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a b s t r a c t

We present a fast enumeration algorithm for combinatorial 2- and
3-manifolds. In particular, we enumerate all triangulated surfaces
with 11 and 12 vertices and all triangulated 3-manifolds with
11 vertices. We further determine all equivelar polyhedral maps
on the non-orientable surface of genus 4 as well as all equivelar
triangulations of the orientable surface of genus 3 and the non-
orientable surfaces of genus 5 and 6.
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1. Introduction

Triangulations of manifolds with few vertices provide a valuable source of interesting and
extremal testing examples for various conjectures and open problems in combinatorics, optimization,
geometry, and topology:

• How many vertices are needed to triangulate a given manifold?
• What do the face vectors of simplicial spheres and manifolds look like?
• Is a given triangulation of a sphere shellable, polytopal, does it satisfy the Hirsch conjecture?
• Is a given triangulated surface geometrically realizable as a polyhedron in 3-space?
• Do simplicial 2-spheres have polytopal realizations with small coordinates?

According to Rado [66] and Moise [63], (closed, compact) 2- and 3-manifolds can always be
triangulated as (finite) simplicial complexes. Moreover, triangulated 2- and 3-manifolds always are
combinatorial manifolds, i.e., triangulated manifolds such that the links of all vertices are standard PL
(i.e., piecewise linear) spheres. It immediately follows that triangulations of 2- and 3-manifolds can
be enumerated: For any given positive integer nwe can produce in a finite amount of time a complete
list (up to combinatorial isomorphism) of all triangulated 2- respectively 3-manifolds with n vertices.
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For example, a conceptually simple, but highly inefficient enumeration approach would be to first
generate all 2(

n
3 ) pure 2-dimensional (respectively all 2(

n
4 ) pure 3-dimensional) simplicial complexes.

These complexes would then be tested in a second step to determine whether or not all links are
triangulated circles (triangulated 2-spheres), which can be done purely combinatorially. In a third
step, isomorphic copies of triangulations, i.e., copies that can be transformed into each other by
relabeling the vertices, would be identified.
It is the second step which fails to work in higher dimensions: There is no algorithm to decide

whether a given r-dimensional simplicial complex is a PL r-sphere if r ≥ 5; cf. [83]. For r = 4 it is
unknown whether there are algorithms to recognize PL 4-spheres. For r = 3 there are algorithms to
recognize the 3-sphere (see [70,80,40,53,60,54]), however, all the known algorithms are exponential
and hopeless to implement. Therefore, in principle, combinatorial 4-manifolds (with 3-dimensional
links) can be enumerated, whereas the enumeration problem for combinatorial 5-manifolds is open,
and there is no enumeration algorithm for combinatorial (r + 1)-manifolds for r ≥ 5.
We are, of course, not only interested in the combinatorial types of triangulated manifolds: In an

additional step we want to determine the topological types of the triangulations obtained by the
enumeration. Algorithmically, it is easy to figure out the topological type of a triangulated surface
(by computing its Euler characteristic and its orientability character). As mentioned before, there
are algorithms to recognize the 3-sphere, and it is even possible to recognize Seifert manifolds [61].
For general 3-manifolds, however, there are no algorithmic tools available yet to determine their
topological types (although Perelman’s proof [65] of Thurston’s geometrization conjecture [81] gives
a complete classification of the geometric types of 3-manifolds). In particular, hyperbolic 3-manifolds
are difficult to deal with. For triangulations with few vertices it turned out that heuristics (e.g., [7,55])
can be used for the recognition, thus allowing for a complete classification of the topological types of
the examples obtained by the enumeration.
At present, there are three major enumeration approaches known to generate triangulated

manifolds (see the overview [44]):

• generation from irreducible triangulations ([19,77,78], with the programs plantri [20] of
Brinkmann and McKay and surftri [79] of Sulanke implementing this approach),
• strongly connected enumeration [52,3,8],
• and lexicographic enumeration [33,44,45,42,43].

A triangulation is irreducible if it has no contractible edge, i.e., if the contraction of any edge of the
triangulations yields a simplicial complex, which is not homeomorphic to the original triangulation.
According to Barnette and Edelson [6], every surface has only finitely many irreducible triangulations
from which all other triangulations of the surface can be obtained by a suitable sequence of vertex
splits. In thismanner, triangulations of a particular surfacewith n vertices can be obtained in two steps
by first generating all irreducible triangulations of the surfacewith up to n vertices, fromwhich further
triangulations with n vertices are obtained fast by vertex splits; see [19,77,78]. Unfortunately, every
3-manifold has infinitely many irreducible triangulations; cf. [30]. Even for surfaces, the generation
of the finitely many irreducible triangulations is difficult, with complete lists available only for the
2-sphere, the 2-torus, the orientable surface of genus 2, and the non-orientable surfaces of genus up
to 4; see [77,78] and the references contained therein.
Strongly connected enumeration, in particular, turned out to be successful for the enumeration of

triangulated 3-manifolds with small edge degree [52], but is otherwise not very systematic.
The third approach, lexicographic enumeration, generates triangulations in canonical form, that

is, for every fixed number n of vertices a lexicographically sorted list of triangulated manifolds is
produced such that every listed triangulation with n vertices is the lexicographically smallest set of
triangles (tetrahedra) combinatorially equivalent to this triangulation and is lexicographically smaller
than the next manifold in the list.
In this paper, we present an improved version of the algorithm for lexicographic enumeration

from [44]. The triangulations are now generated in an isomorphism-free way; see the next section
for a detailed discussion. This improvement led to a substantial speed up of the enumeration. In
particular, with the implementation lextri of the first author, we were able to enumerate all
triangulated surfaces with 11 and 12 vertices (Section 3) and all triangulated 3-manifolds with 11
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vertices (Section 5). Moreover, we enumerated all equivelar triangulations of the orientable surface
of genus 3 and of the non-orientable surfaces of genus 4, 5, and 6 (Section 4).

