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a b s t r a c t

In this paper under some conditions on the constants A, B ∈ (0,∞)we study the existence
of positive solutions, the existence of a unique nonnegative equilibrium and the conver-
gence of the positive solutions to the nonnegative equilibrium of the system of difference
equations

xn+1 = (1− yn − yn−1)(1− e−Ayn ), yn+1 = (1− xn − xn−1)(1− e−Bxn )

where A, B ∈ (0,∞) and the initial values x−1, x0, y−1, y0 are positive numbers which sat-
isfy the relations x0+x−1 < 1, y0+y−1 < 1, 1−y0 > (1−x0−x−1)(1−e−Bx0 ), 1−x0 >
(1− y0 − y−1)(1− e−Ay0 ).

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In [1] Kocic and Ladas proposed the study of the difference equation

xn+1 =

(
1−

k−1∑
j=0

xn−j

)
(1− e−Axn), k ∈ {2, 3, . . .} (1.1)

which is a special case of an epidemic model (see [2,3]).
Moreover, in [4] Zhang and Shi studied the oscillation, the behavior of the solutions of Eq. (1.1), where A ∈ (0,∞),

k ∈ {2, 3, . . . , } and the initial values x−k+1, . . . , x0 are arbitrary positive numbers such that
∑k−1
j=0 x−j < 1.

Finally, in [5] Stevic studied Eq. (1.1), where A ∈ (0,∞), k ∈ {2, 3, . . . , } and the initial values x−k+1, . . . , x0 are arbitrary
negative numbers.
Now, in this paper under some conditions on the constants A, B ∈ (0,∞)we study the existence of positive solutions, the

existence of a unique nonnegative equilibrium and the convergence of the positive solutions to the nonnegative equilibrium
of the system of difference equations

xn+1 = (1− yn − yn−1)(1− e−Ayn), yn+1 = (1− xn − xn−1)(1− e−Bxn) (1.2)

where the initial values x−1, x0, y−1, y0 satisfy the relations

x−1, x0, y−1, y0 > 0, x0 + x−1 < 1, y0 + y−1 < 1,

1− y0 > (1− x0 − x−1)(1− e−Bx0), 1− x0 > (1− y0 − y−1)(1− e−Ay0). (1.3)

It is obvious that if A = B and x−1 = y−1, x0 = y0 then system (1.2) reduces to Eq. (1.1) for k = 2.
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2. Main Results

In the first proposition we study the existence of the positive solutions of (1.2).

Proposition 2.1. Consider system (1.2) where the constants A, B satisfy

0 < A ≤ 6, 0 < B ≤ 6. (2.1)

Let (xn, yn) be a solution of (1.2) with initial values x−1, x0, y−1, y0 satisfying (1.3). Then

xn > 0, yn > 0, n = 1, 2, . . . . (2.2)

Proof. From (1.2) we get

x1 = (1− y0 − y−1)(1− e−Ay0), y1 = (1− x0 − x−1)(1− e−Bx0). (2.3)

Then from (1.3), (2.1) and (2.3) we take

x1 > 0, y1 > 0. (2.4)

In addition, from (1.2) we have,

x2 = (1− y1 − y0)(1− e−Ay1), y2 = (1− x1 − x0)(1− e−Bx1). (2.5)

Using (1.3) and (2.3) it follows

1− y0 > y1, 1− x0 > x1. (2.6)

Therefore, relations (2.1), (2.4), (2.5) and (2.6) imply that

x2 > 0, y2 > 0.

