View metadata, citation and similar papers at_core.ac.uk brought to you bnyORE

provided by Elsevier - Publisher Connector

Controlling Rewriting:
study and implementation of a strategy
formalism
(Abstract)

Peter Borovansky

LORIA-INRIA
615, rue du Jardin Botanique, BP 101,
54602 Villers-les-Nancy Cedex, France
e-mail: Peter.Borovansky@loria.fr

Abstract

This paper summarizes my PhD thesis devoted to an introduction of a new strat-
egy formalism for the first-order rewrite system, called ELAN. Goals of my PhD
thesis are proposing and studying different constructions expressing the control of
rewriting at the level of rules and strategies, studying a strategy-directed cooper-
ation of procedures (i.e. solvers), and finally, exploring certain reflexive aspects of
computational systems to be able to express their transformations by computational
systems. The principal goal is a design of a declarative, strictly typed and extensible
strategy language based on rewriting logic within the existing framework ELAN. A
programming style of the strategy language, different language constructions and
extensions (e.g. high-level or polymorphic strategies) and several used implemen-
tation techniques (e.g. partial evaluation, or compilation) are also studied in this
thesis. This paper outlines the principal problems attacked in this thesis, highlights
several new ideas and proposed solutions.

Keywords: Rewriting Logic, Computational Systems, Control, Strategies, Pro-
gramming Language, Partial Evaluation, Compilation.

1 Introduction

Since the last three decades, rewriting has been studied as an execution
method of formal specifications. Different specification systems are usually
based on the first-order logic, e.g. some variation of the equational logic.

1 This work has been partially supported by the Esprit Basic Research Working Group
22457 - Construction of Computational Logics II.

(©1998 Published by Elsevier Science B. V. open access under CCBY-NC-ND license.

https://core.ac.uk/display/82024877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

AL VIV VALY IA L

Specifications are usually considered as equational programs and interpreted
by rewriting, whose theoretical model is represented by rewriting logic intro-
duced by J. Meseguer [10].

The interpretation tools of rewrite systems have to be expressive and effi-
cient enough for prototyping more complex specifications. A stimulating prob-
lem of the acceleration of these tools is attacked by several research teams.
The increasing expressiveness of the specification tools, e.g. by placing them to
a context of the order-sorted or high-order logic, can be an interesting feature,
when these tools are used as programming environments. However, it often
decreases their efficiency. The speed-up of these specification tools can be eas-
ily measured, however, new language features and constructions introduced in
order to increase their expressiveness have to be based on a semantics coher-
ent to the initial one, motivated by the user’s needs, and also justified by their
efficient implementation. Following this philosophy, results presented in [1]
propose language enriching constructions for controlling rewrite and compu-
tational systems in a declarative way. Efficiency aspects of these constructions
are always considered even if it is not a primary goal of this thesis.

We are interesting in rewriting as a computational paradigm and its corre-
sponding logic. In this framework, we study different possibilities of controlling
rewrite derivations. We propose conditional rewrite rules with structured con-
ditions, which are flexible enough to specify simple or structured conditions,
local variable or pattern assignments. Having rewrite rules identified by their
names, the control of rewriting can be declaratively expressed by specifying a
set of all acceptable sequences of labeled rewrite rules, or eventually, their in-
stances. A proof calculus of rewriting logic representing the theoretical model
of rewriting, offers the possibility to generalize these sequences of rewrite rules
to proof terms specifying which instance of which rewrite rule is applied on
which term. The study of a language describing sets of proof terms, also called
strategies, is the main contribution of the thesis [1]. Different aspects of this
strategqy language are considered: its semantics, programming paradigm and
implementation techniques.

The principal features of the proposed strategy language are the semantics
based on rewriting logic, a possibility to express non-deterministic and concur-
rent, derivations, strict typing of all language constructions in a many-sorted
signature and its extensibility by new constructions. The strategy language is
defined as a transformation of a rewrite theory associated with several strat-
egy definitions, called computational system [9], to a strategy theory, which
is another rewrite theory. The construction of this transformation allows to
build-up a hierarchy of strategies, where some high-order strategies can con-
trol derivations of the other ones. Two implementation methods are proposed
and studied: the meta-interpretation optimized by partial evaluation and the
compilation of strategies.