2. Isomorphism-free enumeration

It is a standard problem with algorithms for the enumeration of particular combinatorial objects
to avoid isomorphic copies of the objects as early as possible during their generation; see Read [67]
and McKay [56] for a general discussion.
Our aim here is to give an isomorphism-free enumeration algorithm for triangulated surfaces and

3-manifolds with a fixed number n of vertices 1, 2, . . . , n. The algorithm is based on lexicographic
enumeration as discussed in [44]. For simplicity, we describe the algorithm for surfaces, however,
3-manifolds can be generated in the same way. The basic ingredient of the algorithm is:

Start with some triangle and add further triangles as long as no edge is contained in more than
two triangles. If this condition is violated, then backtrack. A set of triangles is closed if each of its
edges is contained in exactly two triangles. If the link of every vertex of a closed set of triangles
is a circle, then this set of triangles gives a triangulated surface: OUTPUT surface.

From each equivalence class of combinatorially equivalent triangulations (with respect to
relabeling the vertices) we list only the canonical triangulation, the labeled triangulation which has
the lexicographically smallest set of triangles in this class. For every listed triangulation deg(1), the
degree of vertex 1, must have minimum degree (since otherwise a lexicographically smaller set of
triangles can be obtained by relabeling the vertices) and the triangulation must contain the triangles

123, 124, 135, . . . , 1(deg(1)− 1)(deg(1)+ 1), 1 deg(1)(deg(1)+ 1).

We enumerate the canonical triangulations in lexicographic order, i.e., every listed triangulated
surface is lexicographically smaller than the next surface in the list. With the objective to produce
canonical triangulations we add the triangles during the backtracking in lexicographic order, that is,
to the triangle 123 we first add 124 etc. to obtain a lexicographically ordered list of triangles.
We could wait until the list of triangles is a fully generated complex before testing whether or

not there are other combinatorially equivalent triangulations with lexicographically smaller lists
of triangles. However, we observe that, at each stage of adding triangles to obtain a canonical
triangulation, the partial list of triangles is lexicographically at least as small as any list obtained by
relabeling the vertices. We use this observation to prune the backtracking.
Whenever a new triangle is added to a partially generated complex, we test whether the new

complex can be relabeled to obtain a lexicographically smaller labeling. If this is possible, then the
new partial complex will not lead to a canonical triangulation and we backtrack.
If there is a closed vertex v such that deg(v) < deg(1), then there is a lexicographically smaller

labeling; otherwise, we search for such relabelings by

• going through all closed vertices, v, for which deg(v) = deg(1),
• and for each edge vw we relabel v as 1 andw as 2,
• thereafter we relabel the two vertices adjacent to the edge vw to be 3 and 4 (two choices).
• Then we can extend the new labeling in a lexicographic smallest way.

Table 1 displays the backtracking in the case of n = 6 vertices. As a simplifying step we start
not only with the triangle 123, but with the smallest possible completed vertex-star of size 3 of the
vertex 1, i.e., with the triangles 123 + 124 + 134. The next smallest triangle is 234 which closes the
surface. However, the resulting surface (the boundary of the tetrahedron) has 4 < 6 = n vertices and
is therefore discarded.
Let K be a partial complex and let k be the smallest vertex of K for which its vertex-star is not

closed. Sincewe add the new triangles in lexicographic order, the next triangle to be added necessarily
contains the vertex k. In particular, the intersection of the new triangle with the current partial
complex is not empty. Therefore, every partial complex is connected.
In a new triangle klm atmost the vertexmhas not yet beenused as a vertex in the partial complexK .

(In the current vertex-star of k inK there are at least twonon-closed edges, say, kr and ks. Suppose l and
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Table 1
Backtracking steps in the case of n = 6 vertices.