We prove now that

xn + xn−1 < 1, yn + yn−1 < 1, n = 2, 3, . . . . (2.7)

From (1.2), (1.3) and (2.1) we have

y2 + y1 < (1− x1 − x0)(1− e−Bx1)+ (1− x0)(1− e−Bx0). (2.8)

We consider the function f , for x, y > 0, x+ y < 1, 0 < B ≤ 6, as follows

f (x, y, B) = (1− x− y)(1− e−Bx)+ (1− y)(1− e−By). (2.9)

Since f is an increasing function with respect to B we have that

f (x, y, B) ≤ (1− x− y)(1− e−6x)+ (1− y)(1− e−6y), x, y > 0, x+ y < 1, 0 < B ≤ 6. (2.10)

We set the function h as follows

h(x, y) = (1− x− y)(1− e−6x)+ (1− y)(1− e−6y), x, y ≥ 0, x+ y ≤ 1. (2.11)

Then, we take the system of equations

∂h
∂x
= −1+ e−6x + 6e−6x(1− x− y) = 0

∂h
∂y
= −2+ e−6x + e−6y + 6e−6y(1− y) = 0, x, y > 0, x+ y < 1.

(2.12)

System (2.12) is equivalent to system

y =
7− e6x − 6x

6
,

−2+ e−6x + (e6x + 6x)e−7+e
6x
+6x
= 0, x, y > 0, x+ y < 1.

(2.13)

We consider the function

g(x) = −2+ e−6x + (e6x + 6x)e−7+e
6x
+6x, 0 ≤ x ≤ 1. (2.14)
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From (2.14) we have

g(0) = −1+ e−6 < 0, g(1) = −2+ e−6 + (e6 + 6)e−1+e
6
> 0, (2.15)

and

g ′′(x) = 36e−6x + e−7+e
6x
+12x(36+ 2(6+ 6e6x)2 + 36(e6x + 6x)+ (6+ 6e6x)2(e6x + 6x)) > 0, 0 < x < 1. (2.16)

Using (2.15) and (2.16) equation g(x) = 0 has a unique solution x̄, such that 0 < x̄ < 1. Using Newton’s Method we have
that

x̄ = 0.244745, (2.17)

with the precision set to six decimal places. From (2.13) for x = x̄we take,

ȳ = 0.198157. (2.18)

Furthermore, from (2.12) we take

∂2h
∂x2
= −12e−6x − 36e−6x(1− x− y) < 0, for x+ y < 1,

∂2h
∂y2
= −12e−6y − 36e−6y(1− y),

∂2h
∂x∂y

= −6e−6x.

(2.19)

From (2.19) and for x ≥ y > 0 and x+ y < 1 we have

D(x, y) =
∂2h
∂x2

∂2h
∂y2
−

(
∂2h
∂x∂y

)2
= 36e−12x

(
4e6(x−y) (1+ 3(1− x− y)) (1+ 3(1− y))− 1

)
> 0. (2.20)

So, from (2.17), (2.18) and (2.20) we get

D(x̄, ȳ) > 0. (2.21)

Since from (2.17) and (2.18), (x̄, ȳ) = (0.244745, 0.198157) is the unique solution of system (2.13), using (2.19) and
(2.21)

h(x, y) ≤ h(0.244745, 0.198157) = 0.986458, for x, y > 0, x+ y < 1. (2.22)

Now, suppose that

y = 0, 0 ≤ x ≤ 1 (resp. x = 0, 0 ≤ y ≤ 1).

Then from (2.11) we get

h(x, y) = (1− x)(1− e−6x) < 1, for y = 0, 0 ≤ x ≤ 1

(resp. h(x, y) = (1− y)(1− e−6y) < 1, for x = 0, 0 ≤ y ≤ 1).
(2.23)

Finally, suppose that

x+ y = 1, x, y ≥ 0.

Then from (2.11) we get

h(x, y) = (1− y)(1− e−6y) < 1, for x+ y = 1, x, y ≥ 0. (2.24)

From (2.8)–(2.11) and (2.22)–(2.24) we get that

y2 + y1 < 1. (2.25)

Similarly, we can prove that

x2 + x1 < 1. (2.26)

So, relations (2.25) and (2.26) imply that (2.7) are satisfied for n = 2. Working inductively we can prove that (2.7) are true
for all n = 3, 4, . . . . Then it is obvious that (2.2) are satisfied. This completes the proof of the proposition. �

In what follows we need the following lemma.
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Lemma 2.1. Consider the functions

g(x) = (1− 2x)(1− e−Bx), h(x) = (1− 2x)(1− e−4x),

H(x) = −2(1− e−Ag(x))+ Ae−Ag(x)(1− 2g(x)),

F(x) = −2(1− e−4h(x))+ 4e−4h(x)(1− 2h(x)),

(2.27)

where

1 < A ≤ 4, 1 < B ≤ 4. (2.28)

Then the following statements are true.

