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The problem of classifying all finite group actions, up to topological equivalence, on a surface 

of low genus is considered. Several new examples of construction and classification of actions are 

given. A program for enumerating all finite group actions on a surface of low genus is outlined 

and the complete classification is worked out for genus 2 and 3. As a by-product all conjugacy 

classes of finite subgroups of mapping class groups for genus 2 and 3 are determined. 

1. Introduction 

In this paper we work out the complete classification of orientation-preserving ac- 

tions of finite groups, up to topological equivalence, on surfaces of genus 2 and 3. 

The study of finite groups of automorphisms of surfaces has a long history, starting 

late in the last century, and many results are known. However, the detailed 

enumeration of all groups of automorphisms of surfaces of low genus has not been 

pursued until recently (cf. Kuribayashi et al. [37-411) because the complexity of the 

group-theoretic problems rapidly increases with increasing genus. The viewpoint of 

our study will be to ‘detopologize’ the problem by first transforming it into an 

equivalent problem about the enumeration of all finite groups which admit certain 

presentations. Then, we apply, in a systematic way, the machinery of modern group 

theory, some of which was not used or not available to previous authors. Our main 

result, Theorem 4.1, gives the complete classification of finite group actions on sur- 

faces of genus 2 and 3. Explicit lists of actions are given in Table 4 for genus 2 and 

Table 5 for genus 3. 

Before giving an outline of our attack on the problem let us briefly describe two 

important topological motivations for studying the problem, in particular, why we 

classify actions rather than just the groups. The first motivation is to better under- 

stand the mapping class group, i.e., the group of homotopy classes of homeomor- 

phisms of a surface. It turns out that the equivalence classes of group actions are 

in 1-l correspondence to conjugacy classes of finite subgroups of the mapping class 

group. Thus, our classification here gives some information on the structure of these 
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groups. The second motivation arises from the analysis of the singularities of the 

moduli space of conformal equivalence classes of Riemann surfaces of a given genus 

(cf. [54]). This singular algebraic variety may be decomposed into a finite disjoint 

union of smooth subvarieties each of which corresponds to a unique equivalence 

class of actions of some finite group. Thus, the enumeration of group actions is a 

necessary component of the analysis of the singularities of these spaces or, indeed, 

any classification problem of structures on Riemann surfaces that ultimately de- 

pends on the conformal structure of the surfaces. There is a strong connection be- 

tween these moduli spaces and mapping class groups since the moduli space is the 

quotient of Teichmiiller space (contractible complex manifold) by a natural action 

of the mapping class group. This stratification and its connection to the mapping 

class group and actions of finite groups on a surface is the subject of the paper [3]. 

Now we outline a program for the classification of finite group actions on a sur- 

face of given genus. We defer to Section 2 all definitions, details and background 

results used in this outline. Let S be a surface of genus o and G a finite group acting 

orientably and effectively on S. 

(1.1) 

(1.2) 

The quotient space S/G is a smooth surface and the quotient projection 

S--f S/G is a branched covering. This covering may be partially characterized 

by a vector of numbers (Q : m,, . . . , m,) where ~(a is the genus of S/G, 

r-520-t 2 is the number of branch points of the covering and the mj are the 

orders of certain elements of G which fix points on S. We call (Q : ml, . . . , m,) 
the branching data of G on S. The Riemann-Hurwitz equation 

W-2MGl = (&~2)+~~~ (1-h) 
J 

must be satisfied, this imposes restrictions on /G / and the branching data that 

can occur. To find all finite group actions on surfaces of genus CJ we first need 

a list of all possible branching data. The mj need only be chosen from a small 

list of possible orders of automorphisms of a surface of genus o. These orders 

may be determined from the results of Harvey [26] and Wiman [67] (see for- 

mulae (4.7.i)-(4.7.iii)). The list of possible branching data may then be ob- 

tained by running through the list of all possible (r+ 1)-tuples (Q : m,, . . . , m,) 
where the mJ are in the given finite list of possible orders and selecting those 

vectors such that the number (20 - 2)/(2~ - 2 + Cg=, (1 - l/mj)) is an integer 

divisible by all the mj’s. 

For each (r + 1)-tuple (Q : m,, . . . , m,) it turns out that the actions of finite 

groups G on S with the given branching data can be determined by finding 

all groups whose order is given by the Riemann-Hurwitz equation and such 

that there are aI, . . . , ag, bl, . . . . b,, cl, . . . , C,E G which generate G, satisfy mj = 

O(Cj) (O(Cj) = order of cj) and 
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(1.3) For each generating set found in 1.2 an equivalence class of G-actions is deter- 

mined, and each equivalence class of G-actions determines a class of gen- 

erating sets. The distinct equivalence classes of G-actions can be found by 

algebraic manipulation of the generating sets as described in Section 2. 

(1.4) If G acts on S and HC G, then the relative projection S/H+ S/G is a branched 

covering and has certain numerical invariants associated to it. These invariants 

can be calculated from the branching data of G and H. The numerical in- 

variants impose restrictions on how H lies in G and hence gives us information 

about the structure of G. To aid in the classification of groups G acting on 

S with j G/ = n and branching data (Q : WI,, . . . , m,), we may choose subgroups 

Hc G (e.g., Sylow subgroups, cyclic subgroups Z, or normal subgroups if 

G is solvable) and use classification of actions of groups of order <n, and the 

numerical invariants of the map S/H+ S/G to force certain structural proper- 

ties upon G. Thus, we shall classify actions inductively, i.e., with (G1 in- 

creasing. 

Remark. The class of groups that act on surfaces of genus 5 o is a naturally occur- 

ring set of groups that may be interesting to solvable group theorists. This set is 

closed under the operations of taking subgroups (restrict actions) and quotients (for 

Na G, G/Nacts on S/N, a surface of genus I a). The vast majority of these groups 

are solvable and their maximum possible order grows linearly with 0 (at most 

84(a- 1) by Hurwitz’ Theorem). Moreover, the inductive method of constructing 

groups suggested in 1.4 would undoubtedly pose a number of interesting problems 

about of one solvable group lying in another. 

The remainder of this paper is organized as follows. In Section 2 we give defini- 

tions, introduce notation and gather enough results together to establish the transi- 

tion from the topological problem to the group-theoretic problem. These back- 

ground results also establish the method of classification of actions by algebraic 

manipulation of the generating sets described in 1.3 and the inductive approach of 

1.4. In Section 3 we describe some new examples and general techniques of con- 

structing and classifying group actions. Example 3.1 shows how character theory 

may be used in powerful ways to enumerate group actions of groups whose char- 

acter tables and subgroup lattices are known (see also [55]). These techniques can 

especially be applied to simple groups using recently derived information on charac- 

ter tables and subgroup structure. Example 3.4 gives new results on the construction 

and classification of certain actions of split metacyclic groups. Examples 3.5 and 3.6 

demonstrate the use of relative projections and inductive procedure referred to in 

1.4. The results in Example 3.6 are new. In Examples 3.2 and 3.3 we recall from 

the literature classifications of actions of prime-order, cyclic and abelian groups, 

since these results are used extensively in Section 4. In Section 4 we work out the 

classification of group actions on surfaces of genus 2 and 3, following the outline 
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1. l-l .4 and relying heavily on the results and examples of Sections 2 and 3. Our no- 

tation for groups is given in statements (4.1)-(4.3). Parts of this classification have 

been obtained or used by other authors [4,38-41,43,67], though their results only 

make reference to the groups and not their actions. The classification given here is 

more complete than has been obtained previously, particularly that for genus 3. For 

the sake of completeness we have given the full details. 

We finish this section by listing a categorized selection of background and related 

articles about group actions on surfaces. 

Foundational material. The early investigators used the combinatorial methods 

of branched coverings for the constructions of actions. In the important paper [29], 

Hurwitz proved that 84(a - 1) is the upper bound for the order of the group of auto- 

morphisms of S,. Later, Wiman [67] found the upper bound 40 + 2 for the order 

of an automorphism of S,. Modern treatments of groups actions employ these 

combinatorial and topological methods (cf. [65,70]) as well as the equivalent meth- 

ods of Fuchsian groups and Teichmtiller spaces (cf. [26,27,47,50,55,58,59,68-701). 

Hurwitz groups. A Hurwitz group is a group acting on a surface for which the 

Hurwitz upper bound of 84(a- 1) on group orders is realized. This topic has held 

great fascination ever since Hurwitz proved his theorem. Specific Hurwitz groups, 

including PSL2(7), PSL,(8) and Janko’s first group, have been exhibited in the ar- 

ticles [34,49,55,62]. General classes of Hurwitz groups such as PSL,(q) and alter- 

nating groups are described in [5,6,10,42,48,5 1,55,63]. 

Specific types of groups. Besides Hurwitz groups, there are several specific 

classes of groups that have been studied extensively: cyclic and abelian groups, 

PSL2(q) groups and alternating and symmetric groups. The actions of cyclic and 

abelian groups were constructed by group-theoretic means in the papers [26] and 

[44], respectively. In addition, there are many results on single automorphisms such 

as order bounds [67], and topological equivalence [53,68]. The projective linear 

groups, PSL,(q), are the most studied class of non-abelian groups, cf. [22,23,51, 

551. In a series of papers [8-lo], Conder obtained many results on actions of alter- 

nating and symmetric groups, in particular, which alternating groups are Hurwitz 

groups. 

Minimal genus actions. A recent topic has been the determination of the minimal 

genus of a surface on which a given group will act. This is considered generally in 

[65], the projective linear groups have been done in [22,23] and the alternating 

groups in [g-lo], as mentioned above. 

Subgroups of Fuchsian groups. As explained in Section 2 every group action on 

a surface arises by selecting a normal torsion-free subgroup of a Fuchsian group. 

Results on the existence, structure, index and maximality of such groups appear in 

the papers [7,19,35,36,45,48]. Related results on non-normal subgroups and per- 

mutation groups are given in [58]. 

Other classification schemes. Other methods of classification of groups actions 

generally make use of the G-action on the homology or cohomology of the surface, 

as in the papers [13-15,641. Another classification scheme, from the analytic side, 
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has been recently considered by A. Kuribayashi, I. Kuribayashi and H. Kimura 

[37-411. Any subgroup of the automorphism group of a Riemann surface of genus 

o acts on the a-dimensional space of holomorphic differentials on the surface. 

These authors have worked out the classification of all subgroups of GL(cr, C) that 

occur in this way for 25015. Results have been announced for all these genera, 

complete results have been published for cr=2,5 [39,40]. 

Maps on surfaces, tesselations and symmetric surfaces. The automorphism group 

of a map on a surface is a finite group of homeomorphisms of that surface, thus 

the work on maps on surfaces (also tesselations) is relevant to groups actions. 

Besides the monographs [l l] and [46] there are the papers [16,17,32,56,61]. A sym- 

metry of a surface is an anti-conformal involution of the surface, a symmetric sur- 

face is a surface with at least one symmetry. The symmetries of surfaces are im- 

portant in the study of maps since they occur as reflections in the edges of polygons 

of maps. Among others, Singerman has contributed to this theory, notably in [4] 

and [60]. 

Automorphism groups of surfaces of low genus. Wiman discovered all groups 

occurring as automorphism groups of surfaces of genus 2. These results were used 

and extended by Singerman and Bujalance in [4] in which they classified systems of 

symmetries (as above) that could occur on a surface of genus 2. The groups that 

occur in genus 3 were classified by Maclachlan in his thesis, though this work on 

classification has not been published. In [56], Scherk considered the problem of 

classifying the regular maps on a surface of genus 3, he needed to take automor- 

phism groups into account. In [37], A. Kuribahashi started a long series of papers, 

many of which appear in Bull. Fat. Sci. Engrg. Chuo Univ., on the equations of 

curves of genus 3. Some of the later papers were co-authored with K. Komiya or 

I. Kuribayashi. In these papers the authors sought to classify the curves of genus 

three by relating the characteristics of their Weierstrass points, their equations and 

their automorphism groups. Some summary results are given in [38] and [41]. In ad- 

dition, there are the results of A. Kuribayashi, I. Kuribayashi and H. Kimura refer- 

red to above. None of these works consider the problem of topologically ine- 

quivalent actions of groups. In fact, the classification of actions is strictly finer than 

the classification scheme considered by A. Kuribayashi, I. Kuribayashi and H. 