Faces Incomplete vertices Reason for backtrack

123+ 124+ 134 2 3 4 5 6
123+ 124+ 134+ 234 5 6 Surface complete
123+ 124+ 134 2 3 4 5 6
123+ 124+ 134+ 235 2 3 4 5 6
123+ 124+ 134+ 235+ 245 3 4 5 6
123+ 124+ 134+ 235+ 245+ 345 6 Surface complete
123+ 124+ 134+ 235+ 245 3 4 5 6
123+ 124+ 134+ 235+ 245+ 346 3 4 5 6
123+ 124+ 134+ 235+ 245+ 346+ 356 4 5 6
123+ 124+ 134+ 235+ 245+ 346+ 356+ 456 Surface complete!
123+ 124+ 134+ 235 2 3 4 5 6
123+ 124+ 134+ 235+ 246 2 3 4 5 6
123+ 124+ 134+ 235+ 246+ 256 3 4 5 6
123+ 124+ 134+ 235+ 246+ 256+ 345 4 5 6 Relabeling is smaller
123+ 124+ 134+ 235+ 246+ 256 3 4 5 6
123+ 124+ 134+ 235+ 246+ 256+ 346 3 5 6 Relabeling is smaller
123+ 124+ 134 2 3 4 5 6
123+ 124+ 135+ 145 2 3 4 5 6
123+ 124+ 135+ 145+ 234 3 4 5 6 Degree of 2 too small
123+ 124+ 135+ 145 2 3 4 5 6
123+ 124+ 135+ 145+ 235 2 4 5 6 Degree of 3 too small
123+ 124+ 135+ 145 2 3 4 5 6
123+ 124+ 135+ 145+ 236 2 3 4 5 6
123+ 124+ 135+ 145+ 236+ 245 2 3 5 6 Degree of 4 too small
123+ 124+ 135+ 145+ 236 2 3 4 5 6
123+ 124+ 135+ 145+ 236+ 246 3 4 5 6
123+ 124+ 135+ 145+ 236+ 246+ 345 3 4 6 Degree of 5 too small
123+ 124+ 135+ 145+ 236+ 246 3 4 5 6
123+ 124+ 135+ 145+ 236+ 246+ 356 4 5 6
123+ 124+ 135+ 145+ 236+ 246+ 356+ 456 Surface complete!
123+ 124+ 135+ 145 2 3 4 5 6
123+ 124+ 135+ 146+ 156 2 3 4 5 6
123+ 124+ 135+ 146+ 156+ 234 3 4 5 6 Degree of 2 too small
123+ 124+ 135+ 146+ 156 2 3 4 5 6
123+ 124+ 135+ 146+ 156+ 235 2 4 5 6 Degree of 3 too small
123+ 124+ 135+ 146+ 156 2 3 4 5 6
123+ 124+ 135+ 146+ 156+ 236 2 3 4 5 6
123+ 124+ 135+ 146+ 156+ 236+ 245 2 3 4 5 6
123+ 124+ 135+ 146+ 156+ 236+ 245+ 256 3 4 5 6
123+ 124+ 135+ 146+ 156+ 236+ 245+ 256+ 345 3 4 6
123+ 124+ 135+ 146+ 156+ 236+ 245+ 256+ 345+ 346 Surface complete!
123+ 124+ 135+ 146+ 156+ 236 2 3 4 5 6
123+ 124+ 135+ 146+ 156+ 236+ 246 3 5 6 Degree of 2 too small
123+ 124+ 135+ 146+ 156 2 3 4 5 6

m have not yet been used in K and suppose krx is the triangle that closes the edge kr . Since r, s < l,m,
it follows that krx is lexicographically smaller than klm and is thus added to K first, contradiction.) If
m is a new vertex and l is an existing vertex smaller than any neighbor of k on an unclosed edge, then
klm intersects K only in the vertices k and l. Thus, klm has no neighboring triangle in K . In other words,
klm (temporarily) forms a new strongly connected component. For example, let the partial complex
K consist of the triangles

123, 124, 135, 145, 236, 246,
to which the new component

347, 348
is added (see Fig. 1), which then is connected to the first component and closed to a triangulation of
RP2 by the triangles

357, 368, 458, 467, 567, 568.
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Fig. 1. Two strongly connected components that are joined by the triangle 357.

Thus, partial complexes are not necessarily strongly connected.

Proposition 1. Partial complexes are strongly connected upon completion of the link of a vertex.

Proof. Let k be the smallest vertex for which its vertex-star is not closed.Wewant to show that at the
time the last triangle is added to close the star of k the resulting partial complex is strongly connected.
For this, we proceed by induction on k.
First, we close the star of 1, which is a disc and therefore strongly connected. We next assume that

the partial complex which is obtained after closing the star of the vertex k is strongly connected. Let
m > k be the next smallest vertex for which its vertex-star is not yet closed. At the time we will
have closed the star of m, the star of m is a disc (since otherwise we would discard the respective
partial complex). Since, by the induction hypothesis, the partial complex after closing the star of k
was strongly connected, it follows that the partial complex after closing the star ofm is also strongly
connected (because the star ofm contains at least one triangle that was present in the previous partial
complex). �

Let again k be the smallest vertex for which its vertex-star is not closed, K be the current partial
complex, and klm be the next triangle that is added to K . In order for klm to start a new strongly
connected component, l has to be a vertex of the boundary ofK that is not (yet) adjacent to k and that is
(by lexicographicminimality) smaller than all other vertices of the boundary of K towhich k is already
adjacent. The vertex mmight be a vertex of the boundary of K or not. If m is a boundary vertex, then
for klm to start a new strongly connected component the vertices k, l, andm are not pairwise adjacent
in K . Ifm is not a boundary vertex, then we can choose (by lexicographic minimality)m = |V (K)|+1,
with V (K) the vertex set of K . The next triangle to be added to K+kl(|V (K)|+1) is kl(|V (K)|+2). The
resulting strongly connected component kl(|V (K)| + 1)+ kl(|V (K)| + 2) cannot grow further. In the
next step, either yet another strongly connected component is started or the first strongly connected
component is extended or joined to a later strongly connected component.
If during the enumeration of all 3-manifolds with n vertices the tetrahedron klmr starts a new

strongly connected component, then again k is the currently smallest vertex forwhich its vertex-star is
not closed and l belongs to the boundary of K , but is not adjacent to k in K . There are three cases for the
verticesm and r . Either both belong to the boundary of K , in which case k, l,m, and r are not pairwise
adjacent inK , or onlymbelongs to the boundary ofK , inwhich case k, l, andm are not pairwise adjacent
in K and r = |V (K)| + 1, or bothm and r do not belong to the boundary of K andm = |V (K)| + 1 and
r = |V (K)| + 2. Thus, the new strongly connected component consists after its completion either of
only the tetrahedron klmr , of the two tetrahedra klm(|V (K)| + 1) and klm(|V (K)| + 2), or of the join
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Table 2
Total numbers of triangulated surfaces with up to 12 vertices.

