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The lateral intraparietal area (LIP) is a subdivision of the inferior parietal lobe that has been implicated
in the guidance of spatial attention. In a variety of tasks, LIP provides a ‘‘salience representation’’ of
the external world—a topographic visual representation that encodes the locations of salient or
behaviorally relevant objects. Recent neurophysiological experiments show that this salience repre-
sentation incorporates information about multiple behavioral variables—such as a specific motor
response, reward, or category membership—associated with the task-relevant object. This integra-
tion occurs in a wide variety of tasks, including those requiring eye or limb movements or goal-
directed or nontargeting operant responses. Thus, LIP acts as a multifaceted behavioral integrator
that binds visuospatial, motor, and cognitive information into a topographically organized signal of
behavioral salience. By specifying attentional priority as a synthesis of multiple task demands, LIP
operates at the interface of perception, action, and cognition.
Introduction
Consider an attentionally demanding activity such as driv-

ing a car on a busy road. To be successful at this task, the

brain must constantly monitor the external world: it must

survey the visual environment, singling out significant

objects such as nearby cars, pedestrians, or traffic lights;

and it must physically orient and reorient the eyes to any

new or significant object in the scene. In cognitive neuro-

science, the process of rapid, online visual selection is

referred to as ‘‘attention’’ (or ‘‘selective attention’’), and

the eye movements used to scan the environment are

known as saccades, or rapid eye movements.

The control of spatial orienting through either attention

or saccades depends on a network of dorsal stream areas

that includes the lateral intraparietal area (LIP), the frontal

eye field (FEF), and the superior colliculus (SC) (Bisley and

Goldberg, 2003b; Goldberg et al., 2002; Snyder et al.,

2000). All three areas contain neurons that have spatially

restricted visual receptive fields and respond selectively

to conspicuous or behaviorally relevant objects. These

areas are thought to provide topographic representations

of the environment, which encode the salience of different

objects and directly specify the attentional weight, or pri-

ority, associated with these objects (Gottlieb et al., 1998;

Thompson and Bichot, 2005).

Converging evidence suggests that salience represen-

tations in these areas are constructed dynamically, con-

tinuously incorporating information about behavioral vari-

ables relevant for allocating attention. Spatially selective

activity in the LIP and FEF is modulated by various behav-

ioral factors, including behavioral context and goals,

memory for past events, and the expectation of reward

(Thompson and Bichot, 2005). More surprisingly, two re-

cent experiments show that in area LIP this integration
of visuospatial and behavioral information also occurs

during tasks that do not require goal-directed movements

but, rather, nontargeting manual responses guided by

abstract rules—for instance, pressing a bar to report the

shape or category of a visual cue (Freedman and Assad,

2006; Oristaglio et al., 2006). This implies that such rule-

based behaviors also have specific attentional demands,

prompting us to consider the broader role of attention in

linking relevant sensory information with behavior not

only for motor orienting but also for higher-order, rule-

based actions. Here I review our current knowledge of

the cellular mechanisms by which LIP neurons link visuo-

spatial input with behavior for covert attention, eye move-

ments, and rule-based actions.

LIP Provides a Topographic Salience
Representation that Guides Covert (Perceptual)
Attention
Psychophysical studies traditionally define ‘‘spatial atten-

tion’’ through its effect on visual perception: attention is

the transient focusing of the sensory/perceptual appara-

tus on a small portion of the external world and is mea-

sured behaviorally as improvement in the ability to detect

or discriminate the selected object, often with a concomi-

tant worsening in the perception of nonattended objects

(Reynolds and Chelazzi, 2004). Attention is therefore

a mechanism for rapid, dynamic extraction of information

about objects of immediate importance. As I discuss

below, attentional selection is sometimes accompanied

by an overt orienting movement (usually an eye move-

ment) toward the attended object. However, this is not

necessarily the case, and much attentive visual analysis

proceeds covertly, through internal selection without overt

motor orienting.
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Figure 1. Theoretical Concept of a Saliency Map
Saliency maps are topographic maps of the environment that encode the conspicuity of visual stimuli. The model depicted here concentrates on links
between the saliency map and the visual system. However, as discussed here, top-down factors are also integrated within the saliency map. See text
for further details. Reproduced with permission from Itti and Koch, 2001 (reprinted by permission from Macmillan Publishers Ltd: Nature Reviews
Neuroscience, copyright 2001).
Several studies have suggested that the LIP (like the