Kimura. According to Sah (see Example 3.1) there are 7 inequivalent actions of J( l), 

Janko’s first group, on a surface of genus 2091. From the results of [2] none of these 

actions can be distinguished by the action of J(1) on the space of holomorphic dif- 

ferentials. 

Mapping class groups. The Nielsen realization problem, started in [53] and com- 

pletely solved in [33], states that a finite subgroup of the mapping class group may 

be realized as a finite group of homeomorphisms of a surface. Thus, mapping class 

group problems may sometimes be rephrased in terms of finite group actions on sur- 

faces, for example in [3,21]. Birman’s monograph [l] serves as a good background 

on the mapping class group. 
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2. Transition to a group-theoretic problem and rCsumC of results on group actions 

Definition 2.1. Let S be an orientable surface of genus (T, Horn’(S) its group of 

orientation-preserving homeomorphisms and G a finite group. We say that G acts 

(effectively and orientably) on S if there is a monomorphism E : G -+ Horn+(S). If 

E’ : G -+ Horn+(S) is another action, then we say that E, E’ are (topologically) equiva- 
lent if there is an LC) E Aut(G) and an h E Horn+(S) such that 

e’(g) = he(w(g))h-‘, ge G. (2.1) 

For or2 the theory of Fuchsian groups gives us an effective vehicle to discuss 

finite group actions on surfaces. For background on Fuchsian groups one may con- 

sult, among others, [26,27,47, SO, 69,701, we shall follow [26,27] fairly closely. 

Every action of G on S may be constructed by means of a pair of Fuchsian groups 

KaG*cPSL2(k) acting discontinuously on the upper half complex plane IH (the 

universal cover of S) and an epimorphism q : G* + G with kernel K. The group K 
is torsion-free and isomorphic to nl(S). The map rl is constructed from E and a 

homeomorphism IH/K-S. It is well known that G* has the presentation 

G*= 
( 

CX~,&~~: lsi<g,l<jsr, fi [cr,,/$] fi yj=yr’=... =y,“‘=l 
> 

. 

I=1 j=l 

w-4 

Identify the c+&, yi with their images in G*, it is also well known that 

O(yj) = mj. (2.3) 

As in Section 1 we call the (r + 1)-tuple (Q : ml, . . . , m,) the branching data for the 

action of G on S. The branching data vector is unique if the mj are listed in non- 

decreasing order. Though the G* constructed is not unique, a single G* can be 

chosen to serve for all finite group actions with the branching data (Q : m,, . . . , HI,), 

in particular, for equivalent actions of G. The term branching data is used since Q 

is the genus of the surface S/G anti the mj are the ramification numbers of the 

branched covering S + S/G. Since Q = 0 occurs so often we omit e in this case for 

notational convenience. Also for convenience we make abbreviations such as (23, 32) 

for (2,2,2,3,3), etc. The possible orders of groups and their branching data are 

limited by the well-known Riemann-Hurwitz equation: 

(20-2)/lGl = (2~-2)+ i 
j=l 

Define the elements ai, 6,, cj of G by 

a, = q(cXi), 15 is@, 

b; = rj(&), 1 rise, 

cJ = q(y,), 1 rjsr. 

. (2.4) 

(2.5) 
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These elements generate G, 

(2.6) 

and 

o(c~) = mj, 

because of (2.2), (2.3) and since ker(q) is torsion free. 

(2.7) 

Definition 2.2. A (2~ + r)-tuple (a,, . . . , a,, bl, . . . , b,, cl, . . . , c,) of elements of G is 

called a (Q : m,, . . . . m,)-vector if (2.6) and (2.7) are satisfied. The vector is called a 

generating (Q : m,, . . . , m,)-vector if G is generated by the a,, b;, cj. 

The formula (2.5) establishes a l-l correspondence between the set of generating 

(@ :m ,, . . . , m,)-vectors of G and the set {II: G *--f G, q surjective, ker(q) torsion free} 

(cf. [26, Theorem 31). The above description gives a precise modern treatment of 

Riemann’s Existence Theorem which is the basic theorem translating the topological 

problem of constructing group actions to a problem in finite group theory. We 

paraphrase this theorem into our terminology. 

Proposition 2.1 (Riemann’s Existence Theorem). The group G acts on the surface S, 
of genus g, with branching data (Q : m,, . . . , m,) if and only if the Riemann-Hurwitz 
equation (2.4) above is satisfied, and G has a generating (Q : ml, . . . , m,)-vector. 0 

The relation of equivalence of actions induces an equivalence relation on generat- 

ing vectors. Let E, a’, CO, h be as in (2. l), I?, V’ : G * + G the corresponding maps deter- 

mined as above. The map h lifts to an orientation-preserving homeomorphism h* of 

IH such that h*G*(h*)-’ = G*, giving rise to an automorphism 0 : G* -+ G* defined 

by 
Q(g) = h*g(h*)-‘. (2.8) 

The following commutative diagram, 

rl 
G*- G 

results, from which we get 

+cUOqOQP’. (2.9) 

Let ,Y%’ be the subgroup of Aut(G*) induced by orientation-preserving homeo- 

morphisms as in (2.8). The group Aut(G) x S? acts on the set {q: G*+ G, q sur- 

jective, ker(q) torsion free} by the formula (2.9) and hence acts on the generating 

(e: ml, . . . . m,)-vectors of G. By Zieschang’s improvement of Nielsen’s original 
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theorem on automorphisms of surfaces (cf., e.g., Theorem 5.8.3 of [70]) each auto- 

morphism C#J of G* is induced by an h*, as in (2.8), though h* may be orientation- 

reversing. We have the following: 

Proposition 2.2. Two generating (Q: m,, . . . , m,)-vectors of the finite group G 
define the same equivalence class of G-actions if and only if the generating vectors 
lie in the same Aut(G) x B-class. 0 

The non-trivial part of the proof, that Aut(G) x 35’ equivalent generating vectors 

give equivalent G-actions, depends on the theory of quasi-conformal mappings and 

Teichmuller’s uniqueness theorem. Proofs are given in [27] and [50]. 

In order to classify actions of a specific group we need an algebraic characteriza- 

tion of 99, and ways of producing elements of 93. One may construct automor- 

phisms of G* by constructing them in a certain one-relator group lying over G*. Let 

F be the free group on the ai,&, yj and fl be the group 

z7= ( a I,..., a,,/3 ,,..., PQ,Y1 P..., yr: fi b;,P;l Ii vj=1 > . 
i=l j=l 

(2.10) 

There are obvious projections n+ G *, F+II defined by the presentations (2.2), 

(2.10). By using a topological interpretation of 17 as a fundamental group (rc,(R’), 

R” introduced below) and (2.8) the following can be shown: 

Proposition 2.3. Let II be as above and @ an automorphism of G*. Then, I$I may 
be lifted to an automorphism 6 of II: 

i 
n-II 

I I 
I @ I 

G* - G* 

such that for each j, a is conjugate to some yj, or yJy ‘, where Yj, yj, are iden- 
tified with their images in 17. The induced permutation representation 8 + Zr 
preserves the branching orders, i.e., mj = mjc. 0 

Using some facts about one-relator groups (cf. [70], p. 54]), and some elementary 

surface topology it is easy to establish the following: 

Proposition 2.4. Let IIl,F,@,& be as above and @# a lift of 6 to F: 

@” 
F-F 
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Let c = nF= 1 [a;, pi] flgzl yj, considered as a word in F. Then, either: 
(1) Q*(c) is conjugate to c and Q is orientation-preserving and induces an ele- 

ment of 99 or 
(2) f$#(c) is conjugate to c-l and $I is orientation-reversing. 0 

Let R” be the punctured surface obtained by removing the r branch points from 

R = S/G. The elements of B may be identified with a certain subgroup of finite in- 

dex of the mapping class group of R’. This group is known to be finitely generated 

and generating sets of various sorts have been determined by various authors, e.g. 

[l, 12,28,66]. A complete description of the action for abelian G is given in [27]. 

These results could be used to obtain a finite generating set for the action of ~8 on 

generating vectors. However, we shall not need to go this far for the following 

reason. To prove two generating vectors equivalent one only need produce an ap- 

propriate element of Aut(G) x 33’ effecting the equivalence. In most of our calcula- 

tions we can produce the automorphisms to achieve this in an ad hoc fashion. 

Proposition 2.4 can be used as a test to verify the proposed automorphism really 

is an element of 3. A collection of such automorphisms, suitable for our needs, 

is given in Proposition 2.5 below. The proposition may be verified as suggested or 

the automorphisms directly constructed by using Dehn twists on R” (cf. [l]). EX- 

amples of the use of these automorphisms are given in case 3.m in Section 4. 

Proposition 2.5. Suppose that Q = 0 or 1, let a = a,, /3 = p, and let other notation be 
as above. Consider the automorphisms of F defined by the formulae below, where 
the action of an automorphism on a generator of F is written down only if it actually 
moves the generator. A product of these automorphisms defines an element of 59, 
as in Proposition 2.4, if and only if the induced permutation described in Proposi- 
tion 2.3 preserves branching orders. 

Type 1.a a-a/3”, nEi7, 
Type 1.b fl+pa”, nEZ, 

Type W) Yj’Vj+l? Yj+l -+ Yy+!l YjYJ+ly 1 sjsr-1, 

Type III.a(j) a-+xa, Yj-‘YYj~~‘, l<jlr, 

x=p-‘wz, y=zp%v, w=y,****.yj_,, .z=yj+i*****yrr 

Type III.b(j) p--+xfi, Y,-YYJ’, lrj5r, 
x= wza, y=zaw, w,z as above. 0 

The full knowledge of the action of FB is only required to show that two generat- 

ing vectors are not equivalent. In our calculations there will only be a few cases or 

types of cases where this situation occurs. In these cases the action of B is quite 

simple so it is worth recording it in the following propositions. 

Proposition 2.6. Suppose that G is abelian and that S/G is a sphere, so Q = 0. Then, 
ZB acts on the generating vectors by permuting the Cj’S so that orders of elements 
are preserved. 0 
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Proposition 2.7. Zf G* is a triangle group (Q = 0, r= 3), then C.8 is the subgroup, 
preserving branching orders as in Proposition 2.4, of the group generated by the two 

automorphisms (IQ, YZ, ~3) + (~2, ~3, VJ and (yl, y2, YJ -+ (I+, y3, rl’ v2 y3). Zf the in- 
duced permutation of the indices under an automorphism is trivial, then the auto- 
morphism is inner. Thus, if the mj are distinct, then 93 acts trivially module the 
inner action of G. 0 

Proposition 2.6 follows from Propositions 2.3 and 2.4, Proposition 2.7 follows 

from the presentation of the mapping class group of R” given in [l]. 

Relative projections. (See [58,59,61] for additional details.) Let G act on S and 

Hc G. Let (r: n,, . . . , n,) be the branching data of the restricted action of H on S. 

If q : G*- G defines the G-action, then H*= n?-‘(H) is a Fuchsian group and all 

the above discussion holds for q : H* + H and the branching data (T: m,, . . . , m,). 
Also, the map q induces a bijective correspondence between the coset spaces G*/H* 
and G/H which intertwines the G*-action and the G-action. Let v: denote the 

number of ( yj)-orbits of size 1 in the right coset space G*/H*. We symbolize the 

( rj )-orbit structure by 1”: - 2”: - ... , leaving out those 1”: for which v/=0. Observe 

that v: = 0 if 1 does not divide mj. We call this symbol the fibre type associated to 

yj and denote it by&. The terminology fibre type is used sincef, gives the ramifica- 

tion numbers of the relative projection TC : IH/H*-, IH/G* over the branch point 

QjE lH/G*=S/G, associated to yj. Let vi, . . . . v; denote the elements in the presen- 

tation of H* as in (2.2). It can be shown, using the projection n, that for each yj 

and for each (y,)-orbit, of size strictly smaller than mj, the stabilizer of this orbit 

is conjugate in H* to a unique (ok) and each yi occurs this way. In the correspond- 

ence of the ok with stabilizers exactly v: of them will have order mj/l when 1 strictly 

divides mj. Therefore, we may reorder the nk as nf, . . . , ni,; . . . ;n;, . . . , ni, so that the 

first v[ orders in the sequence n{, . . . , ni equal mj, the next vi orders in the se- 

quence n{, . . . , ni equal m,/2 etc. We write 

If,, . . . . f,]:[t:nl,..., ni,;...;n,‘,..., n~p[e:ml ,..., m,l (2.11) 

to symbolize the projection rc : S/H-+ S/G which may be identified with the projec- 

tion rc : lH/H* + IH/G*. Some of the sequences n/, . . . , ni may be empty, we per- 

mute the h and the mj so that these sequences occur last in the list. The square 

brackets are used to indicate that the branching data may not be in the usual non- 

decreasing order. As an example, consider GL2(3) acting on an SZ with branching 

data (2,3,8). If H is the 2-Sylow subgroup of G, then H acts with branching data 

(2,4,8). The relative projection is of the form [I - 2, 1 - 2,3] : [2; 8,4] --f [2,8,3]. We 

call the expression (2.1 l), and also the symbol [fi, . . . , f,.], the symbol of the projec- 
tion S/G --f S/H. 