n Types

4 1
5 1
6 3
7 9
8 43
9 655
10 42426
11 11590894
12 12561206794

of the edge klwith a circle that consists of s edges (|V (K)|+1)(|V (K)|+2), (|V (K)|+1)(|V (K)|+3),
(|V (K)| + 2)(|V (K)| + 4), . . . , (|V (K)| + s− 1)(|V (K)| + s), where |V (K)| + s ≤ n.
Proposition 1 and the above analysis of the strongly connected components explain why

isomorphism-free lexicographic enumeration is fast, but not as fast as the generation of triangulations
from irreducible triangulations.
In the latter approach one starts with the (finite) set of irreducible triangulations of a surface

fromwhich triangulations with more vertices are obtained by successive vertex-splitting. During this
process the resulting complexes are always proper triangulations of the initial surface. In otherwords,
we stay within the class of triangulations of the surface.
In the lexicographic approach, the partial complexes do not necessarily need to be strongly

connected during the completion of the vertex-star of the pivot vertex k. The possibility of more
than one strongly connected component leads to a ‘‘combinatorial explosion’’ of the number of
choices during the completion of the vertex-star k. Fortunately, the partial complexes become
strongly connected upon the completion of the vertex-star of k. Thus the combinatorial explosion
happens locally, but not globally. Also, say, in the enumeration of triangulated 3-manifolds, upon the
completion of the vertex-star of kwe can detectwhether the link of k is indeed a triangulated 2-sphere
(or some other triangulated 2-manifold, in which case we discard the respective partial complex).
In the following sections we present our enumeration results and corollaries thereof. In particular,

we enumerated all triangulated surfaceswith 11 and 12 vertices and all triangulated 3-manifoldswith
11 vertices.
The algorithm was implemented as C programs which were executed on a cluster of 2 GHz

processors. The total cpu time required was 20 min to generate the surfaces with 11 vertices, 17 days
for the surfaces with 12 vertices, and 170 days for the 3-manifolds with 11 vertices. See [47] for the
program sources and lists of the examples.

3. Triangulated surfaces with 11 and 12 vertices

ByHeawood’s bound [35], at least n ≥
⌈
1
2 (7+

√
49− 24χ(M))

⌉
vertices are needed to triangulate

a (closed) surface of Euler characteristicχ(M). As shownbyRingel [68] and Jungerman andRingel [39],
this bound is tight, except in the cases of the orientable surface of genus 2, the Klein bottle, and the
non-orientable surface of genus 3, for each of which an extra vertex has to be added.
Triangulations of surfaces with up to 8 vertices were classified by Datta [24] and Datta and

Nilakantan [26]. By using (mixed) lexicographic enumeration, the second author obtained all
triangulations of surfaces with 9 and 10 vertices [44].
We continued the enumerationwith the isomorphism-free approach to lexicographic enumeration

and were able to list all triangulated surfaces with 11 and 12 vertices. (Recently, Amendola [4]
independently generated all triangulated surfaces with 11 vertices by using genus-surfaces and
isomorphism-free mixed-lexicographic enumeration.)

Theorem 2. There are precisely11 590 894 (combinatorially distinct) triangulated surfaceswith11 vertices
and there are exactly 12 561 206 794 triangulated surfaces with 12 vertices.
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Table 3
Numbers of triangulated surfaces with 11 vertices.

Genus Orientable Non-orientable

0 1249 –
1 37867 11719
2 113506 86968
3 65878 530278
4 821 1628504
5 – 3355250
6 – 3623421
7 – 1834160
8 – 295291
9 – 5982

Table 4
Numbers of triangulated surfaces with 12 vertices.

Genus Orientable Non-orientable

0 7595 –
1 605496 114478
2 7085444 1448516
3 25608643 16306649
4 14846522 99694693
5 751593 473864807
6 59 1479135833
7 – 3117091975
8 – 3935668832
9 – 2627619810
10 – 711868010
11 – 49305639
12 – 182200

The total numbers of triangulated surfaces with up to 12 vertices are given in Table 2. The numbers
of triangulated surfaces with 11 andwith 12 vertices are listed in detail in Tables 3 and 4, respectively.

Corollary 3. There are 821 vertex-minimal triangulations of the orientable surface of genus 4, and there
are 295 291 and 5982 vertex-minimal triangulations of the non-orientable surfaces of genus 8 and 9,
respectively, with 11 vertices.

With a local search, Altshuler [1] found 59 vertex-minimal neighborly triangulations (i.e., with
complete 1-skeleton) of the orientable surface of genus 6 with 12 vertices and 40615 neighborly
triangulations with 12 vertices of the non-orientable surface of genus 12. For the orientable surface
of genus 6 it was shown by Bokowski [3,8] that Altshuler’s list of 59 vertex-minimal examples is
complete. For the non-orientable surface of genus 12, the 40615 examples of Altshuler make up
roughly one quarter of the exact number of 182200 vertex-minimal triangulations of this surface
with 12 vertices.