FEF) provides a ‘‘salience representation’’ of the world

that specifies the momentary locus of attention. The

term ‘‘salience representation’’ refers to a theoretical en-

tity originally proposed in computational studies of atten-

tion (Itti and Koch, 2001; Navalpakkam and Itti, 2005). As

illustrated in Figure 1, a salience representation is an inter-

mediate, topographic visual representation that encodes

not the mere presence or physical properties of external

objects but rather the salience (conspicuity) of these ob-

jects. The salience map is presumed to receive converg-

ing information from feature-selective visual areas and in

turn to send topographically organized attentional feed-

back to the visual system. This results in the transient, se-

lective modulation of perceptual quality that is operation-

ally defined as attention (Reynolds and Chelazzi, 2004).

Consistent with the theoretical salience map, LIP has

strong anatomical connections with both dorsal and ven-

tral extrastriate visual areas and contains a large popula-

tion of neurons with well-defined retinotopic receptive

fields (Lewis and Van Essen, 2000). Like units in the theo-

retical salience map, LIP neurons are not strongly feature

selective and do not respond automatically to inconspicu-

ous objects entering their receptive field. Instead, neurons
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respond selectively to objects that are rendered salient

even if these are not relevant to the monkey’s task (Fig-

ure 2A) or for objects that are rendered task-relevant by

being designated the target for an eye movement or to a

perceptual discrimination (Balan and Gottlieb, 2006; Got-

tlieb et al., 1998; Oristaglio et al., 2006). Neural responses

correlate with behaviorally measured shifts of attention to

salient or task-relevant objects (Balan and Gottlieb, 2006;

Bisley and Goldberg, 2003a; Oristaglio et al., 2006), and

experimental inactivation of LIP using local injections of

the GABA agonist muscimol causes deficits in finding

and discriminating visual targets in the hemifield contralat-

eral to the inactivated site (Wardak et al., 2002, 2004).

These experiments suggest that LIP indeed functions

similarly to the theoretical salience map: it provides a prior-

ity map of various objects and locations that is functionally

related to the dynamic changes in perceptual quality due

to attention.

LIP Simultaneously Guides Covert Attention
and Specifies Potential Saccade Targets
In its original conception, a salience representation is

thought of as modulating visual (sensory) areas with little

influence on motor output (Figure 1). However, in addition
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Figure 2. Multiple Bottom-Up and
Top-Down Influences in Area LIP
(A) LIP neurons respond to distracting visual
transients with different physical properties.
A visual perturbation consisting of the appear-
ance of a new object (FRAME), increase or
decrease in luminance (INT+ and INT�), or
change in position (MOVE) or color (COL) was
presented during performance of a covert
search task. The perturbation was shown for
50 ms and was followed 200 ms later by ap-
pearance of the search array (time 0, dashed
vertical line). Traces represent the difference
in population firing rates on trials in which a per-
turbation did and did not appear in the recep-
tive field. Reproduced with permission from
Balan and Gottlieb, 2006 (copyright 2006 by
the Society for Neuroscience).
(B) Convergence of responses to saccade
targets and bottom-up salience in LIP and
behavior in one monkey. Bottom panels show
population activity in LIP evoked by a saccade
target (cyan) or a distractor (pink) in the
receptive field and the p value from a running
Wilcoxon test comparing the two responses
(black). The top panels show normalized
contrast thresholds at the location of the target
(blue) or of the distractor (red). The locus of
lowered contrast threshold (values below 1,
dashed line) switched from the distractor at
the earliest time point to the target at later
time points. The time of this switch coincides
with the time when the balance of LIP activity