Let n be the degree of II which in turn equals the index of H* in G* and also H 
in G. Then, from the definition it follows that 

n = c 1v:, 1 cjlr. (2.12) 
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The relative Hurwitz formula applied to S/H+ S/G can easily be transformed into 

(2.13) 

since the right-hand side is the total number of points in the fibres of n lying over 

the branch points on S/G. Any expression of the form (2.11) satisfying (2.12), (2.13) 

we will call a numerical projection between branching data even though it may not 

necessarily correspond to an actual projection S/H-+ S/G. 

If His normal in G, then, since all (yj)-orbits in G*/H* have the same size, the 

fibre type f, has the form ey’e,, where cj is the order of the image of yj in the 

quotient group G*/H*=G/H. We say that an arbitrary numerical projection is 

uniformly branched if all fibre types are of the above form. A uniformly branched 

numerical projection need not arise from a normal inclusion of groups HcG but 

we do have the following: 

Proposition 2.8. Let G act on S and HCG be such that S/H is a sphere (z=O). 
Then, H is normal in G if and only if the corresponding numerical projection is 
uniformly branched. 0 

In [25], Greenberg proves a similar theorem for branched covers @ : D + S, where 

S is any Riemann surface and D is the unit disc. Using the simple connectivity of 

the sphere, his proof may be easily modified to show that the map S/H-tS/G is 

regular, from which the proposition follows. We list the possibilities that arise from 

the proposition in Table 1. 

Now suppose H is not necessarily normal and let N= core,(H), let (A: pl, . . . ,p,) 
be the branching data for N acting on S, let g + g be the quotient map G -+ G/N, 

let (aI ,..., a,,b, ,..., b,,c, ,..., c,) be a generating vector for the G-action and 

let e 1% .**, e, be as above. The order ej is the least common multiple of the sizes 

of the ( yj)-orbits on G*/H* and may be read off from 4, the fibre type. 

Now G/N acts on the surface S/N. A simple topological argument shows that 

(a ,,..., a,,6 I,..., 6,J I,..., I?,) is a generating (Q: ei, . . . , e,)-vector for the action of 

G/N on S/N (for this discussion we allow some of the ej to equal 1 and do not 

assume that they are in non-decreasing order). The genus 2 of S/N and 1 NI are not 

Table 1 

Symbol of na lG/Hl = deg(n) G/Hb 

[n, nl n ‘Ci 
[2”, 2”, 2”] 2n Q7 

[28,34,34] 12 A4 

[2’2,38,46] 24 z4 

[230,320,512] 60 A5 

a One may have to add some ‘unramified’ fibres l”, n = IG/HI. 

b See statement (4.1) for group notation. 
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uniquely determined but must satisfy 51 A I (T (A 5 (a + 1)/2, if N is not trivial), 

INI(~~-~)=IGI/(~Q-~+C~=~ (l-l/e,)),andtheremustexista(~:e,,...,e,)ac- 

tion on a surface of genus i. Thus, if N is not trivial, the possible structures of G/N 

can be determined from the classification of actions on surfaces of lower genus. The 

only cases we shall require have J. = 0 and already occur in Table 1. If J. = 1, then 

the classification of these groups may be found in [69], the branching data that oc- 

cur are (1: -), (2,4,4), (2,3,6), (3,3,3) and (2,2,2,2). Another approach for non- 

normal H is to work out the structure of G*/coreo.(H*) directly from the per- 

mutation representation of G* on G*/H *. This handles all pairs HcG with the 

same relative projection at once. Singerman [59] has done this for all inclusions of 

triangle groups, i.e., e=r=O, r=t=3. 

Homology representation and fixed points. The group G acts on the homology 

group H,(S;C), this representation may be used to prove that certain actions on S 

cannot occur. Let the branching data and generating vector for the G-action be as 

above, let q, Q and x0 denote, respectively, the homology, regular and trivial 

characters of G and let ej for 1 <jar denote permutation character of G on the 

coset space G/(cj). In [2] (cf. also [64]) it is shown that 

(2.14) 

This can be reinterpreted for a irreducible character x of G as follows (cf. [2]). 

Let x be a non-trivial, irreducible character of G, let g E G and define 

This number is the multiplicity of the trivial character in the restriction of x to (g), 

so it follows from Frobenius reciprocity that for non-trivial x the multiplicity of x 

in the homology representation equals (2~ - 2 + r) x( 1) - C& 1 I,(x). Since multi- 

plicities are non-negative we have 

(z92+r)x(l)aj$l C,(x). (2.15) 

For 1 zg E G let Sg be the set of points on S fixed by g. The number of, fixed 

points /Sgl is finite and is non-zero if and only if g is conjugate to a power of some 

cj. The Lefschetz fixed point theorem [18] states that 

I?(g) = 2- IW. (2.16) 

Since ej is the permutation character the coset of a cyclic group, then @j(g) = 

lNG((g))l Sj(g)/mj where S,(g) equals 1 if g is conjugate to a power of Cj and 0 

otherwise. From (2.14) and (2.16) we get 

(2.17) 
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Remark. If G = (g), then the number of fixed points of g is the number of times 

ICI occurs among the mj. 

3. Some examples and techniques 

Example 3.1. Simple Hurwitzgroups of low order. By Hurwitz’ Theorem, if G acts 

on S,, then (Cl I 84(a- 1). A group for which equality is obtained is called a 

Hurwitz group. In this example we show how character theory may be used to deter- 

mine all possible Hurwitz actions for simple groups of low order. To illustrate the 

method let us first show that G = PSLz(7) is the only Hurwitz group acting on S3 

and that the action is unique up to equivalence. For such a Hurwitz group, the 

branching data must be (2,3,7) and 1 Cl = 168. If G is not isomorphic to PSL,(7), 

then G is solvable since PSL2(7) is the only simple group whose order divides 168. 

Since an abelian group generated by x, y, z satisfying x2 =y3 = Z’ = xyz = 1 is neces- 

sarily trivial, a Hurwitz group cannot have a non-trivial abelian quotient. It follows 

that our G is isomorphic to P%,(7). 

Let X be the set of (2,3,7)-vectors in PSL,(7). Since all the proper subgroups of 

PSL2(7) are solvable every vector in X must generate PSL2(7) by the above argu- 

ment. We may compute the number of elements in X from the character table of 

G, using formula (3.1) below. Let K,, . . . , K, be s conjugacy classes in a finite group 

G, let x,EK; and let X(Ki,...,K,)={yi,...,y,:y,~K,, y,.y,.....y,=l}. We shall 

call an element of X(K,, .,., K,) a (K,, . . . . KS)-vector. It is well known that 

lX(K*, . ..*Ks)l = ,Cent(x )(yyCenr@ ), 
1 s 

c x(xl;;;;;lI(xs)> (3.1) 
X 

where the sum is over the irreducible characters of G. In PSL,(7) there is one con- 

jugacy class of elements of order 2, K2, one of elements of order 3, K3, and two 

of elements of order 7, K7:K7J where K; = {x-l: XEK~}. Thus X=X(K,, K,, Kq) U 

X(K2,K3,K;) (disjoint). Applying the above formula to PSL2(7) (character ta- 

ble: [52, p. 12151 or [30, p. 2891) we determine that 1x1 =2.168. The action of 

Aut(PSL,(7)) on X is fixed point free since an automorphism of a group fixing a 

generating set is trivial. As Aut(PSL2(7))=PGL2(7), acting by conjugation, then 

IAut(PSL,(7))/ =2.168. All (2,3,7)-vectors are therefore equivalent and PSLZ(7) 

has only one equivalence of actions on S,. 

Now let us apply this method, formula (2.15) and previously known results to 

determine all the Hurwitz actions of all the simple groups, G, whose character tables 

appear in McKay’s paper [52], namely, PSL2(p”) or ICI < 106. The results are 

given in Table 2. 

In our proof of these results the unreferenced group-theoretic facts we use may be 

extracted from the tables in McKay’s paper on character tables [52] or Fischer and 

McKay’s paper on maximal subgroups [20]. The results for PSL2(p”) are proven in 

15 1, Theorem 81, using a method different from ours. The seven inequivalent actions 

of J(1) were determined by Sah [55, Proposition 2.71, using our method. Now let 
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Table 2 

G No. of actions 

PSLz(7) 1 

PSLz(p), p2= 1 mod 7 3 

PSL2(p3), p2 f 1 mod 7, pf7 1 

J(lY 7 

JCT 10 

a J(1) and J(2) are Janko’s first and second groups. 

G be any group in McKay’s tables not isomorphic to PSL,(p”) or J( 1) and suppose 

it is a Hurwitz group. Since 1 GI = 84(a - 1) the order of G is divisible by 84, so, tak- 

ing isomorphisms into account, G can only be one of: Alt(7), Alt(8), Alt(9), L(3,4), 

U(3,3), U(3,5), M(22) or J(2). The first seven of these cannot be Hurwitz groups 

since for every potential generating (2,3,7)-vector, (c,,c2,cg), formula (2.15) is 

violated for some character. If x,, indicates the nth character in the table of a group 

in [52], then the characters which yield the desired contradiction for these groups 

are: Alt(7): X5,X6, Alt@): X2,X3? AW: X29X12, L(3,4): X2, u(3,3): x4,x6, u(3,5): 
x3 and M(22): x2. The alternating groups could also have been eliminated by ap- 

pealing to Conder’s results [lo]. 

From the character table of J(2) we see that there are two classes of involutions, 

2A, 2B, two classes of elements of order 3, 3A, 3B, and one class of elements of 

order 7, 7A. There are no (2A, 3A, 7A), (2A, 3B, 7A) or (2B, 3A, 7A)-vectors, since 

(2.15) fails for each such vector and one of the characters x2 or x4. Using for- 

mula (3.1) we calculate that the number of (2B, 3B, 7A)-vectors is lOlJ(2)l. If we can 

show that each one of these vectors is a generating vector, then there will be 10 in- 

equivalent actions since IAut(J(2))/ = 1(5(2))1, (cf., e.g., [24] or [31]). 

Suppose that one of the vectors is not a generating vector and let H denote a 

Hurwitz subgroup generated by the vector. From previous arguments H has no 

abelian quotients. Using the classification of maximal subgroups of J(2), given in 

[20], the subgroup must lie in either a maximal U(3,3) or in the normalizer of a 

PSL2(7), of order 336 = 21PSL2(7)1. The subgroup H cannot be a U(3,3) since this 

was eliminated earlier. If H lies in a U(3,3), then, using [20] one more time for 

U(3,3), H must be isomorphic to PSL3(2) = PSL2(7). If H lies in the normalizer of 

PSL,(7), then it must equal P%,(7) since H has no abelian qUOtientS. Thus in all 

cases H=PSL,(7). Now consider an element g of order 4 in H. It must belong 

to the conjugacy class 4A of J(2) and hence g2 must belong to 2A, again using 

McKay’s tables. But all involutions in Hare conjugate and they must belong to 2B 

by construction. This contradiction shows that H=.J(2). 

Example 3.2. Actions of B,. This is probably the most extensively studied case of 

groups acting on surfaces. We will just recall enough facts here for later use in our 

calculations in Section 4. If Zp acts on S, then its branching data must be (Q: p, . . . ,p) 
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with r branch points. The corresponding surface has genus 

o= (@-l)p+r(p-1)/2+1. 