(i)

g ′(x) > h′(x), for 0.19 < x < 0.373. (2.29)

(ii)

H(x) > F(x), for 0.19 < x < 0.373. (2.30)

(iii) Equation

h′(x) = 0 (resp. F(x) = 0)

has a unique solution c (resp. d), such that

c ∈ (0.19, 0.373), (resp. d ∈ (c, 0.373)). (2.31)

(iv)

h′(x)F(x) < 1, for c < x < d. (2.32)

Proof. (i) From (2.27) we get

g ′(x) = −2(1− e−Bx)+ Be−Bx(1− 2x), h′(x) = −2(1− e−4x)+ 4e−4x(1− 2x). (2.33)

We set

R(B) = −2(1− e−Bx)+ Be−Bx(1− 2x), 1 < B ≤ 4, (2.34)

then

dR
dB
= e−Bx[Bx(2x− 1)− 4x+ 1]. (2.35)

If dRdB = 0 then B =
1−4x
x(1−2x) . We set

Φ(x) =
1− 4x
x(1− 2x)

. (2.36)

It is easy to prove thatΦ(x) is a decreasing function for 0 < x < 0.5 and so

Φ(x) ≤ Φ(0.19) =
2400
1178

, for 0.19 ≤ x ≤ 0.373. (2.37)

From (2.35)–(2.37) and since 0.19 ≤ x ≤ 0.373 we get that R(B) is a decreasing function if 24001178 < B ≤ 4, which means that

R
(
2400
1178

)
> R(B) ≥ R(4), for

2400
1178

< B ≤ 4, 0.19 ≤ x ≤ 0.373, (2.38)

and obviously

R
(
2400
1178

)
> R(4), for 0.19 ≤ x ≤ 0.373. (2.39)

Now, suppose that

1 < B ≤
2400
1178

. (2.40)
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SinceΦ(x) is a decreasing function for 0 < x < 0.5 we have

Φ(x) ≤ Φ

(
5−
√
17

4

)
= 1,

5−
√
17

4
≤ x ≤ 0.373. (2.41)

From (2.35), (2.36), (2.40) and (2.41) we get that R(B) is a decreasing function and so from (2.39)

R(1) > R(B) ≥ R
(
2400
1178

)
> R(4), for 1 < B ≤

2400
1178

,
5−
√
17

4
≤ x ≤ 0.373, (2.42)

and obviously

R(1) > R
(
2400
1178

)
, for

5−
√
17

4
≤ x ≤ 0.373. (2.43)

Finally, suppose that (2.40) and

0.19 ≤ x <
5−
√
17

4
(2.44)

hold. SinceΦ(x) is a decreasing function 0 < x < 0.5 we have

1 < Φ(x) ≤
2400
1178

, 0.19 ≤ x <
5−
√
17

4
. (2.45)

From (2.35), (2.36), (2.40) and (2.45) we have that for every x, such that (2.44) holds, there exists a B0(x) such that

dR
dB

> 0, for 1 < B < B0(x) and
dR
dB

< 0, for B0(x) < B ≤
2400
1178

. (2.46)

We claim that

R(1) > R(4), for 0.19 ≤ x <
5−
√
17

4
. (2.47)

From (2.34) and after some calculations, in order to prove (2.47) it is sufficient to prove that

e3x +
8x− 6
3− 2x

> 0, 0.19 ≤ x <
5−
√
17

4
,

which is true, since if we set

w(x) = e3x +
8x− 6
3− 2x

,

it is easy to prove thatw(x) is an increasing function for every x, such that (2.44) holds, andw(0.19) > 0.
Relations (2.39), (2.46) and (2.47) imply that