The research presented in [1] has been realized in a context of an exist-
ing framework for prototyping of solvers and programming languages, called

2

AL VIV VALY IA L

ELAN. This system was designed in PROTHEO team (cf. the overview of
ELAN in [4]) and mainly implemented by M. Vittek [12]. It is used for spec-
ification of constraint solvers over different domains (e.g. syntactic theories,
finite domains, etc.), for prototyping different logical frameworks (e.g. logic
programming, CLP, etc.), and for studying different properties of equational
and rewrite systems (e.g. termination, completion, etc.). Because of the ex-
istence of a lot of applications developed during its five years history, one of
the main priorities of the research is to integrate elegantly and coherently our
new ideas and constructions to ELAN.

The strategy language of Maude [8], which represents a related approach, is
based on similar motivations. However, it is built on different basic principles,
and thus, it has a different internal philosophy and architecture. It is based
on the reflexivity of rewriting logic interconnecting a specification of an object
theory with a specification of strategies. Maude offers the possibility to create
more complicated high-order strategies due to a reflexive tower of rewriting.
In our approach, the strategy language is a syntactic transformation of an
object theory enriched by several specifications of strategies into a strategy
theory. By iteration of this construction, we can also create more complicated
strategies, however, our tower of strategies is created differently.

The structure of this paper is the following: Section 2 overviews the several
contributions of the thesis [1], while Section 3 illustrates more precisely several
ideas of its principal contribution concerning the strategy language. Section 4
presents several perspectives for the further research.

2 Control of rewriting

The process of rewriting can be controlled at several levels, and therefore,
several different controlling formalisms can be introduced. The control of
the normalization process by local evaluation strategies attached to function
symbols of a signature is one example of such an approach introduced in
the system OBJ-2. We have studied the problem of the control of rewrite
derivations at three different formalization levels:

* Rewrite rules — The control can be directly expressed in the rules of a
rewrite system in a form of boolean conditions, structured conditions, local
(matching) assignments, factorization of common parts, etc. At this level,
we can naturally express simple controlling notions, e.g. an application
order of rules, or elimination of repeating sub-derivations of common parts
of these rules, etc.

* Strategies — In order to construct more complex controlling procedures,
we introduce a separate formalism of strategies, called strategy language,
expressing in a more fine way where, when and which rewrite rule is ought to
be applied under which conditions. The first concept of a non-deterministic
strategy language for rewriting was introduced in the Vittek’s thesis [12].

3

AL VIV VALY IA L

Its strategy constructions correspond to regular expressions over the rule
names. More sophisticated strategy languages have been recently proposed
and/or developed for the systems Maude [7] and ASF+SDF [11]. The strat-
egy language of ELAN is another example of a domain-oriented language
allowing to specify non-deterministic, recursive, parameterized and well-
typed strategies in a many-sorted logic.

* Cooperation of solvers — The most typical ELAN applications are various
(constraint) solvers, which are usually very complex procedures. The possi-
bility to express their cooperation and concurrent execution is an example
how the solvers can be controlled at the level of applications. As an exam-
ple, concurrent strategies offer the possibility to control several sub-solvers
in a declarative way. In a more general framework, these complex solvers
(i.e. whole procedures) are even not necessarily specified in ELAN.

Rewrite rules

In this section, we illustrate some of proposed controlling constructions at the
level of rewrite rules. We briefly introduce the syntax of simple ELAN rules,
which are (labeled) conditional rewrite rules with local variable assignments:

(] I=r[if v| where y:=(S)ul*

where ¢ is a label of this rule (eventually empty), the terms [and r are, respec-
tively, the left and the right-hand side of this rule, v is a boolean condition,
and y:=(S)u is a local assignment of all results of a strategy S applied on a
term u to a local variable y. The labeled version of this rewrite rule is always
applied on the top of a term ¢ such that its left-hand side [is first matched
against ¢, then all expressions introduced by where and if constructions are
instantiated by the corresponding matching substitution. Each instantiation
of a local variable extends the matching substitution, and a newly instantiated
local variable, e.g. y, may occur in the following expressions. Therefore, these
expressions are evaluated in textual order. When all conditions are satisfied
and local assignments realized, the replacement of the matched term by the
fully instantiated right-hand side is performed.