switches from greater responses to the distractor to greater responses to the target. Reproduced with permission from AAAS from Bisley and Gold-
berg, 2003a.
(C) LIP responses are modulated by reward probability. Monkeys performed a dynamic foraging task in which they tracked the changing reward
values of each of two saccade targets. Traces represent population responses (peak normalized) for neurons with significant effects of reward
probability. Blue traces represent saccades toward the receptive field, and green traces represent saccades opposite the receptive field. Traces
are further subdivided according to local fractional income (reward probability during the past few trials): solid thick lines, 0.75–1.0; solid medium
lines, 0.5–0.75; solid thin line, 0.25–0.5; dotted thin lines, 0–0.25. Activity for saccades toward the receptive field increased, and that for saccades
away decreased as function of local fractional income, resulting in more reliable spatial selectivity (difference between the two saccade directions)
with increasing reward probability. Reproduced with permission from AAAS from Sugrue et al., 2004.
(D) LIP responses reflect the accumulation of information in a perceptual discrimination task. The monkey viewed a random-dot display containing
a variable motion signal and made a saccade to one of two targets to indicate their perception of motion direction. When monkeys made saccades
toward the receptive field (solid traces, T1), LIP activity increased faster for increasing motion strength (percent of coherently moving dots). When the
saccade choice was opposite the receptive field (dashed traces, T2), LIP responses declined more sharply for higher motion strength. Thus, the depth
of spatial selectivity in LIP reflected the strength on the perceptual evidence on which the decision was based. Reproduced with permission from
Roitman and Shadlen, 2002 (copyright 2002 by the Society for Neuroscience).
to its responses during covert attention, LIP (like the FEF

and SC) also reliably responds in relation to saccadic

eye movements. LIP neurons encode the selection and

memory for upcoming saccade targets (Gottlieb et al.,

1998; Ipata et al., 2006; Powell and Goldberg, 2000),

and pharmacological inactivation of this area impairs sac-

cade target selection during visual search (Wardak et al.,

2002). Thus, in parallel with its role in covert attention,

LIP is also important for selecting targets for saccadic

eye movements.

This dual recruitment in relation to attention and sac-

cade planning raises the question of how neural sub-

strates mediating covert attention relate to those driving

overt action. Psychophysical studies reveal that this rela-

tion is complex, reflecting both interdependence and

independence of the two functions. On one hand, as dis-

cussed above, attention can be shifted covertly, without

necessarily triggering an eye movement, illustrating the

independence of attention and saccades. On the other
hand, if a saccade is planned, the preparation of the

movement automatically draws attention to the saccade

goal, showing a degree of overlap between neural sub-

strates of attention and saccades (Bisley and Goldberg,

2003a; Kowler et al., 1995). Thus, mechanisms of attention

are dissociable, but only partly so, from those driving eye

movements.

Consistent with these behavioral observations, single

neuron recordings show that LIP neurons have complex

mixtures of attentional and saccade-related responses.

However, even though LIP neurons have saccade-related

activity, their activity more closely reflects covert attention

than saccade motor output. A good illustration of this

point is in the findings of Bisley and Goldberg, who directly

measured the locus of covert attention during a task

involving both saccade planning and a salient distractor

(Bisley and Goldberg, 2003a). Monkeys were briefly

shown a saccade target and were required to remember

the location of this target across a delay interval
Neuron 53, January 4, 2007 ª2007 Elsevier Inc. 11
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(Figure 2B). On some trials, a salient distractor, which

attracted attention but was never a saccade goal, was

flashed at a location separate from the saccade goal.