R(B) ≥ min
{
R(1), R

(
2400
1178

)}
> R(4), for 1 < B ≤

2400
1178

, 0.19 ≤ x <
5−
√
17

4
. (2.48)

From (2.33), (2.34), (2.38), (2.42) and (2.48) we have that relation (2.29) is true. This completes the proof of statement (i).
(ii) Since

(1− 2x)(1− e−Bx)

is an increasing function with respect to B, for 1 < B ≤ 4 and 0.19 ≤ x ≤ 0.373 we have from (2.27)

0 < g(x) ≤ h(x), 1 < B ≤ 4, 0.19 ≤ x ≤ 0.373. (2.49)

We claim that

0.19 ≤ h(x) ≤ 0.373, 0.19 ≤ x ≤ 0.373. (2.50)

From (2.33) we get

h′(0.19) = 0.0951456, h′(0.373) = −1.32163,

and

h′′(x) = −16e−4x − 16e−4x(1− 2x) < 0, for 0.19 ≤ x ≤ 0.373. (2.51)
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So, equation

h′(x) = 0

has a unique solution in the interval (0.19, 0.373). Using Newton’s Method we can see that this solution is c = 0.198015
with the precision set to six decimal places.
Therefore, and after some calculations, we have

0.19 ≤ min{h(0.19), h(0.373)} ≤ h(x) ≤ h(0.198015) ≤ 0.373, for 0.19 ≤ x ≤ 0.373,

which implies that (2.50) is true.
Moreover, we consider the function

K(x) = −2(1− e−Ax)+ Ae−Ax(1− 2x). (2.52)

It is easy to prove that K(x) is a decreasing function for 1 < A ≤ 4 and 0 < x < 0.5, and so from (2.27), (2.49), (2.50) and
(2.52) we get that

H(x) = K(g(x)) ≥ K(h(x)), 1 < A ≤ 4, 0.19 ≤ x ≤ 0.373. (2.53)

From (2.27), (2.28), (2.50), (2.52) and using (2.29) and (2.33), where in stand of B and x we set A and h(x) respectively, we
have

K(h(x)) = −2(1− e−Ah(x))+ Ae−Ah(x)(1− 2h(x))

> −2(1− e−4h(x))+ 4e−4h(x)(1− 2h(x)) = F(x), 1 < A ≤ 4, 0.19 ≤ x ≤ 0.373. (2.54)

Relations (2.53) and (2.54) imply that (2.30) is true. This completes the proof of statement (ii).
(iii) From statement (ii) equation h′(x) = 0 has a unique solution c = 0.198015 and obviously, c ∈ (0.19, 0.3730).
From (2.27) we get

F ′(x) = −16e−4h(x)h′(x)− 16e−4h(x)h′(x)(1− 2h(x)),

F ′′(x) = 96e−4h(x)(h′(x))2 − 16e−4h(x)h′′(x)+ 64e−4h(x)(h′(x))2(1− 2h(x))− 16e−4h(x)h′′(x)(1− 2h(x)). (2.55)

Since c is the unique solution of equation h′(x) = 0 from (2.31) and (2.51) we have that

h′(x) < h′(c) = 0, for c < x ≤ 0.373. (2.56)

In addition, from (2.31), (2.50), (2.55) and (2.56) we get that

F ′(x) > 0, for c < x ≤ 0.373. (2.57)

Obviously, from (2.50), (2.51) and (2.55)

F ′′(x) > 0, for 0.19 ≤ x ≤ 0.373. (2.58)

From (2.27) we get

F(c) = F(0.198015) = −1.10486, F(0.373) = 0.0133519,

and so from (2.57) equation

F(x) = 0

has a unique solution in the interval (c, 0.373). Using Newton’s Method, we can prove that this solution is d = 0.372132
with the precision set to six decimal places. Obviously, d ∈ (c, 0.3730). This completes the proof of statement (iii).
(iv) We consider the function