Corollary 4. There are 751 593 vertex-minimal triangulations of the orientable surface of genus 5, and
there are 711 868 010, 49 305 639, and 182 200 vertex-minimal triangulations of the non-orientable
surfaces of genus 10, 11, and 12, respectively, with 12 vertices.

The 182200 vertex-minimal triangulations of the non-orientable surface of genus 12 with
12 vertices were previously generated by Ellingham and Stephens [33]: They used a modified
isomorphism-free lexicographic enumeration for the generation of all neighborly triangulations with
12 and 13 vertices. (There are 243088286 neighborly triangulations of the non-orientable surface of
genus 15 with 13 vertices [33].)
Every 2-dimensional simplicial complex (with n vertices) is polyhedrally embeddable in R5,

as it can be realized as a subcomplex of the boundary complex of the cyclic polytope C(n, 6);
cf. Grünbaum [34, Ex. 25, p. 67].
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However, not all triangulations of orientable surfaces are geometrically realizable in R3, i.e., with
straight edges, flat triangles, and without self-intersections: Bokowski and Guedes de Oliveira [11]
showed that one of the 59 neighborly triangulations of the orientable surface of genus 6 is not
realizable in 3-space. Recently, Schewe [71] proved non-realizability in R3 for all the 59 examples.
Schewe further showed that for every orientable surface of genus g ≥ 5 there are triangulations that
cannot be realized in R3.
Realizations for all vertex-minimal triangulations of the orientable surfaces of genus 2 and 3

from [44] were obtained in [8,36,44], and realizations of these triangulations with small coordinates
in [37,38]; see [36] for additional comments and further references on realizability.
The 821 vertex-minimal triangulations of the orientable surface of genus 4 from our enumeration

were all found to be realizable [36] as well as at least 15 of the 751593 vertex-minimal triangulations
of the orientable surface of genus 5 with 12 vertices. These results in combination with the results of
Schewe [71,72] led to:

Conjecture 5 (Hougardy, Lutz, and Zelke, [36]). Every triangulation of an orientable surface of genus
1 ≤ g ≤ 4 is geometrically realizable.

4. Equivelar surfaces

A particularly interesting class of triangulated surfaces are equivelar simplicial maps, i.e., triangula-
tions for which all vertices have the same vertex-degree q. Equivelar simplicial maps are also called
degree regular triangulations or equivelar triangulations.
In general, let a map on a surface M be a decomposition of M into a finite cell complex and let

G be the 1-skeleton of the map on M . The graph G of the map may have multiple edges, loops,
vertices of degree 2, or even vertices of degree 1; for example, the embedding of a tree with n vertices
and n − 1 edges on S2 decomposes the 2-sphere into one polygon with 2n − 2 edges, which are
identified pairwise. (Sometimes the graphs of maps are required to be connected finite simple graphs,
sometimes multiple edges are allowed but no loops, and vertices are often required to have at least
degree 3; see [18,22,69,82].) A map is equivelar of type {p, q} if M is decomposed into p-gons only
with every vertex having degree q; cf. [58,59]. A map is polyhedral if the intersection of any two of its
polygons is either empty, a common vertex, or a common edge; see the surveys [17,18]. An equivelar
polyhedral map is a map which is both equivelar and polyhedral.
A map is regular if it has a flag-transitive automorphism group. Regular maps therefore provide

highly symmetric examples of equivelar maps; see [21,22,85]. Vertex-transitive maps and neighborly
triangulations are further classes of equivelar surfaces that have intensively been studied in the
literature; cf. [1,3,33,39,42,68].
Equivelar simplicial maps (as simplicial complexes) always are polyhedral. By double counting of

incidences between vertices and edges as well as between edges and triangles, we have

nq = 2f1 = 3f2 (1)

for equivelar triangulations, with f1 and f2 denoting the numbers of edges and 2-faces, respectively.
By Euler’s equation, we further have that

χ(M) = n− f1 + f2 = n−
nq
2
+
nq
3
=
n(6− q)
6

, (2)

or equivalently,

q = 6−
6χ(M)
n

. (3)

Since q is a positive integer, it follows that n has to be a divisor of 6|χ(M)| if χ(M) 6= 0. In particular,
a surfaceM of Euler characteristic χ(M) 6= 0 has only finitely many equivelar triangulations. Table 5
displays the possible values of (n, q) for surfaces with χ(M) ≥ −10.
In the case of neighborly triangulations we have q = n − 1 and therefore χ(M) = n(7−n)

6 . It
follows that n ≡ 0, 1, 3, 4 mod 6, where n ≥ 4. In the case n = 6k we have Euler characteristic
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Table 5
Possible values of (n, q) for equivelar triangulations with χ(M) ≥ −10.