Bisley and Goldberg found that during the delay period

the locus of attention (the locus of lowered contrast

thresholds on a concurrent shape discrimination task)

was by default pinned at the goal of the planned saccade

and shifted toward the distractor transiently, shortly after

distractor onset. In other words, monkeys, like humans

(Kowler et al., 1995), by default allocate perceptual re-

sources to a physically conspicuous objects and to the

goal of an upcoming saccade. Consistent with this, LIP

neurons responded both to the saccade target and to

the distractor, and critically, the momentary locus of atten-

tion was predicted by the balance of these two responses

(Figure 2B): the attentional advantage was at the distractor

location for as long as the population response to the dis-

tractor was higher than that to the saccade target and

shifted to the saccade goal when the balance of activity

in LIP reversed.

These findings show that LIP neurons reliably specify

the locus of covert attention and, because they also

have saccade-related activity, may be instrumental in

producing the tendency to align attention with eye move-

ments in natural behavior. However, if attention must be

dissociated from saccade planning, the LIP response is

not sufficient to specify the final motor decision. For exam-

ple, in the experiment of Bisley and Goldberg, the biggest

LIP response was elicited by the distractor, which was

never a saccade target. Similarly, in an earlier experiment

using ‘‘antisaccades’’ (saccades directed opposite a

visual cue), LIP neurons reliably encoded the location of

the cue in their initial visual response but did not encode

the motor decision, even as monkeys were executing the

movement itself (Gottlieb and Goldberg, 1999). This im-

plies that motor decision mechanisms operating down-

stream from LIP can supplement and contravene the

salience response from LIP if so required by the behavioral

context. This motor decision stage appears to be repre-

sented in a class of neurons that are found in the FEF

and SC but have not been reported in LIP—the movement

neurons, which respond solely in relation to overt sac-

cades but have no visual or attentional response (Bruce

and Goldberg, 1985; Hanes and Schall, 1996; Krauzlis

et al., 2004). In sum, the salience map in LIP may be instru-

mental in the selection of attention-worthy objects, which

often also constitute potential, or desirable, targets for

eye movements. However, final motor decisions are taken

by downstream, independent mechanisms, thus adding

an important level of flexibility in the link between covert

selection and overt action.

Accumulation of Information toward a Decision
The selection of an attention-worthy object—or the setting

of attentional priority—is a complex decision, which, to be

useful for behavior, must take into account multiple sour-

ces of information regarding the current behavioral con-

text and goals. For example, a moving car is worthy of
12 Neuron 53, January 4, 2007 ª2007 Elsevier Inc.
attention if one is driving or crossing the road, but much

less so if one is trying to read the morning news in a side-

walk cafe. Therefore, the mechanisms that control atten-

tion might be expected to integrate information about

multiple behavioral demands, and this sort of behavioral

integration, or synthesis, may indeed be a key function

of LIP.

In a well-known ‘‘decision-making’’ paradigm, monkeys

are trained to choose between two possible saccade

targets based on the direction of motion in a random-dot

motion display presented at the center of gaze (Figure 2D).

As expected, LIP neurons encode the direction of the

upcoming saccade. Most importantly, the vigor and rate

of rise of their saccade-related activity depends on the

strength of the evidence instructing the choice: responses

grow slowly if the motion signal is weak (low fraction of co-

herently moving dots) but rise progressively faster at higher

motion strength, consistent with the idea that LIP repre-

sents a decision variable—a quantity that reflects the accu-

mulationofevidence in favorof a specificchoice (Figure 2D)

(Huk and Shadlen, 2005; Mazurek et al., 2003; Roitman and

Shadlen, 2002). In other decision-making paradigms, sac-

cade-related activity increases as a function of the differ-

ence in the amount or probability of reward for the two

choices, a quantity that can likewise be interpreted as the

evidence in favor of one or the other saccade choice (Fig-

ure 2C) (Platt and Glimcher, 1999; Sugrue et al., 2004).

These findings are consistent with the idea that LIP reflects

the accumulation of information regarding a spatial choice.