The case we shall most frequently encounter is r= 3, Q= 0. Let X be the set of 

(p,p,p)-vectors, its cardinality is easily seen to be (p - l)(p - 2) and all such vectors 

are generating vectors. By Proposition 2.6, SC? acts as Es, permuting entries of the 

generating vector, and Aut(ZO) is Hz, acting by multiplication. The only automor- 

phisms in & x Zz which have fixed points on Xare conjugate to (c,, c2, cs) + (c2, cl, cs) 

which fixes (c,, ct, (p - 2)~~) and (c,, c2, cs) + (ac,, UC,, acz), wherep= 1 mod 3, a3 = 1 

modp, which fixes (c,, ac,, a2c,). We list the equivalence classes of vectors in Table 3. 

Example 3.3. Cyclic and abelian groups. Here we record from [26] and [27] neces- 

sary and sufficient conditions on branching data in order for S,, o> 2, to admit an 

automorphism of order n. The cyclic group Z,, acts on S, with branching data 

(e: m,, . . . . m,) if and only if the Riemann-Hurwitz equation (2.4) with ICI = n 
holds and all the conditions below hold. Let m = 1.c.m. (m,, . . . , m,). 

l.c.m.(m, ,..., fn_,,rnj,, ,..., m,)=m for all j, (3.2) 

m I n, m = n, if e = 0, (3.3) 

and 

r#l and r-13, if@=0 (3.4) 

if m is even, then the number of mj divisible by the maximal 

power of 2 dividing m is even. (3.5) 

Now let Zn = (x) and let (a,, . . . ,a,, b,, . . . . b,, cl, . . . , c,) be a (2~ + r)-tuple of ele- 

ments of L,, set Cj =x+. Then, it is easily shown that (a,, . . . , a,, bl, . . . , b,, cl, . . . , c,.) 

is a generating (e: ml, . . . , m,)-vector if and only if the following hold: 

j$I Sj E 0 mod n, (3.6) 

g.c.d.(sj, n) = n/mj (3.7) 

and 

al,...,a,,h,..., b, generate Z,/Z,. 

Table 3 

p=l mod3 p+l mod3 

(3.8) 

(l, l,p-2)-class 

(1,a,a2)-class, a3= 1 modp, asp/2 
(p - 7)/6 other classes 

(1, l,p- 2).class 

(p- 5)/6 other classes 
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Finally from Theorem 14, p. 396 of [27] we have: 

each equivalence class of generating (Q: m,, . . . , m,)-vectors con- 
tains a vector with a2 = ... = a, = b, = ... b, = 0 and ai generates 

z,/z,. (3.9) 

If G is abelian, then (3.2) and (3.4) still hold, we leave the proof to the reader. 

There are analogues of (3.8) and (3.9) which we illustrate with an example. Suppose 

that Z2 x iZ2 acts on a surface of genus 3 with branching data (1: 2,2). Write Z2 x Z2 = 

(x, y : x2 =y2 = [x, _y] = 1). Suppose (a, b, cl, c2) is a generating vector. Since [a, b] cl c2 = 
1, then ci = c2. Transforming by an automorphism, we may assume that ci = c2 =x. 

Now consider the effect of the two %‘-transformations of Type I, (a,/?, yl, y2) + 

(a& fi, yl, y2), (a,D, yI, y2) + (a,/& yl, y2) and the two B-transformations of Type III, 

(&P, Yl, Y2b (P-‘y,a,p,v,P-‘y,py,‘, Y2A (GP9 YIY Y2) -+(a, Y,dx YZWW’ YZ1J2L 

on generating vectors (see Proposition 2.5). Using combinations of the transforma- 

tions we obtain the equivalent vectors (x0, b, x, x), (a, xb, x, x) (xa, xb, x, x). Thus we 

may assume that (a, 6) = < y>. Again using combinations of the transformations we 

get the equivalent vectors (a, ab, x, x), (6, a, x, x). It follows, then, that every generat- 

ing vector is equivalent to (y, 1,xx) and that there is only one equivalence class of 

actions. Harvey has given generators for the B-action on abelian G in [27]. 

Example 3.4. Split metacyclic groups. Frequently we have the situation /GI =pq 
and S/G has branching data (p, q, r). For the purposes of this example we do not 

necessarily assume that p 5 q 5 r. Let (c,, c2, c,) be a generating vector. Suppose by 

Sylow theorems or p = 2 that we are able to assume that every cyclic subgroup of 

order q is normal; thus (c,) a G. We allow ourselves to reverse the roles of p and 

q to achieve this. Now (c,) fl Cc,> = (l), otherwise cI,c2 generate a group of order 

less than pq. Therefore, G= Xc,> K (c2>, and, consequently, clc2c~’ =c{ for a j 

satisfying 

jp= 1 modq. (3.10) 

Taking x = cl, y = c2, we get a presentation: G=(x,y:xP=yq=l,xyx-‘=yj). We 

denote this group by D,q,j since it is an analogue of a dihedral group. If we have: 

k=jS where (s, p) = 1, (3.11) 

then DP,q,j=Dp,q,ky since z=x’ and y generate D,,, and zyz-’ =yk. Note that 

(3.11) is equivalent to saying that k and j generate the same subgroup of Aut(Z,). 

If (3.11) is not satisfied, then we can usually establish that D,q,j -f-D,,,. We sug- 

gest some ways to do this later in this example. 

Let wz, z = cf, w = c: be an element of G and let k =j’, a = o(z), we do not asume 

(s,p) = 1. For any integer t we get 

(,,,# = ,,,,,,k. . . . . ,,,k’ ‘y. 

It follows that a 1 o(w), (wz)“= +v’+~+ “’ +ko” and hence that o(wz) = ab, where b = 

q/(4,1 +k+ .+. + k’-l). Now c~c~=c;~ has order r so, taking s=l= 1 in the above, 

we get a=p, 
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and 

r=pb for some blq (3.12.i) 

(q, 1 +j+ ... +jp-‘) = q/b. (3.12.ii) 

This limits the values of r and j that can occur. Working backwards, if p, q,j and 

r satisfy these two equations, then Dp,4,j has a generating (p,q,pb)-vector. By 

Proposition 2.1, D,,,j must act on a surface of genus ((p - l)(q - 1) + 1 - q/6)/2, 
as long as this number is an integer. 

Now suppose that (d,, d2, d3) is any other generating (p, q, r)-vector of G = DP,q,j. 
By the assumption on cyclic subgroups of order q, (d,) a G, so then d,d*d;’ =dt 
for some k. The integer k must satisfy (3.12.ii) with k replacing j. Clearly the two 

vectors (c,,c2,c3) and (d,,d,,d,) are Aut(G)-equivalent if and only if j= k mod q. 
Let (p, S) = 1 and k = jS mod q. Since (s, 24 . . . , (p- 1)s) is simply a permutation of 

(192, ***, (p - l)}, it follows from (3.12.ii) that (d,, d2, d3) = (cf, c2, (cfc2)-l), is a gen- 

erating (p, q, r)-vector. Thus, if we also know that Dp,4,j and D,,, are isomorphic 

if and only if (3.11) holds, then the Aut(G)-equivalence classes of generating 

(p,q,r)-vectors are in l-l correspondence with the set (mod q) {j”: (s,p) = l}. If 

any two ofp, q or rare equal, then it is necessary to work out the action of %‘, given 

in Proposition 2.7, on these vectors. Also, even if it is not true that every subgroup 

of order q is normal we still get all of the above generating vectors of D,,,jy 
though there may be more. 

Here are some ways to establish D,,,j + D,,k. If x,y are as in the presentation 

Of G = D,,j above, then [x,y] =yj-’ and it follows that the order of the derived 

subgroup [G,G] is q/(j-l,q). Thus if DP,q,j=DP,q,k, then 

(j-I,q) = (k-l,q). (3.13) 

If DhY;j has a unique subgroup N of order q, then a unique cyclic subgroup of 

Aut(N) is determined by the action of G on N. It follows from the comment im- 

mediately following (3.11) that (3.11) is satisfied when this condition holds. If p is 

a prime, then DP,4,j=DP,4,k if and only if (3.11) holds. To prove this we may as- 

sume that D, q,j does not have a unique cyclic subgroup of order q, according to the 

last argument. Using the notation, wz, a, 6, k, s above, let wz be an element of order 

q not lying in (y). It then follows that a=p, (s,p) = 1, (q, 1 + k+ ... + kP-‘) =p. 
Since (k-1)(1 +k+ ... +kP-‘)=kp-l=O mod q, then the last formula of the last 

sentence yields k - I = 0 mod q. We get k= 1 + eq/p mod q for some e, where 

O< e<p. If t is chosen such that st = 1 modp, then by applying the binomial theorem 

we see that q/p divides (1 + eq/p)’ - 1 and hence j= kS’ = 1 + fq/p mod q. Thus the 

number of pth roots of unity in Z4 is at most p and so (3.11) holds. 

If a group of order 16 acts on a surface of genus 3 with branching data (2,8,8), 

then G = Z, x Zs or D2, 8,5, with one Aut(G)-class of generating vectors each. If a 

group of order 21 acts on a surface of genus 3 with branching data (3,3,7), then G = 

D,,,,2 with two Aut(G)-classes of generating vectors. The two classes are a-equiv- 

alent using the automorphism in Proposition 2.7 which interchanges cl and c2. 
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Example 3.5. Inductive use of classification. Here we give an example of the induc- 

tive method of classification outlined in step 1.4. Using the method of relative projec- 

tions, we determine all actions of a group of order 16 on a surface of genus 3, with 

branching data (4,4,4), assuming we know the actions of groups of order 4 and 8. 

First let us assume that there is normal cyclic subgroup HC G of order 4, generated 

by an element fixing at least one point. Let (c,, c2, cs) be a generating (4,4,4)-vector. 

Since His conjugate to one of the (cJ.)‘s and is normal, then H is generated by one 

of the Cj’S. Using &‘-transformations of Type II if necessary, we may assume that 

H= (c3). The action of H is given by one of the cases 3.f, 3.g or 3.i.l of Table 5. 

According to the remark following formula (2.17) a generator of H fixes four, two 

or no points, respectively, in these three cases. Since His normal and a generator of 

H fixes at least one point, we may apply the fixed point formula (2.17) to conclude 

that H fixes at least four points. Therefore, the branching data for H acting on S is 

(4,4,4,4) and the symbol of the projection S/H + S/G is [ 14, 4,4] : [4,4,4,4] --t [4,4,4]. 

From this symbol and description of uniformly branched projections immediately 

preceding Proposition 2.8, we see that both (c,) and (c2) are subgroups com- 

plementary to H. As in Example 3.4, G=Z,x Z4 or D4,4,_l has a presentation 

G = (x,y: x4 =y4 = l,xyx~’ =yj), (3.14) 

withj=l for Z,xZ,andj=-1 for D4,4_,. In both cases (x, (yx))‘, y) is generating 

a (4,4,4)-vector. 

Now let (d,, d2, d3) be any generating (4,4,4)-vector. At least one of (d, >, (d,) or 

(d,) is normal. This is trivial for iZ,xZ,. For D,,,,_, we argue as follows. There 

are eight elements of order 4 in D4,4,_l which do not generate normal subgroups, 

namely: x, xy, xy2, xy3, x- ‘, x- ‘y, x-‘y2 and x-‘y3. The product of any two of these 

elements has the form ys or x2ys and such elements generate normal subgroups. 

Using .%?-transformations we may now assume (d3) is normal. Since d, $ (d3), then 

d,, d3 satisfy di = d: = 1, dld2dl-’ = dd. Since (3.14) is a presentation of G, then 

there is an automorphism of G carrying (d,, d,) to (x, y) and hence there is one 

equivalence class of generating (4,4,4)-vectors. 

It remains to show that for any group of order 16 with a generating (4,4,4)-vector 

(c,, c2, cs) at least one (Cj> is normal. Assume that H= (c3) is not normal. Since G is 

a 2-group K, the normalizer of H, must properly contain H, so (K 1 = 8. By Table 5, 

S/Hmust be a sphere hence S/Kis also a sphere. Therefore, the symbol of the relative 

projection S/K + S/G is [l 2, 2,2]. From the classification of groups of order 8, K has 

branching data (22, 42) and the symbol of S/K -+ S/G is [12, 2,2] : [4,4; 2; 2]+ [4,4,4]. 