A local variable assignment may invoke a strategy-directed sub-derivation
simplifying a term u. If there is no specified strategy in a local assignment, the
default leftmost-innermost normalization strategy of ELAN is applied. This
normalization strategy is parameterized by a set of unlabeled rewrite rules (i.e.
when £ is empty) and it also respects local evaluation strategies associated to
the function symbols of a signature. Labels of rewrite rules allow to refer these
rules in the user defined strategies.

As it was mentioned before, the first possibility is to express a controlling
mechanism directly in the rewrite rules. Existing tools based on rewriting
usually offer only conditional rewrite rules, whose boolean conditions can con-

4

AL VIV VALY IA L

trol their applications. Either a factorization of common parts of conditional
rewrite rules, or a construction of rules with structured conditions collecting
several rewrite rules having the same labels and the left-hand sides, are two
examples of the control expressed directly in rewrite rules. The following
figure illustrates both these constructions on small examples?. While the fac-
torization (on the left) eliminates repetitions of common sub-derivations, the
structured condition (on the right) specifies an application order of rules.

1= r(l,y1,y3) (1=
where y;:=(S1)u; where y;:=(S1)u;
choose switch
try if v case r; if vl y3:=(S3)us
try if ol case ro if v y3:=(S3)us
end otherwise r;
where y3:=(S3)us3 end

The previous factorized rule can be unfolded as follows:

[(] | = r where y:=(S1)u
[{] | = r where y;:=(S1)u

if v, where y3:=(S3)u;

Uy
uy if v where y3:=(S3)us

while the rule with the structured condition represents the following rules:

[é] | = r; where yl_(Sl) wy if U; where yg_(53)
[l] | = ry where y;:=(S1)u; if not v if v} where y3:=(S3)us3
[l] | = r3 where y:=(S1)u; if not v, if not vl

Several common parts of an application of the unfolded rules above, e.g.
matching of the left-hand side [and the assignment of results of the strat-
egy application S; on u; to the variable y;, are executed only once. The
structured condition of a rewrite rule avoids re-evaluations of boolean con-
ditions. Another generalization of local assignments is matching results of
those sub-derivations with patterns, where the non-linear patterns contain-
ing several variables composed of constructors can be used instead of local
variables.

Strategies

The principal contribution of the PhD thesis [1] is studying a controlling
formalism of rewrite derivations, called strategies. The notion of strategies
defined in the context of computational systems [9] is characterized by the
following equation:

Programming = Rules + Strategies

which integrates object rewrite rules, as a logical part of computations, with
their control in a form of strategies. We propose a declarative strategy lan-

2 their syntax is described in [4]

AL VIV VALY IA L

guage, which offers a uniform and common formalism for object and strategy
descriptions, which allows to reuse similar tools for studying of different prop-
erties of rewrite and strategy systems, and which enables to use the same
implementation techniques at both levels. An advantage of having a declar-
ative strategy language is in the possibility of studying partial evaluation
methods as implementation techniques, which can benefit from a strategy for-
malism without side effects. Principal characteristics of the proposed strategy
language are the following:

e The operational semantics is based on rewriting.
e Strategies are typed in a many-sorted signature.

» Strategies allow to express a non-determinism of non-confluent rewrite sys-
tems. Two non-determinisms, i.e. don’t-know and don’t-care, are considered.

 Strategies can parallelize a derivation to several concurrent sub-derivations.

* Strategies are implemented both by an interpreter optimized by partial
evaluation techniques and by a compiler into C++.