A number of other factors have been shown to modulate

spatially selective responses in LIP, and although not

explicitly studied in the context of decision making, may

also represent cues that guide spatial choice. LIP neurons

show anticipatory responses for the expected location of

a visual discriminandum as well as correlates of a form of

spatial memory known as inhibition of return (Assad and

Maunsell, 1995; Balan and Gottlieb, 2006; Colby et al.,

1996; Robinson et al., 1995). Just as they predict spatial

locations, neurons have activity predicting the time of

occurrence of a saccade go-signal and estimating the

duration of visual stimuli (Janssen and Shadlen, 2005;

Leon and Shadlen, 2003). Finally, neurons encode the

context of a specific trial as defined by the consistent

spatial relationship between a salient distractor and

a task-relevant target, and this contextual information is

translated into a stronger response to the distractor in

a context in which it is more likely to convey task-relevant

information (Balan and Gottlieb, 2006).

Like motion coherence and reward, these behavioral

factors do not independently activate LIP neurons but

rather modulate their spatially selective activity. The

most straightforward interpretation is therefore that these

influences reflect continuous interactions between the

salience map in LIP and a number of behavioral systems

that convey information relevant for spatial choices. For

example, LIP sensitivity to reward probability (Figure 2C)

may represent interactions between LIP and reward sys-

tems and mediate ‘‘incentive salience’’—the stronger



Neuron

Review

Neuron 53, January 4, 2007 ª2007 Elsevier Inc. 13
drive to orient toward the site of higher expected reward

(Genovesio et al., 2006; Sugrue et al., 2004; Watanabe

et al., 2001). Similarly, influences related to spatial mem-

ory and time prediction may underlie the ability to bias

attention and action predictively in response to dynamic

environments and recent experience (Ciaramitaro et al.,

2001; Janssen and Shadlen, 2005). Finally, contextual

effects may reflect global behavioral or attentional strate-

gies applied in circumstances in which lower-level vari-

ables such as location and timing are not predictable

(Balan and Gottlieb, 2006). Thus, a general function of

LIP may be to translate cognitive and behavioral informa-

tion into a spatially coded signal appropriate for allocating

attention. In this signal, the locus of attention is coded

through the identity (receptive field) of the active neurons,

while the value, or priority, of the attended location is

coded through the firing rates of those neurons.

Nonspatial Behaviors
The experiments reviewed above examine the role of LIP

in spatial orienting, be it by means of covert attention or

rapid eye movements. However, two recent experiments

show that the spatial representation in LIP is also recruited

during tasks requiring nontargeting behavioral responses,

which are guided by visual cues but are not spatially

related to those cues (Wise and Murray, 2000). These

tasks fall into the general class of ‘‘rule-guided’’ behaviors,

which are arguably critical components of higher-order in-

telligence, including language and social communication

(Wise and Murray, 2000). While intuitively we might agree

that such acts are attentionally demanding, their specific

links with systems of spatial attention have remained, until

recently, unexplored.

In one experiment, Oristaglio et al. trained monkeys to

report orientation of a peripheral visual cue using a nontar-

geting manual response—by releasing a bar grasped with

the right or left hand (Figure 3A) (Oristaglio et al., 2006).