Q (x) = h′(x)F(x), c ≤ x ≤ d, (2.59)

then

Q ′(x) = h′′(x)F(x)+ h′(x)F ′(x),

Q ′′(x) = h′′′(x)F(x)+ 2h′′(x)F ′(x)+ h′(x)F ′′(x), c ≤ x ≤ d,
(2.60)

where from (2.31) and (2.51)

h′′′(x) = 96e−4x + 64e−4x(1− 2x) > 0, for c ≤ x ≤ d. (2.61)

Since d is the unique solution of equation F(x) = 0, from (2.31) and (2.57) we get that

F(x) < F(d) = 0, c ≤ x ≤ d. (2.62)
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Relations (2.31), (2.51), (2.56)–(2.58), (2.60), (2.61), (2.62) imply that

Q ′′(x) < 0, c ≤ x ≤ d. (2.63)

Since from statement (iii) and (2.59)

Q (c) = Q (d) = 0 (2.64)

then from (2.63) equation

Q ′(x) = 0

has a unique solution in the interval (c, d). Using Newton’s Method, we can prove that this solution is x = 0.294221, with
the precision set to five decimal places.
Therefore, since from (2.27), (2.33) and (2.59)

Q (0.294221) = 0.707952,

and (2.64) holds, we have that (2.32) is true. This completes the proof of statement (iv) and the proof of the lemma. �

In the following proposition we study the existence of a unique positive equilibrium for system (1.1).

Proposition 2.2. Consider the system of algebraic equations

x = (1− 2y)(1− e−Ay)

y = (1− 2x)(1− e−Bx), x, y ∈ (0, 0.5).
(2.65)

Then the following statements are true:

(i) If

0 < A ≤ 1, 0 < B ≤ 1 (2.66)

the system (2.65) has a unique nonnegative solution (x̄, ȳ) = (0, 0).
(ii) If (2.28) holds, then system (2.65) has a unique positive solution (x̄, ȳ), x̄, ȳ ∈ (0, 0.5).

Proof. (i) We consider the functions

E(y) = (1− 2y)(1− e−Ay)− y, K(x) = (1− 2x)(1− e−Bx)− x, x, y ∈ (0, 0.5). (2.67)

Then from (2.66) and (2.67) we get

E ′(y) = −2(1− e−Ay)+ Ae−Ay(1− 2y)− 1 < 0,

K ′(x) = −2(1− e−Bx)+ Be−Bx(1− 2x)− 1 < 0

which imply that

E(y) ≤ E(0) = 0, K(x) ≤ K(0) = 0. (2.68)

Therefore, from (2.65), (2.67) and (2.68) we take that (x̄, ȳ) = (0, 0) is the unique nonnegative solution for system (2.65).
This completes the proof of statement (i).
(ii) Suppose that (2.28) holds. We set

G(x) = (1− 2g(x))(1− e−Ag(x))− x, x ∈ [0, 0.5], (2.69)

where g(x)was defined in (2.27). From (2.28) we have that

0 < g(x) < (1− 2x)Bx = −2Bx2 + Bx ≤
B
8
≤
1
2
, x ∈ (0, 0.5). (2.70)

Furthermore, from (2.28) and (2.33) we get that

g ′′(x) = −4Be−Bx − B2e−Bx(1− 2x) < 0, 0 < x < 0.5, (2.71)

and

g ′(0) = B > 0, g ′(0.5) = −2(1− e−
B
2 ) < 0, (2.72)

and so g ′(x) has a unique solution x0 ∈ (0, 0.5) such that

g ′(x) > 0, for 0 < x < x0 and g ′(x) < 0, for x0 < x < 0.5. (2.73)
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In addition, from (2.27) and (2.69) we get