By Table 5, K= Z2 x Z4 or D,. The case K= D4 can be eliminated, since H 

would be characteristic in K, hence normal in G. Let y = cj and write K = 

(y,~:y~=z~=[y,~]=l).Letx=c,,sincec~andc~generate,thenx$K,butx~~K. 

Let 8 be the automorphism of K induced by conjugation by x; since x2 E K, then 

8 has order 2. The subgroup K has two cyclic subgroups of order 4, namely ( y> and 

(~2). Since ( y) is not normal, then 13 interchanges these subgroups and 0 either in- 

terchanges y and yz or y and y-‘z. The automorphism y-fy, z +zy2 conjugates 
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each of these possible automorphisms into the other, so we may assume that 

O(y) =yz. It is easy to check that B fixes z, y2 or y2~, the three elements of order 2 

in K. The element x2 is an element of order 2 in K, so it must equal one of Z, y2 

or y2z. Since yx=c;l has order 4 and (y~)~=yxyx-‘x~ =y2w2, x2 cannot equal 

y2z. If x2=y2, then (y~)~=y~zx~=z and y-1(yx)y=xyx-1x=yuc-1=(yx)3. The 

elements y and yx generate G and normalize ( yx), so (c,) is normal. If x2 = z, a 

similar calculation shows that (c,) is normal. 

Example 3.6. Split extensions. In this example we show how relative projections 

S/N+ S/G may be used to show that N + G -+ G/N is split for certain Na G. We 

determine all actions of a group G of order 96 acting on a surface S of genus 3, with 

branching data (2,3,8), assuming the classification of actions of groups of lower 

order. 

Let H be the 2-Sylow subgroup of G, then S/H-t S/G is [ 1 - 2,1 - 2,3] : [2; 4,8] --t 

[2,8,3]. Let N= core,(H), then from Table 1 we have G/N=&. Let K be such 

K/N=A, 2 G/N. The symbol of S/K--f S/G must be [ 12, 2,2] : [3,3; 4]+ [3,8,2] 

and the branching data for K acting on S is (3,3,4). By 3.aq of Table 5, N= Zd X Z4 

since N is a normal 2-Sylow subgroup of K. By standard group cohomology 

arguments the sequence N+ G +.X3 is split if and only if the sequence 

N-t G, + (&), (3.15) 

is split for the primes p = 2,3, where (,Z’s)P is the p-Sylow subgroup of 2, and 

G, is inverse image of (&), under the map G + 2s. The sequence splits for p = 3 

since INI and 3 are coprime. For p= 2 observe that the symbol of S/N- S/G is 

[23, 23, 32] : [4,4,4] + [8,3,2], thus, there is an XE G of order 2 such that x maps to 

a transposition in ,Z3. Since (E3)2 = Z2, then (3.15) is split for p=2 and G=E3~ 

(Z, x .&). Let x, y E G generate a complementary subgroup to N, say x2 =y3 = 1, 

xyx-1 =y-i. 

The element y acts without non-trivial fixed points on N. To see this, note that 

the number of fixed points of y, lSYl, is 2 or 5, according to the remark following 

(2.17) and cases 3.d-3.e. But, by (2.17), INd((y))l =31SyI, so it follows that 

1 NG(( y)) 1 = 6, and hence, No(( y)) = (x, y). Therefore, y cannot commute with any 

elements of N. Let z EN have order 4 and set w =yzy-‘. Since z(yzy-‘)(y2zyP2) is y- 

invariant, then it equals 1, so y’zy-’ = (zw))’ and (z, w) is a y-invariant subgroup 

of order 4, 8 or 16. If the y-action on this subgroup is to be fixed point free, then 

I(z, w>l ~1 mod 3. The order of (z, w) cannot be 4 since (z, w> will be cyclic and y 

will act trivially, therefore, z, w generate N. Let N2 = {g2: g E N}, N2 and N/N2 are 

both isomorphic to Z2 x Z2 and C3 must act faithfully on N2 and N/N,. By changing 

x to another transposition in Z3 if necessary we may assume that xzx-’ = w mod N2, 

xwx -‘=z mod N2. Thus xz,Y’ = w/Q), xwx-’ = zP(w), P(z),P(w)EN~. From z= 
x(xzx_1)x-‘, we get p(w)=x~(z)x-‘. From xyzy-‘~-~ =yP1xzxP’y, we get p(w)= 

yPIP(z>y. Thus, yx,Qz)(y~))~ =P(z), i.e., /3(z) = l,P(w) = 1 or P(z) = w2,/3(w) =z2. 
For those two cases we get xzx-‘= w,xwxP1 =z and xzx-‘= W~‘,XWZ-’ =zP1, re- 
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spectively. Viewing the two actions as &-representations cl, & :-Z’s + GL2(Z4) we 

get, with respect to the basis, (z,w}: 5, :y-(_y _;), x-(y A) and <z:y+(_y _1), 

x--t (_y -k). The matrix (k _T) E GL,(Z,) intertwines these two representations so 

we only get one semi-direct product .& tx (Z, x Z4). 

Now let (c,, c2, cs) be a generating (2,3, @-vector. The corresponding image vec- 

tor (c,, c2, us), under the quotient map G -&, c + E, is a generating (2,3,2)-vector. 

All (2,3,2)-vectors for Z’s are equivalent by &conjugation or a 5%‘-transformation 

as given in Proposition 2.7, so we may assume (c,, c2, cs) = (xy-‘g,, yg,,xg,), where 

g,,g2,g3 EN. Since cl has order 2, then gl is one of 1 or w2. A simple calculation 

’ shows that xy-‘gl =gxy- g -’ for some geN, so we may assume g, = 1. From 

c,c2c3 = 1 it follows that g2 =xgltx-t. If g3 =zrwS, then xg, has order 8 if and only 

if (xg3)2 = (wz)r+S has order 4, i.e., g3 = z, w, z-l, w-l, zw’, 2-r w’, wz2 or wz-*. Con- 

jugating xg3 by elements of CentN(xy-‘) we transform xg3 into xg3(z~-r)r, Y= 0, 1,2,3, 
so we may assyme that xg, is either xz or xz I. But (g,h)+ (g,h-‘) is an auto- 

morphism of G fixing Z3 and interchanging xz and xz-‘, so we arrive at a unique 

representative (~y-~,yw,xz-~) for (c,, c2, c~). To see that (ct, c2, c3) generates, ob- 

serve that c3c2c;‘c2 = 6’. By conjugating w-t by cl, c2, c3 repeatedly we generate N 

and then all of G. 

4. Classification of actions for genus 2 and 3 

Here we carry out the program outlined in Section 1 for finite group actions on 

surfaces of genus 2 and 3. We state this as the following: 

Theorem 4.1. Let G be a finite group acting on a surface of genus o = 2 or 3. Then, 
G is isomorphic to one of the groups listed in Table 4 (o = 2) or Table 5 (a = 3). The 
action of G is determined, up to topological equivalence, by the branching data and 
an appropriate generating vector listed in the table. 

Notes for Theorem 4.1 and Tables 4 and 5. 

(4.1) The symbols Z,,, D,, A, and ,Z,, denote, respectively, the cyclic group 

of order n, the dihedral group of order 2n, the alternating group on n 

letters and the symmetric group on n letters. 

(4.2) 

(4.3) 

The notation DP,4,r for split metacyclic groups is explained in Ex- 

ample 3.4. &_t and D, are the same group. 

For the subgroups D,, A4, Z, and A, of SO(3) we denote their double 

covers in SU(2) by d,, &, zd and a, (binary polyhedral groups). 

These groups often occur as symmetry groups of hyperelliptic curves. 

(4.4) The entries in the tables are ordered by lexicographically ordering the 

vectors ([GI,@,r,ml ,..., m,) derived from the branching data vectors. 

Recall that [G( =(20-2)/(2~-2-t Cg=t (1 -l/mj)) by (2.4). 
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(4.5) The abbreviated notation for the branching data is explained near the 

beginning of Section 2. 

(4.6) The ‘missing’ entries 2.d, 2.g, . . . ,3.1,3 .w, . . . , correspond to (r + 1)-tuples 

found in step 1.1 of Section 1 for which there was no corresponding 
group action. 

Proof outline. To follow the program outlined in Section 1 we first need to deter- 

mine the possible orders of automorphisms of surfaces of genus 2 and 3. It is well 

known (e.g. [67]) that the orders of automorphisms are 2,3,4,5,6,8,10 for o = 2 and 

2,3,4,6,7,8,9,12,14 for cs= 3. Harvey’s results [26], restated in Example 3.3, would 

allow us to determine exactly which orders occur for any genus. We can cut down 

on the number of cases to check using Harvey’s results by considering only those 

orders n which satisfy the following: 

nr4a+2, (4.7.i) 

if n is prime, then n = 2a+l or n 5 a+l, (4.7.ii) 

Q(n) 5 20 ($ = Euler function). (4.7.iii) 

Note that (4.7.ii) applies to all prime factors of the order of an automorphism of 

S,. The inequality (4.7.i) was originally proven by Wiman [67], and both (4.7.i) 

and (4.7.ii) are proven in [26, Corollary to Theorem 61 and [27, Corollary 111, 

respectively. Statement (4.7.iii) follows from applying (2.14) to the homology rep- 

resentation of ZI,. The homology representation is integral and (2.14) implies that 

a primitive nth root of unity is an eigenvalue of the representation. The result on 

possible orders for CJ = 2,3 follows directly from (4.7.i)-(4.7.iii). 

Next a list of branching data must be prepared, exactly as suggested in 1.1. The 

lists, except for excluded cases, are given as part of the data in Tables 4 and 5. This 

calculation is straightforward though tedious. After discovering how long calcula- 

tions were by hand, the author wrote a couple of computer programs to calculate 

the orders of automorphisms and possible branching data for low genus (~150). 

The programs verified the hand calculations for o = 2,3 in a few seconds on a micro- 

computer. 

There only remains the lengthy case by case analysis outlined in steps 1.2-l .4. We 

break this into two parts, one for each genus. If 1GI is prime or some mj = ICI, 

then the actions can be classified by direct application of Harvey’s results given in 

Example 3.3 and also the results described in Example 3.2. We omit the proofs of 

these cases and those cases already proven in the other examples in Section 3. For 

each other case in Tables 4 and 5 we will write down an analysis of the form: case, 

/G / , branching data, group (possibly with a presentation), followed by one or more 

paragraphs of proof. The presentation is written down if the proof requires an ex- 

plicit description of the group in order to classify the generating vectors. We will 

also have additional analyses of the form: case, ICI, branching data, no group 

exists. These are the justifications for the ‘missing’ entries described in (4.6) above. 
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Case by case analysis for genus 2 

3, (1: 3), no group exists. (2.d) 

Statement (3.4) fails. 

4, (25), z2xz2=(X,y:x2=y2=[x,y]=1). (2-f) 

By statement (3.3), G can only be Z2XZ2. The non-identity elements of G are 

x, y and z =xy. Aut(G) acts as the full symmetric group on {x, y,z} and 55’ acts as the 

full symmetric group on {ct, . . . , cs>. If only one or two of x, y and z occur in 

(c1, *.*, cs>, then either the cj’s do not generate G or their product cannot equal 1. 

At least one X, y and z must occur three times, otherwise the product of the Cj’S 

cannot equal 1. It now follows that every generating vector is equivalent to 

(x9 x, x9 Y, XY) * 

4, (1: 2), no group exists. (2.g) 

Statement (3.4) fails. 

6, (23,6), no group exists. (2.j) 

Statement (3.2) fails. 

6, (22,32), h,. (2.k. 1) 

6, (22,32), D, = (x,y:x2=y3=l,xyx-l=y-‘1. (2.k.2) 

If G is abelian, then G = H, and we get case 2.k. 1. Assume G = D, and (c,, c2, c3, cq) 

is a generating vector. There is o~Aut(G) with w(c,,c~)=(x, y-l). Since c3 =y 

or y-‘, then every vector is equivalent to (x,x, y, y-l) or (x,xy-‘, y-l, y-l). Now 

(yi, Y2, Y3, y4) --f (Yl, YT1Y2Y3, Y3’Yz1Y3Y2Y3, YJ is a ~-transformation (PropoSition 

2.4) and it maps the second vector to the first. 

