrical
ctivity were recorded extracellularly in the LHbM for at

east 48 h in vitro. Consistent with previous studies in
uinea-pig and rat LHb (Wilcox et al., 1988; Kim and
hang, 2005; Zhao and Rusak, 2005), we found neurons
ere to be spontaneously active. At least one distinct daily
eak in firing rate activity was observed in 18/21 slices
Fig. 5A); the remaining three slices displayed clear spon-

aneous electrical activity, but no discernable individual
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aily peaks. Rayleigh analysis of the timing of multi- and
ingle unit peak firing showed that there was no significant
lustering of peak cellular discharge in relation to ZT
n�18, r�0.215, P�0.437; Fig. 5F), though more slices
eaked during the night (n�12/21; Fig. 5) than during the
ay (n�6/21; Fig. 5).

Circadian oscillations were detected in multiunit dis-
harge in five recordings (Fig. 5C; estimated mean period
4.0�2.0 h). Based on waveform shape, principal compo-
ents-based clustering, and the presence of a clear refrac-

ig. 3. PER2::LUC expression in the habenula and ependymal cell la
ulture, illustrating PER2::LUC bioluminescence (green) in the LHb a
lots of relative PER2::LUC expression delineated in the (B) ependym

F) Bioluminescence emission from representative individual cells in
xpression in vitro in the LHb and ependymal cell layer (green) calcula
ircles indicate the peak phase of individual slice (n�10).
ory period in the interspike interval histogram, 22 single t
ells were discriminated offline from all recordings. These
ingle cells fired spontaneously with a regular pattern of
ctivity and tended to show only one peak in firing activity
Fig. 5B, D). This differs from SCN where cellular rhythms,
lthough damping, can be monitored for up to 96 h in vitro
Brown et al., 2006).

DISCUSSION

any cognitive and reproductive behaviors modulated by

M-CCD images overlaid on a transmitted light image from a Hb slice
ymal cell layer. Inset highlights single cells. Calibration bar 250 �m.
er, (C) LHb, (E) MHb and, (D) integrated across the whole Hb culture.
. (G) Rayleigh vector plots showing the phase of peak PER2::LUC

e time of peak bioluminescence after culture preparation or ZT. Filled
yer. (A) E
nd epend
al cell lay
the LHbM
ted as th
he Hb show circadian variations (Sutherland, 1982; Ralph
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t al., 2002; Hikosaka et al., 2008). Zhao and Rusak (2005)
eported that rat LHb neurons show a circadian rhythm in
pontaneous electrical activity when isolated from the
CN, but the potential molecular timekeeping properties of

odent Hb were unknown. Here we provide the first evi-
ence of rhythmic clock gene expression in the Hb, local-

zing circadian oscillations in PER2::LUC bioluminescence
o single cells in the LHb. We provide evidence of a func-
ional output of these oscillations with the demonstration of
ircadian rhythms in neuronal excitability in a proportion of
HbM recordings. Further, we show circadian oscillations

n PER2::LUC expression in the ependymal cell layer of
he dorsal third ventricle. Circadian oscillations in the Hb
omplex do not appear to depend on action potential pro-
uction since they persist in TTX-containing medium.
hole tissue rhythms, however, damp over time, as we

nd others have previously observed in other extra-SCN
rain oscillators (Abe et al., 2002; Guilding et al., 2009;
ang et al., 2009), indicating that inputs from a master

ircadian oscillator and/or external cues are needed to
aintain co-ordination of individual cellular rhythms and
ence a coherent, high amplitude, tissue rhythm. The clear
ifference in the expression of PER2::LUC between the

ig. 4. Circadian expression of PER2::LUC in the Hb complex persis
lices cultured with TTX, delineated in the (A) ependymal cell lay
E) Bioluminescence emission from individual cells in the LHbM. (F) Pe
n the LHb in slices cultured in control (n�11) or TTX (n�3) medium.
Hb and LHb further substantiates the view that these two S
egions of the Hb complex are anatomically and function-
lly very different in vertebrates (Amo et al., 2010; Zhao
nd Rusak, 2005; Quina et al., 2009).

Previous studies of rhythmicity in the Hb have utilized
-FOS as a marker of cellular activity. A daily rhythm of
-FOS immunoreactivity was observed in hamster and
ouse LHbM, with significantly higher levels observed in

he dark phase (Tavakoli-Nezhad and Schwartz, 2006). An
arlier study in rat, however, found higher c-FOS in the

ight phase, indicating a possible species difference in
ircadian functioning in the LHbM (Chastrette et al., 1991).
hile one study has noted the presence of per1 and per2
RNA in the rat MHb (Shieh, 2003), only one published

tudy has investigated clock gene protein expression in the
b, and did not detect either PER1 or PER2 protein ex-
ression in the hamster Hb (Tavakoli-Nezhad and
chwartz, 2006). We demonstrate for the first time that
ER2 is rhythmically expressed in the LHb in mouse, and

hat this expression shows clear circadian variation and
ersists in isolation from the SCN.