G(0) = 0, G(0.5) = −0.5, (2.74)

and

G′(x) = −2g ′(x)(1− e−Ag(x))+ Ag ′(x)e−Ag(x)(1− 2g(x))− 1 = g ′(x)H(x)− 1. (2.75)

Using (2.27), (2.28), (2.72) and (2.75)

G′(0) = AB− 1 > 0, G′(0.5) = −2A(1− e−
B
2 )− 1 < 0. (2.76)

Relations (2.74) and (2.76) imply that equation G(x) = 0 has a solution x̄ ∈ (0, 0.5). Then from (2.70)

0 < g(x̄) < 0.5,

and so (x̄, ȳ) is a solution of system (2.65), such that x̄, ȳ ∈ (0, 0.5).
We prove now that (x̄, ȳ) is the unique solution of system (2.65).
From (2.27) we have that

H ′(x) = −Ag ′(x)e−Ag(x) (4+ A(1− 2g(x))) , (2.77)

and so from (2.28), (2.70) and (2.73) we get

H ′(x) < 0, for 0 < x < x0 and H ′(x) > 0, for x0 < x < 0.5. (2.78)

First, suppose that

H(x) ≥ 0, for 0 < x < 0.5. (2.79)

From (2.71), (2.73), (2.78) and (2.79) we have that g ′(x), H(x) are positive and decreasing functions for 0 < x < x0. So from
(2.75), G′(x) is a decreasing function for 0 < x < x0.
In addition, from (2.73), (2.75) and (2.79)

G′(x) < 0, for x0 < x < 0.5.

Therefore, from (2.76) we get that there exists a unique x′ ∈ (0, x0), such that

G′(x) > 0, for 0 < x < x′ and G′(x) < 0, for x′ < x < 0.5.

Thus, x̄ is the unique solution of equation G(x) = 0, such that x̄ ∈ (0, 0.5) and so (x̄, ȳ) is the unique solution of system
(2.65), such that x̄, ȳ ∈ (0, 0.5).
Now, suppose that there exists an x ∈ (0, 0.5), such that H(x) < 0. Then from (2.78) and since from (2.27) and (2.28)

H(0) = H(0.5) = A > 0 (2.80)

we get that there exist exactly two real numbers x1, x2, such that

H(x1) = H(x2) = 0, 0 < x1 < x0 < x2 < 0.5. (2.81)

From (2.78), (2.80), (2.81) we have that

H(x) > 0, for 0 < x < x1 or x2 < x < 0.5 and H(x) < 0, for x1 < x < x2. (2.82)

From (2.71), (2.73), (2.78) and (2.82), and since x1 < x0, we have that g ′(x), H(x) are positive and decreasing functions for
0 < x < x1. So from (2.75), G′(x) is a decreasing function for 0 < x < x1, and since from (2.75), (2.76) and (2.81)

G′(0) > 0, G′(x1) = −1 < 0,

we have that there exists an x′′ ∈ (0, x1), such that

G′(x) > 0, for 0 < x < x′′ and G′(x) < 0, for x′′ < x < x1. (2.83)

In addition, using (2.73), (2.75) and (2.82) and since x1 < x0

G′(x) < 0, for x1 < x < x0. (2.84)

We, also, claim that

G′(x) < 0, for x0 < x < x2. (2.85)

First, we prove that

c ≤ x0, (2.86)
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and

x2 ≤ d, (2.87)

where c, dwere defined in statement (iii) of Lemma 2.1.
Since x0 is the unique solution of equation g ′(x) = 0, for 0 < x < 0.5, and (2.72) holds, in order to prove (2.86) it is

sufficient to prove that

g ′(c) > 0, for any 1 < B ≤ 4. (2.88)

From statements (i) and (iii) of Lemma 2.1 we have

g ′(c) > h′(c) = 0, 1 < B ≤ 4

and so (2.88) is true.
In addition, from (2.81) and (2.82), in order to prove (2.87), it is sufficient to prove that

x0 < d (2.89)

and

H(d) > 0 for any 1 < A ≤ 4, 1 < B ≤ 4. (2.90)