χ(M) (n, q)

2 (4,3), (6,4), (12,5)
1 (6,5)
0 (n, 6), with n ≥ 7
−1 –
−2 (12, 7)
−3 (9, 8), (18, 7)
−4 (12, 8), (24, 7)
−5 (10, 9), (15, 8), (30, 7)
−6 (12, 9), (18, 8), (36, 7)
−7 (14, 9), (21, 8), (42, 7)
−8 (12, 10), (16, 9), (24, 8), (48, 7)
−9 (18, 9), (27, 8), (54,7)
−10 (12, 11), (15, 10), (20, 9), (30, 8), (60, 7)

Table 6
Numbers of equivelar triangulations of the torus with up to 100 vertices.

k\Vertices 10k+1 10k+2 10k+3 10k+4 10k+5 10k+6 10k+7 10k+8 10k+9 10(k+ 1)

0 – – – – – – 1 1 2 1
1 1 4 2 2 4 5 2 5 3 6
2 6 4 3 11 5 5 7 9 4 11
3 5 11 8 7 8 16 6 8 10 16
4 6 15 7 13 14 10 7 24 10 14
5 12 16 8 19 12 21 14 13 9 30
6 10 14 19 23 14 23 11 20 16 23
7 11 36 12 17 22 23 16 27 13 34
8 21 19 13 40 18 20 20 31 14 39
9 20 27 22 22 20 47 16 27 27 37

Table 7
Numbers of equivelar triangulations of the Klein bottle with up to 100 vertices.

k\Vertices 10k+1 10k+2 10k+3 10k+4 10k+5 10k+6 10k+7 10k+8 10k+9 10(k+ 1)

0 – – – – – – – – 1 1
1 – 3 – 1 3 2 – 4 – 4
2 3 1 – 7 2 1 3 4 – 8
3 – 4 3 1 4 9 – 1 3 8
4 – 8 – 4 7 1 – 11 2 5
5 3 4 – 8 4 8 3 1 – 15
6 – 1 7 6 4 8 – 4 3 9
7 – 15 – 1 7 4 4 8 – 12
8 5 1 – 15 4 1 3 8 – 16
9 4 4 3 1 4 15 – 5 7 10

χ(M) = −6k2 + 7k, and if n = 6k + 1 then χ(M) = −6k2 + 5k + 1. If n = 6k + 3 we have
χ(M) = −6k2 + k+ 2, and if n = 6k+ 4 then χ(M) = −6k2 − k+ 2.
Equivelar triangulations with up to 11 vertices were classified by Datta and Nilakantan [27]: there

are 27 such examples. Datta andUpadhyay [28] continued the classification of equivelar triangulations
for the torus and the Klein bottle for up to 15 vertices. (Constructions of equivelar maps on the torus
together with bounds on their number were given in [2]; for equivelar maps on the Klein bottle
see [64].) All equivelar polyhedral maps on the torus are vertex-transitive [16,28]. By isomorphism-
free lexicographic enumeration, we obtained all equivelar triangulations of the torus and the Klein
bottle for up to 100 vertices; see Tables 6 and 7.

Theorem 6. There are exactly 1357 equivelar triangulations of the torus and 364 equivelar triangulations
of the Klein bottle with up to 100 vertices, respectively.
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Table 8
Numbers of simplicial equivelar maps with up to 12 vertices.

Vertices Orient. Genus Types Vertices Orient. Genus Types

4 + 0 1 12 + 0 1
6 + 0 1 1 4

− 1 1 2 6
7 + 1 1 3 34
8 + 1 1 4 112
9 + 1 2 5 103

− 2 1 6 59
5 2 − 2 3

10 + 1 1 4 28
− 2 1 6 500

7 14 8 9273
11 + 1 1 10 48591

12 182200

Recently, Brehm and Kühnel [16] gave a detailed description of all equivelar triangulations of the
torus. In particular, they obtained an explicit formula for the number T (n) of equivelar triangulations
with n vertices (as well as for the number Q (n) of equivelar polyhedral quadrangulations with n
vertices).
As observed by Datta and Upadhyay [28], there is an n-vertex equivelar triangulation of the Klein

bottle if and only if n ≥ 9 is not prime.
Moreover, Datta and Upadhyay [29] determined that there are exactly six equivelar triangulations

of the orientable surface of genus 2 with 12 vertices. As a consequence of Theorem 2:

Corollary 7. There are precisely 240 914 equivelar triangulations with 12 vertices.

Table 8 lists the numbers of simplicial equivelar maps with up to 12 vertices.
For an equivelar polyhedralmap of type {p, q} the same computation as in Eq. (2) gives

χ(M) = n− f1 + f2 = n−
nq
2
+
nq
p
= nq

(
1
p
+
1
q
−
1
2

)
. (4)

Thus, the sign of χ(M) is determined by the sign of 1p +
1
q −

1
2 , and vice versa.

If 1p +
1
q −

1
2 > 0, then the only possible {p, q}-pairs are {3, 3}, {3, 4}, {3, 5}, {4, 3}, and {5, 3} for S

2

with χ(S2) = 2, with the boundaries of the tetrahedron, the octahedron, the icosahedron, the cube,
and the dodecahedron as the unique occurring examples, respectively, and {3, 5}, {5, 3} for RP2, with
the vertex-minimal 6-vertex triangulation of RP2 and its combinatorial dual as the only examples.
If 1p +

1
q −

1
2 = 0, then there are infinitely many triangulations, quadrangulations, and

hexangulations corresponding to the pairs {3, 6}, {4, 4}, and {6, 3}, respectively; see Brehm and
Kühnel [16] for more details.
In the case 1p +