Initial assessment of PER2::LUC rhythms in the Hb com-
lex as a whole, revealed major differences in strength, ro-
ustness and phase compared to rhythms in the SCN; the

resence of TTX (0.5 �M). Plots of relative PER2::LUC expression in
Hb, (C) integrated across the whole Hb complex and (D) MHb.
cadian oscillations in the ependymal cell layer, LHb and in single cells
5, ** P�0.01 versus the ependymal cell layer.
ts in the p
er, (B) L
CN maintains high amplitude rhythms for the length of
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ecordings, while rhythms in the Hb complex are of lower
mplitude and damp rapidly. However, once individual
egions were visualized and delineated, it became appar-
nt that there are at least two different oscillators in the Hb
omplex, one localized to the LHb and one to the ependy-
al cell layer. Since these oscillators are randomly phased
ith respect to one another and have different periods,

hythm amplitudes observed in the Hb complex in PMTs,
r when the whole area is delineated from images, are
aturally reduced as compared to assessment of the indi-
idual areas separately (see Fig. 3). Interestingly,
ER2::LUC rhythms in the LHb, ependymal cell layer and

n single LHb cells were maintained after impairment of
ynaptic communication with TTX, indicating that indi-
idual cells can function as autonomous cellular oscilla-
ors. Continued cycling of individual cells in the pres-
nce of TTX, though with lower amplitudes, is a feature

ig. 5. Temporal patterns of electrical activity in the LHb. Recordings
rom the LHb discriminated multiunit (MUA; A, C) and single unit
lectrical activity (SUA; B, D). MUA rhythms generally showed one
eak (A) or peaks on consecutive days (C) with a circadian period.
ingle cells discriminated from the multiunit recordings in (A, C) are
hown below them (B, D). Inset traces in (B, D) indicate the average
pike waveforms for each cell; scale bars represent 15 �V (vertical)
nd 1 ms (horizontal). (E) Representative photograph of electrode
ositioning on the LHbM for electrophysiological recordings. (F) Ray-

eigh vector plot showing that the phases of peak electrical activity in
he LHb are randomly distributed across the LD cycle. Filled circles
ndicate the phase of individual slices (n�18). For interpretation of the
eferences to color in this figure legend, the reader is referred to the

eb version of this article.
f SCN neurons (Yamaguchi et al., 2003) and of neu- m
ons in other recently described extra-SCN oscillators
Guilding et al., 2009).

Brain tissue differs in its phase-resetting properties
fter culture, related to the strength and characteristics of
he endogenous circadian oscillators. In mice held under
D cycles, the SCN maintains a coherent phase locked to
T when explanted in vitro (Fig. 2C). While this phase is
ot correlated to the specific time of culture (Fig. 2D), it is
ffected by it; slices prepared in the light phase peaked
ignificantly earlier than those prepared in the dark phase
Suppl. Fig. S3). These data corroborate a comprehensive
tudy by Yoshikawa and colleagues (2005), who demon-
trated that the time of peak per1::luc expression in the
CN was delayed when cultures from rats previously held
nder a LD cycle were prepared in the night or early day
ersus the middle of the day.

In our study, the phase of oscillations in the Hb in vitro
s not significantly correlated to ZT (Fig. 2A) or time after
ulture preparation (Fig. 2B), however, the correlation with
ime after culture preparation approached significance in
MTs (P�0.064), hence a larger sample size could con-
eivably reveal a significant effect. The phasing of the
scillations in vitro may result from complex interactions
etween the in vivo phase and resetting stimuli from the
ulture process. Extra-SCN tissues display a range of
hase resetting responses following culture: explants of
lfactory bulb from rat show random phase distribution of
eak per1::luc bioluminescence, while other tissues from
er1::luc rats are either unaffected or completely reset by
ulturing procedures (Abraham et al., 2005; Yoshikawa et
l., 2005). Further, cultures from PER2::LUC mice contain-

ng the arcuate or dorsomedial nuclei of the hypothalamus
re consistently reset by culturing procedures (Guilding et
l., 2009).

A circadian rhythm in discontinuously sampled spon-
aneous neuronal discharge in the LHb both in vivo and in
itro was recorded in rat (Zhao and Rusak, 2005). In both
ettings, cells displayed peak firing rates during the pro-

ected day phase, similar to that observed in the SCN. We
ound circadian rhythms in population cell firing in 24% of
ur recordings from the LHbM in vitro, suggesting that in
he mouse, the PER2 oscillator is weakly coupled to the
lectrical excitability of these neurons, although consistent
ith other tissues and cells, determining how rhythms in
ER2::LUC relate to rhythms in physiological function re-
ains to be determined. Unlike the study in rat, we did not

ee a consistent phase of peak cell firing in the day (Zhao
nd Rusak, 2005). Indeed a larger number of our slices
eaked during the dark phase, corresponding with the
hase of peak firing observed in many other extra-SCN
rain regions (Inouye and Kawamura, 1979; Inouye,
983). The discrepancies between these studies may re-
ult from the different preparation or sampling techniques
sed, or as seen for c-FOS rhythms, may be due to spe-
ies differences in circadian physiology in the LHb (Chas-
rette et al., 1991; Tavakoli-Nezhad and Schwartz, 2006).