From (2.38), (2.42) and (2.43) we get

R(B) < R(1), for 1 < B ≤ 4 and
5−
√
17

4
≤ x ≤ 0.373. (2.91)

Using (2.33), (2.34) and (2.91) we get

g ′(x) < −2(1− e−x)+ e−x(1− 2x), 1 < B ≤ 4 and
5−
√
17

4
≤ x ≤ 0.373,

and since from the proof of statement (iii) of Lemma 2.1, d = 0.372132, we have

g ′(d) < −2(1− e−d)+ e−d(1− 2d) = −0.445204 < 0. (2.92)

Relations (2.73) and (2.92) imply that (2.89) is true.
In addition, from statements (ii) and (iii) of Lemma 2.1 we have

H(d) > F(d) = 0, 1 < A ≤ 4, 1 < B ≤ 4,

and so (2.90) is true.
From relations (2.73), (2.82), statements (i), (ii) of Lemma 2.1 and since 0.19 < x1 < x0 < x2 < 0.373, we get that

g ′(x)H(x) < h′(x)F(x), for x0 < x < x2. (2.93)

Using statement (iv) of Lemma 2.1, relations (2.75), (2.86), (2.87), (2.93), and since x0 < x2, we get that our claim (2.85) is
true.
Finally, from (2.73), (2.75), (2.82) and since x0 < x2 we get that

G′(x) < 0 for x2 < x < 0.5. (2.94)

Relations (2.83)–(2.85) and (2.94) imply that x̄ is the unique solution of equationG(x) = 0, such that x̄ ∈ (0, 0.5), and so (x̄, ȳ)
is the unique positive solution of system (2.65) such that x̄, ȳ ∈ (0, 0.5). This completes the proof of the proposition. �

In the last proposition we study the convergence of the positive solutions of system of difference equations (1.2).

Proposition 2.3. Consider system (1.2). Let (xn, yn) be a solution of (1.2) such that (1.3) are satisfied. Then the following
statements are true:

(i) If (2.66) are satisfied, the solution (xn, yn) tends to the zero equilibrium (0, 0) of (1.2) as n→∞.
(ii) Suppose that (2.28) are satisfied and there exists an m ∈ N such that for n ≥ m either

xn < x̄, yn < ȳ (2.95)

or

xn ≥ x̄, yn ≥ ȳ. (2.96)

hold. Then (xn, yn) tends to the unique positive equilibrium (x̄, ȳ) of (1.2) as n→∞.
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Proof. (i) From (1.2), (1.3), (2.2), (2.7) and (2.66) we get

xn+1 < (1− yn)(1− e−Ayn), yn+1 < (1− xn)(1− e−Bxn), n = 0, 1, . . . .

Then from (1.3), (2.2), (2.7), (2.66) and Lemma 2.1 of [4] we have

xn+1 < yn, yn+1 < xn, n = 0, 1, . . . (2.97)

which imply that x2n, x2n+1, y2n, y2n+1 are decreasing sequences. Therefore, there exist

lim
n→∞

x2n = l0, lim
n→∞

x2n+1 = l1, lim
n→∞

y2n = m0, lim
n→∞

y2n+1 = m1. (2.98)

Using (2.2), (2.7) and (2.98) we get

0 ≤ l0, l1,m0,m1 < 1. (2.99)

Relations (2.97) and (2.98) imply that

l1 ≤ m0, l0 ≤ m1, m0 ≤ l1, m1 ≤ l0

and so

l1 = m0, l0 = m1. (2.100)

In addition, from (1.2), (2.98) and (2.100) we get

l1 = (1− l0 − l1)(1− e−Al1), l0 = (1− l0 − l1)(1− e−Al0). (2.101)

First, suppose that l0 = 0 (resp. l1 = 0), then from (2.101) we get l1 = (1− l1)(1− e−Al1) (resp. l0 = (1− l0)(1− e−Al0))
and so using (2.66), (2.99) and Lemma 2.1 of [4] we get l1 = 0 (resp. l0 = 0).
Now, suppose that

l0 6= 0, l1 6= 0 (2.102)

then from (2.101) we get that

1− e−Al1

l1
=
1− e−Al0

l0
. (2.103)