The strategy language is a transformation of a first-order object rewrite the-
ory extended by several strategy definitions to a new strategy rewrite theory,
where these strategy definitions obtain clear semantics based on rewriting
and represented by a computational system. This strategy theory contains
an interpreter of strategies independent on the user’s specifications. This in-
dependent part represents the semantics of pre-defined constructions of the
strategy language. The dependent part of this strategy theory consists of
several constructions coming from the user’s specification, e.g. new strategy
sorts and symbols added to the user’s signature, and rewrite rules defining the
semantics of these symbols. The whole construction of the strategy language
consists of three types of strategies - primal, elementary and defined strategies:

* Primal strategies correspond to rewrite rules, and their application cor-

responds to the standard replacement axiom of rewriting logic [10]. In the
empty rewrite theory, these strategies represent deterministic and atomic
steps of rewriting.
Example: Let [add1l] x = x+1 be a simple rewrite rule. The corresponding
primal strategy [r = x + 1], as an object of the strategy theory, can be
abbreviated to the notation add1 using the rule label ®. Rewrite rules can
be also parameterized, e.g. [add(n)] + = x + n. Then, the primal strategy
add (1) naturally corresponds to add1.

* Elementary strategies represent several pre-defined strategy construc-
tors, e.g. 'y, dk, dc, first, id, fail, etc., standing for concatenation of
strategies, don’t-know, don’t-care non-deterministic choices, a deterministic
choice, etc. They can be also constructed using functional symbols re-
specting their arities. Using these pre-defined constructors, we can express

3 the bold-face font is used for strategies

AL VIV VALY IA L

non-deterministic finite (i.e. non-recursive) strategies, whose semantics is
defined in terms of sets of proof terms in rewriting logic. If two strategies are
concatenated by the symbol ’;’, the second strategy is applied on all results
of the first one. For any strategies S, ..., S,, the strategy dc(S, ..., S,) re-
turns all results of one successful and non-deterministically chosen strategy
among S;. For the strategy dk(Si, ..., S,), all possible results are returned.
The identity strategy id does not change a term, while the strategy fail al-
ways fails, and never gives any result. The strategy £(S1,...,S,) applies all
sub-strategies S; to the sub-terms ¢; of the term f(¢y,...,t,) with the root
symbol f.

Example: The elementary strategy dk(add(1),add(2)) applied on a term
0 returns two results 1 and 2, while dc(add(1),add(2)) gives either 1, or 2.

* Defined strategies extend the elementary strategies by parameterized and
recursive definitions using strategy rewrite rules.
Example: Let us take a strategy map defined by the following rule:

map(S) = dc(nil, cons(S, map(S)))

The right-hand side of this definition means that whenever the strategy
map with its argument S (i.e. map(S)) is applied on a term ¢, either ¢ is
nil, or the strategy S is applied on the head of ¢ (i.e. ¢ should be a non-
empty list) and map(S) is further applied on the tail of ¢. This definition is
called implicit since the term, which the strategy is applied on, is implicit.
Strategies, as objects of the strategy theory, can be also simplified (i.e.
normalized) by a set of convergent rewrite rules, e.g.:

[Dm| map(S;) ; map(S;) = map(S; ; S2)
[Im] map(id) = id
[Fm] map(fail) = fail

These rules simplify a strategy before its application, e.g. the strategy
map(add(1l)) ; map(add(2)) applied on an integer list is first simplified to
map(add(1) ; add(2)), and then applied.

All constructions proposed at these three levels are well-typed in a many-sorted
signature of the strategy theory (strategy typing is sketched in Section 3).

Cooperation of solvers

Different constraint solvers are typical ELAN applications, and ELAN allows
to formalize their cooperation as concurrent processes*. Several low-level
UNIX-like controlling primitives of processes (i.e. solvers) are proposed. They
initialize (i.e. create), terminate (i.e. kill) and communicate (i.e. read and

write via pipes) with solvers in several ways (cf. [2]). The high-level process

* even if they are not necessarily defined in ELAN

7

AL VIV VALY IA L

controlling primitives are represented by concurrent versions of elementary
strategy constructors, e.g. dk(S; || ... || Sp), or de(Sy || ... || Sn). They
concurrently execute all sub-strategies S;, and ELAN as a dispatcher, col-
lects all results of one or all sub-strategies, depending on the used strategy
constructor. Using strategies dkcall(P) and dccall(P), ELAN invokes an ex-
ternal process P for obtaining one or all results. Combining these strategy
primitives, e.g. dk(dkcall(P;) || dkcall(P,)), we can parallelize the execu-
tion of external solvers in several ways. Using low-level controlling primitives,
we can design a process communication in a more fine way, but these atomic
primitives work a prior: in a non-declarative way. However, the semantics
of the high-level concurrent strategies corresponds to their sequential version.
Communication protocols between concurrent solvers are specified by their
implementation. More details and examples are given in [2].