The transient and varied MUA rhythms detected in the
ouse LHb in vitro contrasts with MUA recorded in the

ouse and rat SCN where many neurons are capable of
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ustaining synchronized electrical rhythms in vitro for up to
6 h (Gribkoff et al., 1998; Albus et al., 2002; Brown et al.,
005, 2006). There are a number of possible explanations
or this. One, the molecular oscillator in LHb neurons may
nly weakly target the membrane properties of these neu-
ons such that many cells lack the unique intrinsic rhythm
eneration properties of SCN neurons (Brown and Piggins,
007; Belle et al., 2009). Two, the anatomy of the LHb may

solate groups of cells and thus impede global synchroni-
ation of neuronal activity. The rat LHb has a complex
natomical organization (Geisler et al., 2003) and if orga-
ization of the mouse LHb approximates this then it is likely
hat there are distinct clusters of LHbM cells. In our inves-
igations, we aimed our recording pipette in the LHbM, but
t is probable that we monitored electrical activity from
ifferent LHbM cell populations in different slices and this
ay account for the heterogeneity in these MUA record-

ngs. Three, the axons of LHb neurons project outside of
he LHb and do not seem to have local collaterals (Kim and
hang, 2005), hence individual LHb cells may lack the
oordinating activities present in SCN neuronal networks.
t present it is not clear if one or all of these possibilities
an account for the varied MUA in the LHbM and further
xperiments are required to resolve this.

The function of a circadian oscillator in the Hb is not
nown, although many behaviors which are modulated by
he Hb such as sleep/wake cycles, stress responses, re-
roductive behaviors, pain responses, and reward-related

earning show circadian variations (Chastrette et al., 1991;
orodimas et al., 1992; Haun et al., 1992; Landis et al.,
993; Nagao et al., 1993; Perissin et al., 2003; Matsumoto
nd Hikosaka, 2007; Webb et al., 2009). The Hb ex-
resses receptors for neuropeptides associated with SCN
fferents (Hernando et al., 2001; Cheng et al., 2006) as
ell as melatonin binding sites (Weaver et al., 1989), and

etinal efferents arising from mRGCs innervate the LHb
egion (Hattar et al., 2006), indicating that photic and SCN-
ontrolled output signals can regulate Hb cellular activity.
ndeed, hamsters with split behavioral rhythms resulting
rom constant lighting conditions show asymmetrical c-
OS expression in the SCN and in the LHbM (Tavakoli-
ezhad and Schwartz, 2005). The Hb in turn projects to

he pineal gland and raphe nuclei (Wang and Aghajanian,
977; Herkenham and Nauta, 1979; Ronnekleiv and
oller, 1979; Araki et al., 1988), both of which are impor-

ant for circadian timekeeping (Morin, 1999). Moreover, the
aphe nuclei are implicated in major depression, an illness
hich can be precipitated or exacerbated by disruptions of
ircadian alignment through jet lag or shift work (American
sychiatric Association, 2000; Monteleone and Maj, 2008),
nd an expanding body of evidence highlights the func-
ional importance of raphe-LHb pathways in major depres-
ion (Sartorius et al., 2010; Sartorius and Henn, 2007;
ang et al., 2008).

Of particular interest within our current data is the
ocalization of individual cellular oscillators specifically to
he LHbM. How the LHbM in mouse maps onto the Hb
uclei defined in rat (Andres et al., 1999; Geisler et al.,

003) remains to be determined. However, it appears to be
his area, which expresses c-FOS in response to day-time
ut not night-time immobilization stress in rat (Chastrette et
l., 1991), which exhibits a daily rhythm of c-FOS immu-
oreactivity in hamster and mouse (Tavakoli-Nezhad and
chwartz, 2006), and which expresses the asymmetrical
-FOS expression in response to splitting (Tavakoli-
ezhad and Schwartz, 2005). Further, this specific area

eceives the only major dopaminergic innervation into the
b complex, which originates largely from the ventral teg-
ental area (VTA) (Herkenham and Nauta, 1977; Skager-
erg et al., 1984; Gruber et al., 2007; Kowski et al., 2009).
he LHb in turn projects to GABAergic neurons in the
ostromedial tegmental nucleus (Jhou et al., 2009a).
hese neurons innervate VTA cells and negatively regu-

ate dopaminergic neurons in the substantia nigra pars
ompacta (Jhou et al., 2009b), which are responsible for
oluntary motor control and regulation of sleep patterns
Lima et al., 2007; Matsumoto and Hikosaka, 2007); sug-
esting a role for LHb-substantia nigra pathway in the
ircadian expression of voluntary locomotor activity and
leep/wake cycles. Indeed it is hypothesized that the LHb
cts as a secondary oscillator regulating voluntary wheel-
unning in hamsters (Tavakoli-Nezhad and Schwartz,
006).

CONCLUSION

n summary, the Hb appears well placed to integrate photic
nd circadian information, and relay this downstream to

nfluence circadian modulated behaviors. Our data sug-
est that the LHb can fine tune this circadian information
ith an endogenous clock.
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