1
q −

1
2 < 0 we write Eq. (4) as

q =
n− χ(M)

n
·
2p
p− 2

, (5)

where p and q are positive integers greater than or equal to 3.
For a given surfaceM of Euler characteristicχ(M) < 0we next determine all triples (p, q; n)which

are admitted by Eq. (5). Every equivelar polyhedral map has at least one p-gon with p vertices, i.e., we
always have n ≥ p. Furthermore, a vertex has q distinct neighbors, which implies n ≥ q + 1. The
combinatorial dual of an equivelar polyhedral map of type (p, q; n) is an equivelar polyhedral map
of type (q, p; nqp ). Moreover, in an equivelar polyhedral map of type (p, q; n) the star of any vertex
contains q(p − 3) + q + 1 = q(p − 2) + 1 distinct vertices, from which n ≥ q(p − 2) + 1 ≥
4(p − 2) + 1 = 4p − 7 > 2p follows for q ≥ p ≥ 4. In the case p = 3 we have q ≥ 7 for surfaces
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with χ(M) < 0 and therefore also n > 2p. If q < p, then for the dual maps of type (q, p; nqp )we have
nq
p > 2q, and thus again n > 2p for the maps of type (p, q; n).
From Eq. (5) we see that n is a divisor of (n − χ(M))2p and therefore a divisor of 2|χ(M)|p. Let a

be the gcd of n and p, and let k and l be positive integers such that n = ka and p = la. It follows from
n | 2|χ(M)|p that k | 2|χ | and from n > 2p that k > 2l. Thus 3 ≤ k ≤ 2|χ | and 1 ≤ l ≤ b k−12 c, that
is, k and l can take only finitely many distinct values, where k | 2|χ | and gcd(k, l) = 1. From

q =
ka− χ(M)

ka
·
2la
la− 2

=
2la+ 2l|χ(M)|

k

la− 2
= 2+

4+ 2l|χ(M)|
k

la− 2
, (6)

we see that there are only finitely many choices for a. It follows, in particular, that for given M with
χ(M) < 0 there are only finitely many equivelar polyhedral maps onM .
Ifχ(M) = −1, then there are no admissible triples (p, q; n). Thus, there are no equivelar polyhedral

maps on the non-orientable surface of genus 3.
For χ(M) = −2 the admissible triples are (3, 7; 12) and (7, 3; 28). Altogether, there are 12

examples of equivelar polyhedral maps on the orientable surface of genus 2 (the six simplicial
examples from above and their simple duals); see [29].

Corollary 8. There are exactly 56 equivelar polyhedral maps on the non-orientable surface of
genus 4, 28 of type (3, 7; 12) and 28 of type (7, 3; 28).

None of the examples of equivelar polyhedral maps with χ(M) = −2 is regular.
For χ(M) = −3 the admissible triples are (3, 8; 9), (8, 3; 24), (3, 7; 18), (7, 3; 42), (4, 5; 12), and

(5, 4; 15).

Theorem 9. There are precisely 1403 equivelar triangulations of the non-orientable surface of genus 5,
two with 9 vertices and 1401 with 18 vertices.

Furthermore, there are 4 equivelar polyhedral maps on the non-orientable surface of genus 5 of type
(4, 5; 12) [51]. One of these examples is regular; cf. [85, p. 134].
In the case χ(M) = −4 we have the possibilities (3, 8; 12), (8, 3; 32), (3, 7; 24), (7, 3; 56),

(4, 5; 16), and (5, 4; 20).

Theorem 10. There are precisely 11 301 equivelar triangulations of the orientable surface of genus 3, 24
with 12 vertices and 11 277with 24 vertices. Moreover, there are exactly 601 446 equivelar triangulations
of the non-orientable surface of genus 6500 with 12 vertices and 600 946 with 24 vertices.

Exactly two of the equivelar triangulations with χ(M) = −4 are regular, Dyck’s regular map [31,32,
9,12,13,73,76,85] of type (3, 8; 12) and Klein’s regular map [41,74,76,85] of type (3, 7; 24).
There are 363 equivelar polyhedral maps on the non-orientable surface of genus 6 of type

(4, 5; 16) [51] of which one is regular; cf. [85, p. 139]. Moreover, there are 43 equivelar polyhedral
maps on the orientable surface of genus 3 of type (4, 5; 16), none of these are regular [51].
For neighborly triangulations of orientable surfaces the genus g grows quadratically with the

number of vertices n, i.e., g = O(n2). However, the boundary of the tetrahedron and Möbius’ 7-
vertex torus [62] are the only examples of neighborly triangulations of orientable surfaces for which
polyhedral realizations in R3 are known [10,23]. In contrast, as mentioned above, all 59 neighborly
triangulations of the orientable surface of genus 6 with 12 vertices are not realizable [71], and it is
expected that also all neighborly triangulations of orientable surfaces with more vertices never are
realizable.
McMullen, Schulz, and Wills [59] constructed polyhedral realizations in R3 of equivelar

triangulations of genus g = O(n log n), which, asymptotically, is the highest known genus g(n) for
geometric realizations of polyhedral maps. McMullen, Schulz, and Wills also gave infinite families of
geometric realizations of equivelar polyhedralmaps of the types {4, q} and {p, 4}. For further examples
of geometric realizations of equivelar polyhedral maps of these types see [12,57,58,75,86].
It is not known whether there are geometric realizations of equivelar polyhedral maps of type

{p, q} for p, q ≥ 5; cf. [18]. Examples of equivelar polyhedral maps of type {5, 5} and of type {6, 6}
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Table 9
Combinatorial 3-manifolds with up to 11 vertices.

