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1. Introduction

In [1] Kocic and Ladas proposed the study of the difference equation

k—1
X1 = (1 - an]) (1—e™™my  ke{2,3,..} (1.1)
=0

which is a special case of an epidemic model (see [2,3]).
Moreover, in [4] Zhang and Shi studied the oscillation, the behavior of the solutions of Eq. (1.1), where A € (0, c0),

k € {2,3,...,}and the initial values x_1, . . ., Xo are arbitrary positive numbers such that Z]":_Ol x_j <L
Finally, in [5] Stevic studied Eq. (1.1), where A € (0, 00), k € {2, 3, ..., } and the initial values x_;,1, ..., Xo are arbitrary

negative numbers.

Now, in this paper under some conditions on the constants A, B € (0, oo) we study the existence of positive solutions, the
existence of a unique nonnegative equilibrium and the convergence of the positive solutions to the nonnegative equilibrium
of the system of difference equations

X1 = (1=yn = Ya-) (1 =€), ynpr = (1= %0 — X1 (1 — e7™) (12)
where the initial values x_1, X, y_1, Yo satisfy the relations

X_1,X0,Y-1,Y0 > 0, Xo+x-1<1, Yo+y-1<1,

T—yo>(1—x—x_1)(1—e P0), T—x>(1—yo—y-(1—e ™). (1.3)
It is obvious that if A = Band x_; = y_1, Xo = Yo then system (1.2) reduces to Eq. (1.1) for k = 2.
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2. Main Results
In the first proposition we study the existence of the positive solutions of (1.2).

Proposition 2.1. Consider system (1.2) where the constants A, B satisfy
0<Ac<6, 0 <B<6.
Let (x,, Yn) be a solution of (1.2) with initial values x_1, xo, Y1, Yo satisfying (1.3). Then

X, > 0, >0, n=1,2,....

Proof. From (1.2) we get
x1=(1—yo—y-(1—e ™), yi=(1—x —x_)(1—e 0.
Then from (1.3), (2.1) and (2.3) we take
x1 >0, y1 > 0.
In addition, from (1.2) we have,
Xo=0=y1=yo)(1—e™),  yy=(1—-x1—x)(1—e ™).
Using (1.3) and (2.3) it follows
1—Yy0 >, 1—Xp > Xq.
Therefore, relations (2.1), (2.4), (2.5) and (2.6) imply that
Xy >0, y2 > 0.
We prove now that
Xp +Xp_1 < 1, Yn+Yn1 <1, n=2,3,....
From (1.2), (1.3) and (2.1) we have
Y2 4+y1 < (1=x1 —x)(1—e 1) + (1 —x0) (1 — e~70).
We consider the function f, forx,y > 0, x+y < 1, 0 < B < 6, as follows
fy.B)=(1—x=y1—e ™) +(1-y1-e™).
Since f is an increasing function with respect to B we have that
fxy,B)<(Q—x—yp1—e™+0-pa—-e®), xy>0 x+y<1, 0<B<6.
We set the function h as follows
hxy) =1 —=x=p1-e™+A-p1-e), xy=0 x+y<1.

Then, we take the system of equations

oh

— =—14e®46e 1 —-—x—y)=0

ox

dh —6x -6 -6

™ =-2+e X +e¥+6e1-y)=0, xy>0 x+y<1.
y

System (2.12) is equivalent to system

7 —e¥ —6x

y= 6 )

—24 e % 4 (€ 4 6x0e T =0, x,y>0, x4y <1

We consider the function

g(0) = —2 + e % 1 (% 4 6x)e T g <x<1.

(2.1)

(2.2)

(2.5)

(2.6)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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From (2.14) we have

g0)=—-1+e%<0, g)=-2+e°+ (5 +6)e " >0, (2.15)
and
g (x) = 366~ + e 7T H12X(36 1 2(6 + 6e5)2 + 36(e% + 6x) + (6 + 6e%)2(e® +6x) > 0, 0 <x < 1. (2.16)

Using (2.15) and (2.16) equation g(x) = 0 has a unique solution x, such that 0 < X < 1. Using Newton’s Method we have
that

X = 0.244745, (2.17)
with the precision set to six decimal places. From (2.13) for x = x we take,
y =0.198157. (2.18)