8, (4,4,4), fi2= (x,y:~~=y~=l,x~=y~,xyx-~=y-~). (2.m) 

The groups of order 8 containing an element of order 4 are Zs, Z2 x Z4, D, and 

a2 (quaternions). The elements of order 4 in Zs and D4 form proper subgroups, so 

these cases are excluded. Let (c,,c2,c3) be a generating vector. Now, in Z,xZ’, 

there are two cyclic subgroups of order 4, so exactly two of (cl>, (c,), (c,) are 

equal, and two of c,,c2,c3 have four fixed points by (2.17). But, from 2.e of Table 

4 and (2.17) an element of order 4 can have only 2 fixed points, thus G=Dz. If 

ci, c2 E D2 have order 4 and generate d2, then cf = ci and cl c2c11 = c;‘. From the 

presentation of d, above, we see that there is CO E Aut(G) such that o(x, y) = (c,, c2) 

and, hence, there is one class of generating vectors, represented by (x, y, yx). 

8, (23,4), D4 = ‘,x,y:~~=y~=l,xyx-~=y-~). (2.n) 

By considering images in I/, exactly two of cl, c2, c3 do not lie in (c4). Using 

.%?-transformations, if necessary, we may assume that cl, c2 6 (c4). Since the normal 
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subgroup (cd) of order 4 is complemented by (ci) and G is non-abelian, then G 

must be isomorphic to D4. There is an element of Aut(G)=D, taking the pair 

(c,, cd) to (x, y). Since we assume c3 E (y), then c3 =y2 and c2 =xy. Thus, all gener- 

ating vectors are equivalent to (x, xy, y2, y). 

12, (2,6,6), Z,x&. 

Apply the method of Example 3.4. 

(2.P) 

12, (3,3,6), no group exists. (2.q) 

If (c,, c2, c3) is a generating vector, then (c,) a G. The subgroup H= (cf) is char- 

acteristic in (c3) so Ha G. By Sylow theorems K is the unique cyclic subgroup of 

order 3, so Ha(c,), (c,) and (c3). Apply (2.17) to conclude that non-trivial ele- 

ments of H must have ten fixed points. But, by the remark following (2.17) and the 

classification of automorphisms of order 3, given by case 2.c, such an automor- 

phism always has four fixed points. 

12, (3,4,4), D,,,,-1. (24 

If H= (c,), then the only possible numerical projection for S/H- S/G is 

[14, 4,4] : [3,3,3,3] --f [3,4,4], so H is normal by Proposition 2.8. By Sylow theo- 

rems, His the unique subgroup of order 3. Now apply the method of Example 3.4. 

12, (23, 3), D6 = (x,y: x2 =y6 = l,xyx-’ =y-‘>. (2.s) 

For H= (c,) the only possible projection S/H+ S/G is: [14, 22, 22, 22] : [3,3,3,3] + 

[3,2,2,2]. Thus Ha G and G/H=Z, x Z2 by Proposition 2.8 and Table 1. Since 

some element of G/H acts trivially on H there is K=Z, with HaKa G. Let 

(c,, c2, c3, c,) be a generating vector. Not all of cl, c2 and c3 can lie in K, so K is com- 

plemented in G and G = Z2 x Z6 or D6. By statement (3.2), G+Z, x Z6. By con- 

sidering images in G/K, we see that exactly one of ci, c2 and c3 must lie in K, using 

%-transformations we may assume the element is c3. Since G has a unique sub- 

group of order 6, then K= (y) and we may use Aut(G) to force ci =x and c4 =y2. 

The unique class of generating vectors is thus represented by (x, xy, y3, y2). 

15, (3,3,5), no group exists. (2.t) 

G must be Zis, but then condition (3.2) fails. 

16, (2,498)~ D2,8,3. (2.u) 

Apply the method of Example 3.4. 

20, (2,5,5), no group exists. (2.v) 

There is a unique 5-Sylow subgroup, now apply the fixed point argument in 

case 2.q. 

24, (2,4,6), z2 D< (zz x z2 x z3) 

=(x,y,~,w:x*=y~=~~=~~=[y,z]=[y,w]=[z,w]=1, 

xyx-’ =y,xzX =zy,xwx-’ = w-l>. (2.w) 
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Let H=(cs), S/H+S/G must be [1’.2,22,4]:[6,6,3]+[6,2,4]. Let N= 

core&H). From Table 1 and the discussion below Proposition 2.8, INI = 3, the 

branching data for G/N acting on S/N is (2,2,4) and G/N= D4. Since NG(H)/H= 

N,,N(H/N)/(H/N), then iNG(H)/ = 12 or 24; since JN,,(J)/JI = 2 or 4 for every 

proper subgroup J of D4. Since H is not normal in G, by a fixed point argument, 

then IN&H)/ = 12. Let K= N&H), then Kacts on S with branching data (2,6,6) and 

K=Z2~Z6=Z2 XZ,X Z3 (2.p-2.s of Table 4). Since S/K-* S/G is [1’,2,2] : [6,6;2] + 

[6,4,2], then (cl > must be a subgroup complementary to K. Write K = 

(y,~,w:y~=z~=w~=[y,~]=[y,w]=[~,w]).Theactionofc, on(y,z),inducedby 
-1 

conjugation, must fix a point, by picking new generators we may assume c, yc, =y, 

ClZCl -’ =yz. Set J= (y,z>, then J has branching data (25) and the projection 

S/J-* S/G is [23, 32, 23] : [2,2,2; 2,2] -+ [4,6,2]. Therefore, S/J=Z3, so that ci acts 

non-trivially on elements of order 3 and cl WC;’ = w-1. Setting x=cIr G= 

(x,y,z, w:x2=y2=z2=w3=[y,z]=[y, w]=[z, w]=l,xyx~‘=y,x~~‘=zy,xwx-‘=w-1). 
A generating vector is (x, (zwx))‘,zw). Let (c,, c2,c3) be any other generating 

(2,4,6)-vector. Redefine K to be ( y, z, w). Every element of order 6 lies in K, so 

(cd) C K. Since cl and c, generate G, then (c,) is a complement to K. Furthermore, 

since cl has order 2, then cl =X/Z, for some h E K, xhx-’ =h-‘. A straightforward 

calculation shows that h =x-‘gxg-‘, for some g E K, so cl =gxg-‘, and hence we 

may assume cl =x. Since (c,) is not normal, then c3 =zw,zw~‘,zyw or zyw-‘. Con- 

jugating by x fixes cl and reduces the choices for cs to z,w and ZW-‘. The map 

x+x,y+y,z+z, W’ w -’ is easily seen to be an automorphism, from the presenta- 

tion of G. Thus, there is a single equivalence class of generating vectors, represented 

by (x, (zwx>-‘, ZW). 

24, (3,3,4), =,(3) = (x,Y:x=(; ;),Y=( _; A)). (2.x) 

If H c G is the 2-Sylow subgroup, then the projection can only be [ 1 3, 3,3] : [4,4,4] + 

[4,3,3], thus Ha G and H=d, (quaternions). Since H is complemented by (cl >, 

G = Z3 DC d,. Let J be the centre of H, then J fixes six points and S/J-t S/G must 

be [26, 32, 32] : [2,2,2,2,2,2] --t [4,3,3], so G/J=&, by Table 1. It follows that cl 

acts non-trivially on H. Since all automorphisms of fi2 of order 2 are conjugate in 

Aut(d2), then there is a unique non-trivial semi-direct product Z3 !xd2 isomorphic 

to SL,(3). By a character table calculation (cf. [30] for table) there are 24 (3,3,4)- 

triples in G and Aut(G) = PGL2(3) acts transitively on them. There is a single class 

of vectors all equivalent to (x, (yx))‘, y). 

30, (2,3, lo), no group exists. (2.Y) 

Let H be a 5-Sylow subgroup. If there are 5-Sylow subgroups other than H, then 

there are six of them, each of which is its own normalizer. However, this contradicts 

the existence of an element of order 10. Any element of order 3 must centralize H, 
therefore there is an element of order fifteen. This contradicts case 2.t. 

40, (2,4,5), no group exists. (2.2) 
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Argue as in case 2.~. 

48, (2,3,8), C&(3)= (w:x=(; _;),Y=(; I;)). (2.aa) 

Let H be a 2-Sylow subgroup of G and N= coreo(a). The symbol of the projec- 

tion S/H-, S/G is [l - 2,1 - 2,3] : [2; 4,8] --t [2,8,3]. From Table 1 it follows that 

INI = 8 and the symbol of S/N-r S/G is [23, 23, 3’1 : [4,4,4] --f [S, 2,3]. Again from 

the table N=l&, let J=Cent(N)=Z,. From formula (2.17), J fixes six points and 

the symbol of the projection S/J-t S/G is [46, 212, 38] : [2,2,2,2,2,2] + [8,3,2]. 

Therefore G/J is _& by Table 1. The classification of central extensions of sym- 

metric groups may be found in [57], the only possibilities for G are Z2 x &, x4 and 

GL,(3). Now G f Z, x .& since Z2 x C, has no elements of order 8. Also G+& 

since .& has unique element of order 2 which generates the centre. But, in this case 

ci would be central and c,, c2, c3 would generate an abelian group, a contradiction. 

By a character table calculation GL2(3) has 48 (2,3,8)-vectors. Now Aut(GL,(3)) = 

& x Z2, & corresponding to inner automorphisms and Zz generated by the central 

automorphism g -+ g - det(g). Since there is a generating (2,3, @-vector all the vectors 

are equivalent generating vectors, (x, y, (xy))‘) is a representative. 

Case by case analysis for genus 3 

4, (2% z,xz,. 

This is analogous to case 

4, (1: 22), Z4 or 

If G is cyclic, then apply 

was done in Example 3.3. 

(3.h) 

2.f. 

zzxz2. (3.i) 

Harvey’s results to get case 3.i.l. The non-cyclic case 

6, (34), no group exists. (3.1) 

In any group of order 6 the elements of order 3 generate a proper subgroup. 

6, (24, 3), D3 = (x,y: x2=y3 =xyx-’ =y-‘>. (3-m) 

The group G cannot be abelian, by statement (3.2), so G= D,. Let z =xy and 

w=xy-1 be the other two reflections in D3. We may assume, via Aut(G)-action, 

that c5 =y and that at least two of the reflections in {cr,c2, c3,c4} equal x. Let 

(cj,Cj+,), 1 Ij13 be an adjacent pair of reflections and consider the image of the 

pair under the action of a %‘-transformation of Type II(j). The transformation 

maps the pairs (z,x), (w,x), (z, w) and (w,z) to (x, w), (x,z), (w,x) and (z,x), respec- 
tively. By repeated application of these transformations, we may assume that 

(c,, c2, c3, c,) is one of (x,x,x, w), (x,x,x, z), (x,x, w, w) or (x,x, z, z). However, since 

c5 =y only the first of these yields a generating vector namely (x,x,x,xy-‘, y). 

6, (1: 3), D3 = (x,y:x2=y3=xyx-‘=y-‘). (34 
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The group G cannot be abelian by (3.4), so G=D,. If (a, b, c) is a generating vec- 

tor at least one of a,b must be a reflection. If a is a reflection, then (a,6,c) must 

be Am(G)-equivalent to (x,xy,y). If a has order 3, then it can be transformed into 

a reflection by a transformation of Type 1.a. 

8, (22,42), Z2xZ4=(x,y:x2=y4=[x,y]=1). (3.q.l) 

8, (22, 42), D, = (xy: x2 =y4 = l,xyx-’ =y-‘>. (3.q.2) 

As argued in case 2.n, G = (c, > K (c4). Therefore, G = Z2 x Z4 or D,, and there is 

an automorphism of G carrying (c,, ~4) to (x, y). Now consider the equation ~2~3 = 

xy-‘. In D4 there are two solutions: (c2, c3) = (x, y-l) or (xy2, y). For G= Z2 x Z,, we 

get these two solutions and the additional solution: (y2,xy). For D4, the square of 

a transformation of Type 11(2) transforms (x, xy2, y, y) into (x,x, yP’, y), and we get 

one class of vectors. Each of the vectors (x,x, y-l, y), (x, xy*, y, y), and (x, y*, xy, y) 

defines a distinct equivalence class of actions of Z2 x Z4. We can see this by ob- 

serving that these vectors are characterized, in the same order as above, by: cr = c2, 

c3 = c4 and G= (c3,c4). Since each of these characterizations is invariant under 

Aut(G) x 55 we get three equivalence classes of actions. 