3 Strategy Language

In this section, we illustrate more detailed aspects concerning the semantics,
typing and implementation of the proposed strategy language.

Semantics and Typing

The strategy language is based on rewriting logic, therefore, the axioms of
rewriting logic are expressed in the operational semantics of the strategy lan-
guage. The denotational semantics is expressed by sets of proof terms repre-
senting the basis of the proof calculus of rewriting logic.

The operational semantics defines a set of all results of an application of
a strategy S on a term ¢, and it is represented by a definition of a strategy
application symbol [_]_ specified in the interpreter of strategies. Because of
the presence of two non-determinisms don’t-know and don’t-care, results of an
application [S]t are structured at two levels: as a set of all don’t-care results,
and each of them is a set of don’t-know results, where each of them is a term.
The following table illustrates the application symbol on several examples:

dk(add(1),add(2))]0 {{1, 2}}
dc(add(1),add(2))]0 {{1},{2}}

[

[

[first(add(1),add(2))]0 {{1}}
[cons(dk(add(1),add(2)), nil)|cons(0, nil) {{cons(1,nil), cons(2,nil)}}
[cons(dc(add(1),add(2)), nil)|cons(0,nil) {{cons(1,nil)},{cons(2,nil)}}
The denotational semantics D characterizes a strategy as a set, of correspond-
ing proofs (i.e. proof terms). These proof terms are constructed from rule
labels, function symbols and the concatenation symbol ’;" (respecting their
arities), and one-to-one correspond to rewrite derivations. The following
table illustrates the denotational semantics D on several examples of non-

8

AL VIV VALY IA L

deterministic strategies:

D(dk(add(1), add(2))) = {{add(1), add(2)}}
D(dc(add(1), add(2))) = {{add(1)},{add(2)}}
D(first(add(1), add(2))) = {{add(1)}}

Both semantics are related in the usual way (cf. more details in [1]). Several
relations presented in the form of equivalences of elementary strategies w.r.t.
the both semantics are studied in [1], e.g.:

dk(s', §");S = dk(S; S, S":S) S;dk(S', S") = dk(S;S', S;S")
de(S', S");S # de(S; S, S";S) S;de(S', §") # de(S; S, S;S")

The construction of the strategy language introduces a system of strategy sorts
(s1 — sq) representing strategies transforming terms of a sort s; to terms of
a sort so. The case s; = sy represents sort preserving strategies, and strategy
typing rules for this simple case are the following:

o if f:(s1...58,) — s, then the strategy symbol f has the following profile:
({s1 /> 81) ... (Sp > sp)) = (s> 5),

¢ if both sides of a rule ¢/ have the sort s, then a primal strategy 1 is of the
sort (s s),

e if ¢ is an elementary strategy constructor, like dk, dc,id, fail, ..., then it
has the profile ({(s — s)...(s+> s)) — (s — s), respecting its arity.

In the example of the map strategy, there are the following sort preserving
strategy constructors: nil : (List — List),
cons(.,-) : ((Flem — FElem) (List — List)) — (List — List), and using
these typing rules, the sort of map is ((Elem — Elem)) — (List — List).
By iteration of the strategy language construction, more complicated strat-
egy sorts can be created, e.g. the primal strategy Dm defined by a rewrite
rule in the previous section has the sort ((List — List) — (List — List)).
This primal strategy Dm can be used to define high-order strategies applied
on strategies of the sort (List — List), e.g. map(add(1)) ; map(add(2)).
In such a way, a strategy tower can be created. More complex typing rules,
illustrated in [3], deals also with the case of sort-changing strategies.