Furthermore, from (2.12) we take

3%h
T = —12e7% —36e (1 —x—y) <0, forx+y<1,
9°h -6 -6
— = —12e"% —36e7%(1 — y), (2.19)
ay?
o = —6e %,
oxady
From (2.19)and forx >y > 0Oand x +y < 1 we have
3%h 3%h 3%h \’
D, y) = —— — [ —— | =367 1% (4e°* ¥ (1 43(1 —x— 1+3(1—y)—1)>0. 2.20
) = 55 5 (axay) ( (14 3( M A+31-y)—1) > (2.20)
So, from (2.17), (2.18) and (2.20) we get
D@, y) > 0. (2.21)

Since from (2.17) and (2.18), (x, y) = (0.244745, 0.198157) is the unique solution of system (2.13), using (2.19) and
(2.21)

h(x,y) < h(0.244745, 0.198157) = 0.986458, forx,y >0, x+y < 1. (2.22)
Now, suppose that

y=0, 0<x<1 (resp.x=0,0<y<1).
Then from (2.11) we get

hx,y)=1—=x(1—-e% <1, fory=0 0<x<1

(resp.h(x,y) = (1 —y)(1—e ) <1, forx=0,0<y<1). (223)
Finally, suppose that

x+y=1, x,y>0.
Then from (2.11) we get

hx,y) =1 -1 —e) <1, forx+y=1, x,y > 0. (2.24)
From (2.8)-(2.11) and (2.22)-(2.24) we get that

Vo +y1 < 1. (2.25)
Similarly, we can prove that

Xy +x < 1. (2.26)

So, relations (2.25) and (2.26) imply that (2.7) are satisfied for n = 2. Working inductively we can prove that (2.7) are true
foralln = 3,4, ... . Thenit is obvious that (2.2) are satisfied. This completes the proof of the proposition. O

In what follows we need the following lemma.
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Lemma 2.1. Consider the functions
g =1 —-20(1—-e™),  hx=(1-2x1-e*),
H(x) = —2(1 — e ™) 4 Ae ™ (1 — 2g(x)), (2.27)
F(x) = —2(1 — e *"®) 4 47" (1 — 2h(x)),
where
1<A<4, 1<B<4 (2.28)
Then the following statements are true.
(i)
g'x) > W), for0.19 <x < 0.373. (2.29)
(ii)
H(x) > F(x), for0.19 <x < 0.373. (2.30)
(iii) Equation
W(x) =0 (resp.F(x) =0)
has a unique solution c (resp. d), such that
c € (0.19,0.373), (resp.d € (c,0.373)). (2.31)
(iv)
WXFx) <1, forc<x<d. (2.32)

Proof. (i) From (2.27) we get

g ==-20—e) 4 Be 1 -2, KK =-2(1-e%) +4e %1 - 2). (2.33)
We set
R(B) = —2(1 —e™®) 4+ Be™®(1—-2x), 1<B<4, (2.34)
then
dR
— =e "[Bx(2x — 1) — 4x + 1]. (2.35)
dB
drR 1—4;
If 5 = O0thenB = X(FZ’;{).We set
D) = = (2.36)
X)) = ———. .
x(1 —2x)

It is easy to prove that @ (x) is a decreasing function for 0 < x < 0.5 and so

2400
P(x) < @(0.19) = 1178’ for 0.19 < x < 0.373. (2.37)

From (2.35)-(2.37) and since 0.19 < x < 0.373 we get that R(B) is a decreasing function if % < B < 4, which means that

2400 2400
R <—> > R(B) > R(4), for

<B<4,0.19 <x<0.373, (2.38)
1178 1178

and obviously

2400
R <ﬁ) > R(4), for 0.19 <x <0.373. (2.39)

Now, suppose that

2400
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Since @ (x) is a decreasing function for 0 < x < 0.5 we have