8, (2j), Z2xH2xZ2= (x,y,~:x~=y*=~~=[y,z]=[x,~]=[x,y]=1). 

(3.r.l) 

8, (25), D4 = (x, y: x2 =y4= l,xyx-’ =y-‘>. (3.r.2) 

If G is abelian, then G=Z2xZ2xZ2. By using Z&‘-transformations of Type II, 

we can assume that cl, c2, c3 generate G, and transforming by Aut(G), we can as- 

sume cr =x, c2 =y, c3 = z. Since c4c5 = xyz and c4, c5 both have order 2, c4 is one of 

x, y, z, xy,xz, yz. Transforming by Aut(G), we may assume that c4 =x or yz and 

(c,, c2, c,) is a permutation of x, y, z. Using a B-transformation, we can permute 

(c,, c2, c,) to obtain (x, y, z, x, yz) or (x, y, z, yz, x). These two are equivalent by inter- 

change of c4 and cs. 

If G is non-abelian, then G= D4, since this is the only non-abelian group of 

order 8 generated by elements of order 2. An even number of the Cj’S must be 

reflections and the remaining Cj’S must be the central element y2. If only two of 

these elements are reflections, then the cj’s cannot generate G. Thus, we may as- 

sume that c5 =y2. By considering images of the remaining cj’s in G/( y*> we see 

that there must be two pairs of commuting reflections. Now we can use Aut(G) 

and the transformations used in case 3.m to transform any generating vector into 

(x,x,xy,xy3,Y2). 

8, (1: 2), d, = (x,y:x4=y4=1,x2=y2,xyx~‘=y~‘). (3.s.l) 

8, (1:2), D,= (x,y:x2=y4=1,xyx~‘=y). (3.s.2) 

By (3.4), G cannot be abelian, so it must be the quaternion group 6, or the di- 

hedral group D,. If (a, 6, c) is a generating vector, then [a, b] = c-l, so a, b do not 
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commute. For a, b E B, with [a, b] # 1, both a, b have order 4 and all such pairs are 

Am(&)-equivalent, by a presentation argument. We may pick (x, y,y2) as a repre- 

sentative. The case G = D, can be handled as in case 3 .n, yielding a single class of 

generating vectors represented by (x, xy, y’). 

12, (3,6,6), no group exists. (3-w) 

The proof is similar to that in case 2.q except that an automorphism of order 3 

of a surface of genus 3 has either 2 or 5 fixed points. 

12, (4,4,6), D4,3,_1 = (x,y:~~=y~=l,xyx~~=y-‘). (3.x) 

As in case 2.q the 3-Sylow subgroup is normal, so G must be the non-abelian split 

metacyclic group D,,+,. In this group if z, w are any elements of orders 4 and 4 

respectively, then zwz-’ zz w-1. This implies that any such pair (z, w) is Aut(G)- 

equivalent to (x, y). From this it follows that all generating vectors are equivalent 

to (x, xy-‘, x2y). 

12, (23,6), D, = (x,y:x2=y6=1,xyx-‘=y-‘). (3.Y) 

Apply the argument of case 2.n to conclude that G=D, and that every generat- 

ing vector is equivalent to (x,xy2,y3,y). 

12, (22,32),A4=(~,y:x=(l,2)(3,4),y=(l,2,3)). (3.2) 

If His the 2-Sylow subgroup, then S/H+ S/G must be [ 1 3, 1 3, 3,3] : [2,2,2; 2,2,2] + 

[2,2,3,3] or [ 1 - 2,1 - 2,3,3] : [ 1: 2; 21 --f [2,2,3,3]. In the latter case H is not normal, 

which forces the 3-Sylow subgroup to be normal. But, a fixed point argument, as 

in case 2.q, yields a contradiction. Thus, we may assume that the first projection 

is correct, that H=L, x Z2 and Ha G, by Table 1. Since H is complemented, G 

is a semi-direct product Z, DC (Z2xZ2). Now G cannot be abelian, for then the 

3-Sylow subgroup would be normal and this was eliminated above, therefore G= 

A,. There are exactly 24 pairs of elements (z, w) in A4 with o(z)=2, o(w)= 3 and 

Z4 acts on them simply transitively by conjugation. Thus we may assume that 

@1,C3)=(X,Yh If c1=c2, then the generating vector is (x,x, y, y-l). Now suppose 

that c, #c2. If c is an element of order 3, then one of cc2cm’, c2c2ce2 equals cl and 

if d is conjugate to c in A,, then dcc,c-‘d-’ = c2c2ce2. The square of a transforma- 

tion of Type II(3) is (Y~,YZ,Y~,Y~) --f (Y~,Y~~Y~Y~,Y~~YZ~Y~Y~Y~,Y~) which is a a- 

transformation by Proposition 2.4. By applying this transformation once or twice 

we can transform c2 into cc2c~’ or dcc2cp1d-‘, respectively, where c and d are con- 

jugate elements of order 3. Thus, the generating vector is equivalent to a vector with 

c, = c2. 

Done in Example 3.4. (3.ab.l)-(3.ab.2) 

Done as Example 3.5. (3.ac.l)-(3.ac.2) 

16, (2,2,2,4), ~2D<D4=(X:X2=1)X(Y,Z:Y2=Z4=1,YZY-’=Z-1). 

(3.ad. 1) 



Finite group actions on surfaces of low genus 263 

16, (2,2,2,4), z2 D< (z2 x &) 

=(x,y,z:x~=y~=~~=[y,z]=1,[x,z]=1,xyx-~=yz~). (3.ad.2) 

We first show that H= (c4) is normal. Let K be a subgroup of order 8 con- 

taining H. By arguments similar to those in Example 3.5, K=D4 or Z2xZ4. If 

K=D4, then His characteristic in K and His normal, therefore, we may suppose 

K=Z,x Z4. The branching data for K is (22,42) and the relative projection is 

[ 12, 12, 2,2] : [4,4; 2,2] --t [4,2,2,2], so we conclude that exactly two of (c, >, (cl) and 

(cs) are complements to K. Using ?&‘-transformations we may assume that c3 E K 

and c,,c,$K. Let w=c3c4, w lies in K, has order 4 and c2 = wci. Since ci and c2 

have order 2, then c1 WC,’ = w-l. Since K has exactly two subgroups of order 4, 

then cl normalizes both of them and hence HUG. 

As in Example 3.5, the branching data for H is (44) since H is normal. The 

associated relative projection has the symbol [ 1 4, 22, 22, 22] : [4,4,4,4] -+ [4,2,2,2]. 

Therefore, none of the subgroups (cl>, (c2) and (c3) lie in H, and G/H= Z2 x Z2. 

One of (c,), (c,) or (c,) acts trivially on H so, as above, we may assume that 

K = (c,, c,) = h, x Z4. Let x= cl, y = c3 and z = c4. From previous arguments, the 

automorphism of K induced by conjugation by x must be one of y+y,z --f z-‘; 

y+Yz2,z+z-1 or y -+yz2, z -+ z. In the first case x, z generate a subgroup isomor- 

phic to D4 and y generates a commuting complementary subgroup, so G 2 77, x D4. 

Interchanging the roles of x and y we arrive at the first presentation above. The last 

two automorphisms are conjugate in Aut(z2 X Z4) by y +yz, z + z, so we get z2 D< 

(z2 x z4), with the second presentation above. The two groups are not isomorphic 

since their centres are not isomorphic. 

Suppose (c,, c2, c3, c4) is an arbitrary generating vector for G = Z, x D4. The group 

Aut(G) is generated by Aut(D,) and the central automorphisms: g+gA(g), where 

2 : G + Z(G) is a suitable homomorphism. From this description we see that any two 

elements of order 4 are Aut(G)-equivalent, thus, we may assume that c, =z. None 

of the elements cl, c2 or c3 lie in (c4) and exactly one of these elements centralizes 

(c4), and hence all of G. Therefore, by a combination of central automorphisms 

and .%-transformations we may assume that cl =x. Now c2 has the form yz’x’, by 

using suitable combinations of the automorphisms Ad,: g-t zgz-I and central 

automorphisms, we can transform c2 into y. Thus, there is a unique generating vec- 

tor represented by (x, y, yxz-‘, z). 
Now let (cl, c2, c3, c4) be an arbitrary generating vector for G = L, D< (Z, x z4). As 

above, we may assume that K= (c3, c4> = (y, z) and the action of cl and c2 is given 

by the x-action in the presentation. The subgroup K has two cyclic subgroups of 

order 4, namely (z) and ( yz). The element x normalizes both of these subgroups, 

fixing z and conjugating yz to its inverse. By calculation above, c,c, is conjugated 

to its inverse by cl. Thus, the pair (c,, c4) must be one of (y,z), (y,z-‘), (yz2,z), 

(yz2,zC’), (z’,yz) or (z2, yz-‘). Transforming by combinations of the automorphisms 
Ad, and ~:xx’x,y~y,z+~~~, we see that (c,, c4) is equivalent to one of (y, z-‘) 

or (z2, yz). Since cl @K and has order 2, then cl =xw, where w E K satisfies xwx-’ = 
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W -’ and cl is one of x,xzy,xz-‘y or xz2. Transforming by the automorphisms 

Ad,,g E K, we can cut down this list to x and xzy without changing c3 or c,. Any 

vector must now be equivalent to one of the following vectors: (x,xzy, y,z-‘), 

(XZY,XZ2,y,z~'),(x,xzy,z2,yz),(xzy,xz2,z2,yz). A ~-transformation of Type II(l) 

interchanges the first and second vector and the third and fourth vectors. The first 

and third vectors are not equivalent. In the third vector, c4 generates the centre of 

G but this fails for the first vector. This characterization is invariant under the 

Aut(G) x zZ? action. 

18, (2,6,9), no group exists. (3.ae) 

By Example 3.4, G =Dz,g,j where j satisfies equation (3.10) with p = 2 and q = 9. 

But, the solutions of this equation, 1, -1, do not satisfy equations (3.12.i)-(3.12.ii) 

with r=6. 

18, (3,3,9), no group exists. (3.af) 

The 3-Sylow subgroup must be normal, but then G cannot be generated by 

elements of order 3 and 9. 

Done in Example 3.4. 

24, (2,4, I2), D2,i2,+ 

Apply the method of Example 3.4. 

(3.ag) 

(3.ah) 

24, (2,6,6), Z,xA,= (x:x2=1)x(y,~:y=(1,2)(3,4),~=(1,2,3)). 

(3.ai) 

If H is the 2-Sylow subgroup, then S/H + S/G must be [13, 3,3] : [2,2,2; 2; 21 + 

[2,6,6]. Thus, H=D4 or Z2 x Z2 x Z2 and is normal. Let g be an element of order 3, 

K= (g). Using a fixed point argument as in cases 2.q and 3.w, we see that K is not 

a normal subgroup. Thus, g acts non-trivially on H. As 1 Aut(D,) / = 8, we must 

have H = Zz x Z, x Z2. Considering g as a matrix in GL,(2), we get H = HI x H2, 

where IHi 1 =2, lH21 = 4, g=id on HI and g has no non-trivial invariants in Hz. 

The subgroup (g) DC H2 is isomorphic to A4 and we get a direct product decom- 

position: G = HI x ((g) K Hz) = Z2 x A,. The projection of a generating (2,6,6)- 

vector to Z2 or A, must be a generating (1,2,2)-vector or (2,3,3)-vector respective- 

ly. There are 8 elements of order 3 in A, and hence there are 48 (2,3,3)-vectors in 

A,. As IAut(A,)I = I_& =24 there are two Aut(A,)-classes of (2,3,3)-vectors. 

These two vectors are transformed into each other by the second transformation 

listed in Proposition 2.7. We may combine the (1,2,2)-vector (1,x,x) of Z2 and the 

(2,3,3)-vector (y, z, (yz))‘) of A4 to get the (2,6,6)-vector (y, xz,x( yz)-') to which 

all the other generating vectors are equivalent. 