If

f (x) =
1− e−cx

x
, c > 0, x > 0, (2.104)

then since ecx > 1+ cxwe get

f ′(x) =
(cx+ 1)e−cx − 1

x2
< 0

and so f is a decreasing function. Therefore, from (2.66), (2.99), (2.102) and (2.103), we have l1 = l0 and from (2.100) we get
that m1 = m0. Hence, there exist the limn→∞ xn, limn→∞ yn. From statement (i) of Proposition 2.2 we get that l0 = l1 = 0
which contradicts to (2.102). Hence, from (2.100) l0 = l1 = m0 = m1 = 0 and so limn→∞ xn = limn→∞ yn = 0. This
completes the proof of statement (i).
(ii) Suppose that (2.95) are satisfied. Using (1.2), (2.95) and since from statement (ii) of Proposition 2.2, x, y,∈ (0, 0.5),

we obtain that

xn+1 ≥ (1− 2ȳ)(1− e−Ayn), yn+1 ≥ (1− 2x̄)(1− e−Bxn), n = m+ 1,m+ 2 . . . .

Then using Lemma 2.7 of [4], (2.2) and (2.95), it follows that

xn+1 ≥ (1− 2ȳ)(1− e−Aȳ)
(1− e−Ayn)
(1− e−Aȳ)

= x̄
(1− e−Ayn)
(1− e−Aȳ)

≥
x̄
ȳ
yn. (2.105)

yn+1 ≥ (1− 2x̄)(1− e−Bx̄)
(1− e−Bxn)
(1− e−Bx̄)

= ȳ
(1− e−Bxn)
(1− e−Bx̄)

≥
ȳ
x̄
xn. (2.106)

Then relations (2.105) and (2.106) imply that

xn+1 ≥ xn−1, yn+1 ≥ yn−1, n = 1, 2, . . . (2.107)

Therefore, (2.98) are satisfied. From (2.2), (2.7), (2.98) and (2.107) we get

0 < l0, l1,m0,m1 ≤ 1.
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Using (2.98) and (2.105), (2.106) and (2.107) we take

l0 ≥
x̄
ȳ
m1, l1 ≥

x̄
ȳ
m0, m0 ≥

ȳ
x̄
l1, m1 ≥

ȳ
x̄
l0

which imply that

l0 =
x̄
ȳ
m1, l1 =

x̄
ȳ
m0. (2.108)

In addition, from (1.2) and (2.98) we get

m1 = (1− l0 − l1)(1− e−Bl0), m0 = (1− l1 − l0)(1− e−Bl1). (2.109)

So relations (2.108) and (2.109) imply that

m1 =
(
1− (m0 +m1)

x̄
ȳ

)
(1− e−Bm1

x̄
ȳ )

m0 =
(
1− (m0 +m1)

x̄
ȳ

)
(1− e−Bm0

x̄
ȳ ).

(2.110)

Then from (2.110) we get

1− e−Bm1
x̄
ȳ

m1
=
1− e−Bm0

x̄
ȳ

m0
. (2.111)

Since function f , defined in (2.104), is a decreasing function, from (2.111) we takem1 = m0. Then from (2.108) it is obvious
that l1 = l0. Since from the statement (ii) of Proposition 2.2 (x̄, ȳ) is the unique positive equilibrium of (1.2), the proof of
this statement is completed. This completes the proof of the proposition. �

Finally, we give the following open problem.

Open problems. Study the asymptotic behavior of the positive solutions of the system of difference equations

xn+1 =

(
1−

k−1∑
j=0

yn−j

)
(1− e−Ayn), yn+1 =

(
1−

k−1∑
j=0

xn−j

)
(1− e−Bxn), k ∈ {3, 4, . . .}.
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