The large majority of LIP neurons selectively responded

to the cue relative to a distractor in their receptive field,

thus providing the expected salience response encoding

the location of the task-relevant instruction cue. Unex-

pectedly, however, this visuospatial response was modu-

lated by the monkey’s choice of limb for the behavioral re-

port: some neurons responded more strongly to the cue if

the monkey released the right bar while others showed

preference for left-bar release (Figure 3A). Control exper-

iments showed that limb effects represented the active

effector itself—the right or left limb—independently of

cue orientation or the side of space where the limb was lo-

cated. As shown in Figure 3A, neurons were not activated

by the grasp release in and of itself, but showed limb se-

lectivity only if the monkey attended to the object in the re-

ceptive field, that is, only as a modulation of the attentional

response. In other words, neurons represented the loca-

tion of the cue together with the associated motor report,

even though this report was a mere nontargeting release

of a bar and did not, in and of itself, require selection of

a motor goal.
In a second study, Freedman and Assad showed that

the spatial map in LIP can be modulated by an even

more abstract stimulus property—the category to which

a stimulus is arbitrarily assigned—independently of spe-

cific sensory or motor associations (Freedman and Assad,

2006). Monkeys first viewed a sample stimulus that con-

tained motion in one of 12 possible directions arbitrarily

assigned to two categories (Figure 3B). Following the

sample, several successive test stimuli appeared, and

monkeys released a bar for the test stimulus that fell into

Figure 3. LIP Neurons Responsive for Remote Visuomotor
Associations and Categorization
(A) LIP neurons are modulated by limb motor planning. Monkeys
viewed a display containing a cue (a letter ‘‘E’’) and several distractors.
Without moving gaze from straight ahead, they reported the orientation
of the cue by releasing one of two bars grasped with their hands. The
neuron illustrated here responded much more strongly when the cue
than when a distractor appeared in its receptive field (left versus right
panels). This cue-related response was modulated by the manual
release: the neuron responded much more when the monkey released
the left than when she released the right bar (blue versus red traces).
Limb modulations were much stronger when the cue than when a
distractor was in the receptive field. Bar-release latencies were on
the order of 400–500 ms. Reproduced with permission from Oristaglio
et al., 2006 (copyright 2006 by the Society for Neuroscience).
(B) Responses of a representative neuron during a categorization task.
Local motion samples were presented in the neuron’s receptive field.
Samples could have one of 12 different directions (individual traces),
which were arbitrarily assigned to two categories (red versus blue).
After a delay interval (650–1650 ms), a series of test stimuli appeared,
and monkeys were rewarded for releasing a response bar for the first
stimulus that matched the sample. The neuron conveyed significant in-
formation about the category of the sample stimulus during the sam-
ple, delay, and test intervals (dashed lines). Reproduced with permis-
sion from Freedman and Assad, 2006 (reprinted by permission from
Macmillan Publishers Ltd: Nature, copyright 2006).
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the same category as the sample. In this task, therefore,

the motor response was constant (release of a bar), and

only its timing varied, so that there was no fixed associa-

tion between a stimulus category and a motor response.

LIP neurons responded to the sample stimuli when these

appeared in their receptive field and in addition also en-

coded the category of this stimulus. Thus, the spatial

map in LIP was modulated by an abstract concept of cat-

egory membership even when category was defined with-

out reference to a specific sensory or motor association.

Traditionally, behaviors such the arbitrary stimulus-

response association studied by Oristaglio et al. and the

categorization studied by Freedman and Assad have not

been thought to depend on attention-related areas.

Arbitrary sensorimotor associations are thought to be

acquired through direct links between feature-selective

visual areas and hand-related premotor areas, and also

to rely on the prefrontal cortex, basal ganglia, and hippo-

campus, structures important for rule-based behaviors

and associative memory (Wise and Murray, 2000). Simi-

larly, the ability for abstract categorization is thought to

depend primarily on the prefrontal cortex (Miller et al.,

2002). The findings of Oristaglio et al. and Freedman and

Assad therefore raise the question of the functional sig-

nificance of the recruitment of attention-related areas in

such tasks.

While the answer to this question must await further

studies, it is important to note that the findings of Orista-

glio et al. and Freedman and Assad are similar to those

from experiments using eye movements in one important

respect. As in oculomotor tasks, during rule-based behav-

iors the primary response in LIP encodes the locus of

attention, and this response is continuously modified by

information about task-relevant variables—the active

limb in the experiment of Oristaglio et al. and stimulus

category in the experiment of Freedman and Assad. This

suggests that the integration of visuospatial and behav-

ioral information is a constant property of the attention-

related network, which applies generally whether the

required behavior is an eye or a limb movement or a goal-

directed or a nontargeting movement.