Implementation

The strategy language was prototyped by its interpreter defined as a com-
putational system written in ELAN. Advantages of this implementation are
the readability of its ELAN specification and its extensibility by new language
constructions. The low efficiency, as its main drawback, can be partially elim-
inated using the ELAN compiler, because the strategy interpreter is an ELAN
program. This implementation technique not related to particularities of this
interpreter, gives promising results; the speed-up is about 100. Different ways

9

AL VIV VALY IA L

of implementation are studied in the thesis, e.g. an adaptation of partial
evaluation to the strategy language, or compilation techniques of strategies.
Partial Evaluation — The strategy language is a transformation, whose re-
sult is a computational system containing rewrite rules and atomic (or built-in)
ELAN strategies. There is an atomic strategy eval controlling the execution of
the strategy interpreter, which consists of several cases corresponding to differ-
ent language constructions. A program specialization, as a partial evaluation
technique, is used in order to eliminate unusable cases of this atomic strategy
eval, and also to specialize rules of eventually usable cases in each application
of eval. An input of this specialization method is an atomic ELAN strategy
(e.g. eval) and a partially known term on which it is applied. The static struc-
ture of this term allows, in several cases, to eliminate unusable rules of this
strategy. A result is a specialized version of this atomic strategy preserving
the operational semantics, and possibly referring to new rewrite rules. These
new specialized rewrite rules are instances of the original ones. Due to this
instantiation, the structure of terms in new rules is more specialized, which
allows to perform this specialization technique also on these specialized rules.
The more detailed description of this method is presented in [5]. The speed-up
of this method is about 2-4, which is a good result for program specialization
and transformation techniques. This method first implemented in C++ and
integrated into the ELAN system is also redefined in ELAN using a new meta-
representation of ELAN programs, called REF [6]. This meta-representation of
computational systems was designed as an external exchange format between
several ELAN tools, and it allows to specify different program transformations
in ELAN itself.

Compilation — Three methods of compilation of strategies are proposed
in [1]. They substantially improve results obtained by a naive compilation
method, when computational systems containing the strategy interpreter are
compiled by the ELAN compiler.

In the first compilation method, the evaluation strategy eval (a crucial
part of the strategy interpreter written in ELAN) is manually pre-compiled
into C++ and each call of eval is then replaced by its pre-compiled version
eval., e.g. the rule interpreting map:

map(S)|t =y where y := (eval.;)[dc(nil, cons(S, map(S5)))]t

The main drawback of the first approach is that the construction of strat-
egy terms, e.g. dc(nil, cons(S, map(S))), as an expensive operation, is not
optimized by this method.

The second technique compiles strategy applications, i.e. strategy terms
applied on object terms under the control of the strategy eval. In the rule:

map(S)|t =y where y := (eval)[dc(nil, cons(S, map(5)))]t

the application of a strategy term dc(nil, cons(S, map(S))) is compiled into
10

AL VIV VALY IA L

C++ instead of its construction and interpretation by the strategy ewval, or
eval.. This is done by several compilation schemas introduced for each pre-
defined elementary strategy constructor (e.g. dk, dc, nil, etc.). This method
compiles a strategy term dc(nil, cons(S, map(S))) into a sequence of C++
instructions, but a call of the strategy interpreter eval is generated for a sub-
strategy S unknown during compilation. Therefore, the strategy S is always
interpreted, e.g. if dk(S}, S2) is an argument of the strategy map(dk(Si, Ss)),
it is always interpreted by the strategy eval, or eval..

The third method eliminates this drawback by compilation not only ap-
plied strategies but also strategies non-applied on terms. Strategies can be
either applied on terms, or simplified. That is why, this method treats an in-
ternal representation suitable for both these operations. The representation in
the form of terms is more adequate for simplifications, while for applications,
pointers to their pre-compiled C++ codes are more adequate.

4 Perspectives

The proposed strategy language is the main contribution of the thesis [1]. Our
research perspectives are the following:

e improving the implementation of the strategy language, in particular:
- combination of partial evaluation and compilation methods,
- implementation of the third proposed compilation method,
- integration of standard optimization techniques used in compilers, e.g.
tail-recursion optimization, in order to improve the compilation methods.

 studying reflexive aspects of computational systems:
- implementation of the strategy language based on these reflexive aspects.