24, (3,3,6), =,(3)= (s,Y:X=(; ;),Y=(: -;)). U.a_i) 
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If H is a 2-Sylow subgroup, then the only possible projection S/H+S/G is 

[3,3,3] : [ 1: 2]+ [6,3,3], and H= DA or the quaternions d2. As in the last case a 3- 

Sylow subgroup, K, cannot be normal. Thus, there are four 3-Sylow subgroups, each 

of index 2 in its normalizer. Therefore, there are exactly eight elements of order 3 and 

eight elements of order 6. It follows that HaG and G=KP< H. Now just modify 

the argument of 2.x to show that G=SL,(3) and that all vectors are equivalent to 

(x9 YY (XC ’ ). 

24, (3,4,4), &= (x,y:x=(l,2,3,4),~=(1,3,4,2)). (3.ak) 

Let H be a 2-Sylow subgroup, then S/H+S/G is [ l-2,1 - 2,3] : [4,2; 4,2] + [4,4,3]. Let 

N=corec(H), then G/N=&, the projection S/N-tS/G is [23, 23, 31: [2,2,2; 2,2,2] -+ 

[4,4,3] and Nz. Z2 x Zz. It follows that G has a subgroup K of index 2 and S/K+ 
S/G is [1*,2,2]: [3,3;2,2] + [3,4,4], so K=A,, by case 3.2. Now H=D, or Z2xZ4, 

by cases 3.q.l-3.q.2. If H-D4, then N=Kfl H-&xZ, and is normal. The set 

H-N consists of 2 reflections and two elements of order 4, let x be a reflection. 

Then, G=(x) D<A,. Since x induces an involuntary automorphism of Ad, acting 

non-trivially on Hfl AA, then x acts as a transposition from Z, and hence G=&. 

By a character table calculation (see [30, p. 2871 for table), there is a unique equiva- 

lence class of generating (3,4,4)-vectors with representative ((xy))‘, x, y). The case 

H- Z2 x & cannot occur. Every involution of & = G/N is the image of an element 

of some conjugate of H. Since H is abelian, the involutions of _&, and hence all 

elements of & act trivially on A,(l H. Thus, elements of order 3 in A4 act trivially 

on Hfl A,, a contradiction. 

24, (23,3),&=~x,y,~:x=(l,2),y=(2,3),~=(3,4)). (3.al) 

Mimic the proof of case 3.ak to show that G =&. If (c,, c2, c3, cd) is a generating 

(2,2,2,3)-vector, exactly two of c1,c2,c3 are transpositions, we may assume they 

are cl, c2, by using &‘-transformations. The elements c,,c, cannot commute, for 

then cIc2c3 = cil lies in the Klein 4-group, a contradiction. There are 24 pairs of 

non-commuting transpositions in &, _& acts transitively on them so we may 

assume ci = (1,2), c2 = (3,4). By using transformations as in case 3.2 we may assume 

c3 = (1,3)(2,4) and that the generating vector is (x, y, yxzy, yz). 

32, (2,4,8), z2 K @2 X z8> 

= (x,y,z:x*=y2=zs=[x,y]=[y,Z]=1,xzx~~=yz3). 

32, (2,4,8), z2 DC D2,8, 5 

(3.am. 1) 

= (x,y,~:x~=y*=z*=l,yzy-‘=z~,xyx-~=yz~,xzx~’=yz~). 

(3.am.2) 

Let H be a subgroup of index 2 containing K= (c,). From cases 3.ab.l-3.ab.2, 

H=z,Xz, or&s,, with presentations: (y,~:y~=z~=l,yzy-~=zj),j=l or 5 re- 

spectively. Since (y~“)~ = 2*’ or z? as j = 1 or 5, respectively, then in both cases H 
has 2 cyclic subgroups of order 8, (z) and (yz), and three elements of order 2, 
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namely y, yz4 and z4, of which only z4 is a square. Let x = cl, since c, and cj gen- 

erate G, then ci $H, so G=(x) KH. By a fixed point argument (c,) cannot be 

normal. Thus, x conjugates (z) and (zy) into each other, and xyx-’ = y or yz4. Any 

automorphism satisfying these properties, involutary or not, must have the form 

y + yz”‘, z + yzk where m = 0,4, k= 1,3,5,7. We may assume k= 1 or 3 since, for 

both groups, y -+ yz4,z + z defines a central automorphism which conjugates the 

automorphisms for k = 1,3 to the automorphisms for k= 5,7 respectively. It is 

straightforward to check that among these automorphisms we only get involutary 

automorphisms for the cases (j, m, k) = (l,O, l), (l,O, 3), (5,0, l), (5,4,3). We may 

eliminate (j, m, k) = (l,O, 1) as follows. The subgroup N= (x, y) is a normal, isomor- 

phic to Z, x Zi2 and has quotient G/N= (z> =Zs. But then, a generating (2,4,8)- 

vector for G cannot project to a generating vector for Zs, a contradiction. We may 

also eliminate (j,m, k) = (5,0,1) as follows. In this case, y(yz)yP1 = (yz)’ and 

x( yz)xP’ = ( YZ)~, hence, x--f x, y + y, z -+ yz is an automorphism of G. Since x = cl 

and (c,>=(z) or (yz) we may use this automorphism to force cs= (z), but not 

move cl. Thus, c2 = xz’ for some s relatively prime to 8, but ci = yz2 and so c2 has 

order 8, a contradiction. Thus, our groups must have the presentations above and 

(x,xz,z-l) is a generating (2,4,8)-vector for both cases. The groups are non- 

isomorphic since the centres of the groups are Z2 x Z2 and Z4 in cases 3.m. 1 and 

3.m.2., respectively. 

Now suppose (c,, c2, c,) is an arbitrary (2,4,8)-vector. For every element w E H, 
xwxw has order 1 or 2, thus the elements of order 8 all lie in H. These elements are 

z z3, z’, z7, lying in (z>, and YZ, yz3, YZ’, YZ ‘, lying in ( yz). Since conjugation by x 

interchanges (z) and (yz), we may assume that c3 is one of z,z3,z5,z7. For H= 
ZI,xZ8 the maps x+x,y-y,z+zk, k = 1,3,5,7 are automorphisms and for H = 
D2,8,5 the maps x+x,y+y,z+zk, k-l,5 and x+x,y--+yz4,z~zk, k=3,7 are 

also automorphisms. Thus, we may assume that c3 = z. Now cl =xy’z’, otherwise 

ci, c2, c3 E ( y, z). Since c, has order 2, then cl E {x, xz2, xz4, xz6, xy, xyz2, xyz4, xyz6} 

for H = L, x Z, and cl E {x, xz4, xyz2, xyz6} for D,, s, 5. By conjugating by powers of 

z, we fix z and reduce these lists to {x,xy] and {xl, respectively. In the case of H= 
Z2 x Zs, x + xy, y --f y, z + z gives an automorphism of G so we may assume cl =x in 

both cases. 

42, (2,3,14), no group exists. (3.an) 

The 7-Sylow subgroup, H, is normal. A generating (2,3,14)-vector projects to a 

(2,3,2)-vector in G/H so G/H must be Z3. Since there is an element of order 14 in 

G there must be an element of order 2 in G/H which acts trivially on H. Since G/H 
has no non-trivial normal subgroup of even order, then all of G/H acts trivially on 

H. Hence, there is an element of order 21 in G, but this has been previously ex- 

eluded. 

48, (2,3,12), no group exists. (3.ao) 

If H= (c3), then the only possible numerical projection for S/H+ S/G is 
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[ 1 - 3,1 - 3, 22] : [3; 12,4] --f [3,12,2]. From Table 1 we conclude that N= coreo(H) = 

& and G/N=A,. Since c3 has order 12 and A4 has no non-trivial normal sub- 

groups with order divisible by 3, we conclude, as in the case 3.an above, that G/N 

acts trivially on N. Therefore, there is a normal abelian 2-Sylow subgroup, K, of 

order 16. From Table 5 the branching data K must be (2,8,8) or (4,4,4), but then 

the symbol of the projection S/K + S/G does not exist. 

48, (2,4,6), zzx& = (x:x2=1)x (y,z:y=(l,2),~=(2,3,4)). (3.ap) 

Let H be a 2-Sylow subgroup, then S/H+ S/G is [l * 2,1 - 2,3] : [2; 4,2; 2]-+ 

[2,4,6]. Let N=coreo(H). By Table 1 the symbol of the projection S/N+ S/G is 

[23,32,23]: [2,2,2;2,2]-+[4,6,2], so N=BzxIZ,xz2 or D, and G/N=,X3. Let g 

be an element of order 6, fixing a point. The number of fixed points of g2 is 

No(<g2))/6. If g2 acts trivially on N, then the number of fixed points of g2 is a 

multiple of 4, but an element of order 3 has only 2 or 5 fixed points by inspection 

of cases 3.d-3.e. Therefore, g* acts non-trivially on N. The group D, has no auto- 

morphisms of order 3, so N= z2 x Z2 x Z2. Thus, N affords a 3-dimensional, non- 

trivial [F,-representation of E3. Restricted to Z3- A3 a_Z,, N splits into two irre- 

ducible submodules of dimensions 1 and 2, moreover these submodules are in- 

variant all of .,Y3. We may argue as in case 3.ai that G=Nt x (z3 DC N2), where 

N=Nt xN~, IN,1 =2, IN21 =4 and Z~KN~=Z~. Thus G=~~x.JCJ. 

Let (c,, c2, c,) be a generating (2,4,6)-vector. The element c: commutes with c:, 

an element of order 3, therefore, c: =x. By (2.17) it follows that x has eight fixed 

points and that XC$ (cl), (c,). Using this fact and using the projections of a generat- 

ing vector to the factor groups as in case 3.ai, we may calculate that every vector is 

equivalent (xy, (zy))‘, xz) or ( y, x(zy))‘, xz). There is a homomorphism 6 : G + (x) = 

Z(G) such that 6(x) =6(z) = 1,6(y) =x, the central automorphism g + g6(g) inter- 

changes the above two vectors. In the calculation one needs to show that all (2,4,3)- 

vectors in .& are equivalent, this may be done by a character table calculation. 

48, (3,3,4), z3 K @4x 774) 

= (x,y,z:x3=y4=z4=[y,z]=1,xyx~i=z,x~~’=(yz))~). (3.aq) 

Let x be an element of order 3. By a Sylow theorem all elements of order 3 

generate conjugate subgroups, so the number of fixed points of x, acting on S, is 

2N,((x))/3, by (2.17). As previously mentioned, x can have only 2 or 5 fixed points, 

so No((x)) = 3. If H is a 2-Sylow subgroup, then S/H-+ S/G is [13, 3,3] : [4,4,4] + 

[3,3,4] and Ha G. Since (x) is self-normalizing, the adjoint action of x on His fixed 

point free. By case 3.ac, H=Z4x 72, or D4,4,_1. In D4,4, _1 the intersection of the nor- 

mal subgroups of order 4 is a characteristic subgroup of order 2, so x must fix this 

element, a contradiction. Let y be any element of order 4 in Z, x Z,, yxyx-‘~~yx-~ 

is x-invariant, hence trivial. Set z =xyx-‘, then xzx-t = (yz))‘. If y, z do not gen- 

erate &X &, then ( y, z) = ( y) is an x-invariant subgroup of order 4, on which x 

must act trivially, yielding a contradiction. Thus, we get the presentation above. 

Suppose (ct, c2, c3) is a (3,3,4)-vector. If u and u are any elements of G of orders 3 
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and 4, respectively, and w = uuu-‘, then the relations in the presentation are satis- 

fied when x,y and z are replaced by U, u and w, respectively. This follows from the 

argument immediately above. Thus, there is an automorphism of G carrying the 

pair (c,, cs) onto the pair (x, Y) and, hence, all generating vectors are equivalent to 

(x, (Y.C’, Y). 

72, (2,3,9), no group exists. (3.ar) 

The element cs has exactly two fixed points by the remark following (2.17) and 

case 3.t. From (2.17) No((cs)) is a subgroup of order 18, but no group of order 18 

acts on a surface of genus 3. 

Done in Example 3.6. (3.as) 

Done in Example 3.1. (3.at) 
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