The findings of Oristaglio et al. show that the integration

of visuospatial and behavioral information may give rise to

unexpected interactions between spatial orienting and

cognitive task demands. Oristaglio et al. reported that

LIP neurons tended to prefer the limb contralateral to the

recording hemisphere. Since neurons also had predomi-

nantly contralateral visual receptive fields, their strongest

responses were on trials in which both the cue and the ac-

tive limb were contralateral to the recording site, that is,

when they were congruent with each other. The overall

bias for the contralateral limb in LIP in an individual mon-

key correlated with the manual congruence effect shown

by that monkey—the monkey’s automatic bias to respond

with the hand congruent with the cue’s location regardless

of the orientation of the cue. In other words, the juxtaposi-

tion of visuospatial and effector information in attention-

related areas in this case produced an involuntary ten-
14 Neuron 53, January 4, 2007 ª2007 Elsevier Inc.
dency to align the loci of attentional and motor selection

even during a nontargeting, symbolically cued movement.

These findings suggest that the modification of spatial

maps by behavioral variables (whether for spatial or non-

spatially defined acts) is a general mechanism by which

attentional resources are allocated to simultaneous task

demands, in this case, to processes of visuospatial selec-

tion and stimulus-response mapping.

Overview and Perspective
Neuropsychological studies in humans have long sug-

gested that attention is a gateway between perceptual

selection and behavior in the widest sense of the word

(Mesulam, 1999). In its broadest definition, attention is

a mechanism, or a family of mechanisms, by which multi-

ple behavioral demands are synthesized and brought to

bear onto covert perceptual analysis and overt action.

Neurophysiological experiments such as those reviewed

here reveal the cellular mechanisms of this operation. In

a wide range of behavioral tasks—involving ocular or man-

ual, goal-directed, or rule-based operant responses—LIP

encodes a topographically organized salience represen-

tation of the external world, which binds task-relevant

information from the sensory, motor, cognitive, and moti-

vational domains. A key function of such representations

appears to be to guide spatial orienting, whether covert

(through attention) or overt (through eye movements),

according to immediate behavioral needs.

This view implies that LIP, along with other attention-

related areas, may mediate interactions between spatial

orienting and higher-level, more abstract, cognitive func-

tions. This possibility resonates with evidence from stud-

ies implicating the human parietal lobe in visuomotor as

well as cognitive tasks (Culham and Kanwisher, 2001) as

well as with the emerging idea of ‘‘embodied cognition’’

that holds that abstract cognitive functions, rather than

being performed by centralized computational devices,

tap into and interact with substrates of sensorimotor pro-

cessing (Wilson, 2002). The challenge for further research

is to provide specific evidence of such interactions. For

example, how does attention influence, and how is it influ-

enced by, decision making? How is attentional selection

impacted, and how is it influenced, by the category of

visual stimuli?

A second significant challenge is to determine to what

extent the view of LIP as bridging attention, action, and

cognition applies more broadly to other sensorimotor as-

sociation areas. Two other attention-related areas, the

frontal eye field and the superior colliculus, also respond

selectively to physically conspicuous or behaviorally rel-

evant objects and are sensitive to motor and cognitive

variables (Krauzlis et al., 2004; Thompson and Bichot,

2005). Similarly, parietal and premotor areas traditionally

associated with limb motor planning are now thought to

have complex perceptual and cognitive contributions for

nonspatial sensorimotor associations (Gail and Ander-

sen, 2006; Wise and Murray, 2000) and possibly for so-

cial cognition and self-awareness (Ehrsson et al., 2005;
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Gallese et al., 2004; Nelissen et al., 2005; Rizzolatti et al.,

2006; Rizzolatti and Wolpert, 2005). An exciting pros-

pect of future work is to elucidate the similarities and

differences between the contributions of LIP and other

association areas in bridging perception, action, and

cognition.
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