* studying the strategy language as a platform of a cooperation of solvers.

Acknowledgments

I am grateful to Hélene Kirchner and Claude Kirchner for supervising my
research, and to Igor Privara for providing useful comments and remarks on
an earlier version of this paper that allowed me to improve this work.

References

[1] P. Borovansky. Le contréle de la réécriture: étude et implantation d’un
formalisme de stratégies. These de Doctorat d’Université, Université Henri
Poincaré - Nancy 1, France, 1998. To appear.

[2] P. Borovansky and C. Castro. Cooperation of Constraint Solvers: Using the
New Process Control Facilities of ELAN. In C.Kirchner and H.Kirchner, editors,
Proceedings of the 2nd International Workshop on Rewriting Logic and its
Applications, RWLA’98, Pont-d-Mousson (France), volume 15, pages 379 — 398.
Electronic Notes in Theoretical Computer Science, September 1998.

11

AL VIV VALY IA L

[3] P. Borovansky, C. Kirchner, and H. Kirchner. Controlling Rewriting by
Rewriting. In J. Meseguer, editor, Proceedings of the 1st International
Workshop on Rewriting Logic and its Applications, RWLA’96, Asilomar,
Pacific Grove (CA, USA), volume 4. Electronic Notes in Theoretical Computer
Science, September 1996.

[4] P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen.
An Overview of ELAN. In C.Kirchner and H.Kirchner, editors, Proceedings
of the 2nd International Workshop on Rewriting Logic and its Applications,
RWLA’98, Pont-a-Mousson (France), volume 15, pages 329 — 344. Electronic
Notes in Theoretical Computer Science, September 1998.

[5] P. Borovansky and H. Kirchner. Strategies of ELAN: meta-interpretation
and partial evaluation. In Proceedings of International Workshop on Theory
and Practice of Algebraic Specifications ASF+SDF 97, Amsterdam (The
Nederlands), Workshops in Computing. Springer-Verlag, September 1997.

[6] P. Borovansky, C. Ringeissen, and P.-E. Moreau. Handling ELAN Rewrite
Programs via an Exchange Format. In C.Kirchner and H.Kirchner, editors,
Proceedings of the 2nd International Workshop on Rewriting Logic and its
Applications, RWLA’98, Pont-a-Mousson (France), volume 15, pages 207 — 224.
Electronic Notes in Theoretical Computer Science, September 1998.

[7] M. Clavel. Reflection in General Logics and in Rewriting Logic with
Applications to the Maude Language. In C.Kirchner and H.Kirchner, editors,
Proceedings of the 2nd International Workshop on Rewriting Logic and its
Applications, RWLA’98, Pont-a-Mousson (France), volume 15, pages 317 — 328.
Electronic Notes in Theoretical Computer Science, September 1998.

[8] M. Clavel. Reflection in general logics, rewriting logic, and Maude. PhD thesis,
University of Navarre (Spain), 1998.

9] C. Kirchner, H. Kirchner, and M. Vittek. Designing Constraint Logic
Programming Languages using Computational Systems. In P. van Hentenryck

and V. Saraswat, editors, Principles and Practice of Constraint Programming.
The Newport Papers., chapter 8, pages 131-158. The MIT press, 1995.

[10] N. Marti-Oliet and J. Meseguer. Rewriting logic as a Logical and Semantical
Framework. Technical report, SRI International, Computer Science Laboratory,
Menlo Park (CA, USA), May 1993.

[11] E. Visser and Z. Benaissa. A Core Language for Rewriting. In C.Kirchner
and H.Kirchner, editors, Proceedings of the 2nd International Workshop on
Rewriting Logic and its Applications, RWLA’98, Pont-a-Mousson (France),
volume 15, pages 25 — 44. Electronic Notes in Theoretical Computer Science,
September 1998.

[12] M. Vittek. ELAN: Un cadre logique pour le prototypage de langages de
programmation avec contraintes. These de Doctorat d’Université, Université
Henri Poincaré - Nancy 1, October 1994.

12