Vertices\Types S3 S2 S1 S2 × S1 RP3 All

5 1 – – – 1
6 2 – – – 2
7 5 – – – 5
8 39 – – – 39
9 1296 1 – – 1297
10 247882 615 518 – 249015
11 166564303 3116818 2957499 30 172638650

were first given by Brehm [14]. An infinite series of {k, k}-equivelar polyhedral maps was constructed
by Datta [25].

5. Combinatorial 3-manifolds with 11 vertices

The boundary of the 4-simplex triangulates the 3-sphere with 5 vertices, and, by work of
Walkup [84], the twisted sphere product S2 S1, the sphere product S2 × S1, and the real projective
3-space RP 3 can be triangulated vertex-minimally with 9, 10, and 11 vertices, respectively, while all
other 3-manifolds need at least 11 vertices for a triangulation. By a result of Bagchi and Datta [5],
triangulations of Z2-homology spheres (different from S3) require at least 12 vertices. In particular, at
least 12 vertices are needed to triangulate the lens space L(3, 1). A triangulation of L(3, 1) with this
number of vertices was first found by Brehm [15]. For further results on minimal numbers of vertices
of triangulated 3-manifolds see [46].
Triangulations of 3-manifolds with up to 10 vertices were classified previously; see [45] and the

references given there. With isomorphism-free lexicographic enumeration we were able to obtain all
triangulations with 11 vertices.

Theorem 11. There are precisely 172 638 650 triangulated 3-manifolds with 11 vertices.

Table 9 lists the combinatorial and topological types of the triangulations with up to 11 vertices. The
numbers of triangulations with 11 vertices are displayed in detail in Table 10.

Corollary 12. Let M be a 3-manifold different from S3, S2 S1, S2×S1, andRP3 (which can be triangulated
with 5, 9, 10, and 11 vertices, respectively), then M needs at least 12 vertices for a triangulation.

Corollary 13. There are exactly 30 vertex-minimal triangulations of RP 3 with 11 vertices.

Corollary 14. Walkup’s triangulation of RP 3 from [84] is the unique vertex- and facet-minimal trian-
gulation of RP 3 with f =(11, 51, 80, 40).

Corollary 15. The minimal number of vertices for triangulations of the orientable connected sum
(S2 × S1)#(S2 × S1) and of the non-orientable connected sum (S2 S1)#(S2 S1) is 12.

Examples of triangulations of the latter two manifolds with 12 vertices are given in [48]. It is
conjectured in [48] that for other 3-manifolds, different from the mentioned six examples, at least
13 vertices are necessary for a triangulation.
In [45], all triangulated 3-spheres with up to 10 vertices and all resulting simplicial 3-balls with

9 vertices were examined with respect to shellability. The respective 3-spheres all turned out to
be shellable, whereas 29 vertex-minimal examples of non-shellable 3-balls were discovered with 9
vertices; see also [49].

Corollary 16. All triangulated 3-spheres with 11 vertices are shellable.

The smallest known example of a non-shellable 3-sphere has 13 vertices [50]. We believe that
there are no non-shellable 3-spheres with 12 vertices.
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Table 10
Combinatorial 3-manifolds with 11 vertices.

f -vector\Types S3 S2 S1 S2 × S1 RP3 All

(11, 34, 46, 23) 131 131
(11, 35, 48, 24) 859 859
(11, 36, 50, 25) 3 435 3435
(11, 37, 52, 26) 11204 11204
(11, 38, 54, 27) 31868 31868
(11, 39, 56, 28) 82905 82905
(11, 40, 58, 29) 199303 199303
(11, 41, 60, 30) 447245 447245
(11, 42, 62, 31) 939989 939989
(11, 43, 64, 32) 1 850501 1850501
(11, 44, 66, 33) 3 413161 448 406 3414015
(11, 45, 68, 34) 5 888842 3627 3521 5895990
(11, 46, 70, 35) 9 463527 17065 16559 9497151
(11, 47, 72, 36) 14091095 54928 53839 14199862
(11, 48, 74, 37) 19288095 137795 134494 19560384
(11, 49, 76, 38) 23946497 278899 272671 24498067
(11, 50, 78, 39) 26344282 464328 451126 27259736
(11, 51, 80, 40) 24835145 626441 603950 1 26065537
(11, 52, 82, 41) 19130339 665845 630869 3 20427056
(11, 53, 84, 42) 11240196 525104 486378 6 12251684
(11, 54, 86, 43) 4 457865 272672 244045 8 4974590
(11, 55, 88, 44) 897819 69666 59641 12 1027138

Total: 166564303 3116818 2957499 30 172638650

Corollary 17. There are 1831 363 502 triangulated 3-balls with 10 vertices of which 277 479 are non-
shellable.

For all triangulated 3-spheres with up to 9 vertices and all neighborly 3-spheres with 10 vertices
a classification into polytopal and non-polytopal examples was carried out mainly by Altshuler,
Bokowski, and Steinberg; see [44] for a survey and references.

Problem 18. Classify all simplicial 3-spheres with 10 and 11 vertices into polytopal and non-
polytopal spheres.
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