5— /17 5— 417
PX)<P|—— | =1, —— <x=<0.373. (2.41)
4 4
From (2.35), (2.36), (2.40) and (2.41) we get that R(B) is a decreasing function and so from (2.39)
2400 2400 5—4/17
R(1) >R(B) >R|—— ) >R4), forl<B<—, ——— <x=<0.373, (2.42)
1178 1178 4
and obviously
2400 5— /17
R(1) >R ——), for— <x<0.373. (2.43)
1178 4
Finally, suppose that (2.40) and
5— /17
0.19<x < — (2.44)
hold. Since @ (x) is a decreasing function 0 < x < 0.5 we have
2400 5— /17
l<®d(x) < ——, 019<x< —. (2.45)
1178 4
From (2.35), (2.36), (2.40) and (2.45) we have that for every x, such that (2.44) holds, there exists a By(x) such that
dR dR 2400
— >0, for1<B<By(x) and — <0, forBy(x) <B<—. (2.46)
dB dB 1178
We claim that
5—4/17
R(1) > R(4), for0.19 <x < — (2.47)

From (2.34) and after some calculations, in order to prove (2.47) it is sufficient to prove that

ey X TO o 019 =x< 75_ﬁ,
3—2x 4
which is true, since if we set
8x —6
3 -2

it is easy to prove that w(x) is an increasing function for every x, such that (2.44) holds, and w(0.19) > 0.
Relations (2.39), (2.46) and (2.47) imply that

wx) =eX* 4+

2400 2400 5— /17
R(B) > min {R(1),R| —— > R(4), forl<B<——,019<x< ——. (2.48)
1178 1178 4
From (2.33), (2.34), (2.38), (2.42) and (2.48) we have that relation (2.29) is true. This completes the proof of statement (i).
(ii) Since
(1—2x)(1—e7B)

is an increasing function with respect to B, for 1 < B < 4and 0.19 < x < 0.373 we have from (2.27)

0 <g) <hx)), 1 <B<4 0.19 <x < 0.373. (2.49)
We claim that

0.19 < h(x) < 0.373, 0.19 <x < 0.373. (2.50)
From (2.33) we get

h’(0.19) = 0.0951456, h'(0.373) = —1.32163,

and

h'(x) = —16e % — 16e (1 — 2x) < 0, for0.19 < x < 0.373. (251)
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So, equation
Hx =0

has a unique solution in the interval (0.19, 0.373). Using Newton’s Method we can see that this solution is c = 0.198015
with the precision set to six decimal places.
Therefore, and after some calculations, we have

0.19 < min{h(0.19), h(0.373)} < h(x) < h(0.198015) < 0.373, for0.19 <x < 0.373,

which implies that (2.50) is true.
Moreover, we consider the function

K(x) = —=2(1 — e ™) + Ae ™™ (1 — 2x). (2.52)

It is easy to prove that K (x) is a decreasing functionfor 1 < A < 4and 0 < x < 0.5, and so from (2.27), (2.49), (2.50) and
(2.52) we get that

Hx) =K@E®) > KhEx), 1<A<4, 019 <x<0.373. (2.53)

From (2.27), (2.28), (2.50), (2.52) and using (2.29) and (2.33), where in stand of B and x we set A and h(x) respectively, we
have

K(h(x)) = —2(1 — e W) 4 4e=4® (1 — 2h(x))
> —2(1 — e Wy 4 4e7®™ (1 — 2p(x)) = F(x), 1 <A <4, 0.19 <x < 0.373. (2.54)

Relations (2.53) and (2.54) imply that (2.30) is true. This completes the proof of statement (ii).
(iii) From statement (ii) equation h’(x) = 0 has a unique solution ¢ = 0.198015 and obviously, ¢ € (0.19, 0.3730).
From (2.27) we get

F'(x) = —16e" 4™ (x) — 16e ™1 (x)(1 — 2h(x)),

F'(x) = 96e " (1 (x))? — 166 "™@h" (x) + 64e~*"™ (H'(x))*(1 — 2h(x)) — 16e " 1" (x)(1 — 2h(x)). (2.55)
Since c is the unique solution of equation h’(x) = 0 from (2.31) and (2.51) we have that

h(x) <Hh()=0, forc<x<0.373. (2.56)
In addition, from (2.31), (2.50), (2.55) and (2.56) we get that

F'(x) >0, forc<x <0.373. (2.57)
Obviously, from (2.50), (2.51) and (2.55)

F'(x) >0, for0.19 < x < 0.373. (2.58)
From (2.27) we get

F(c) = F(0.198015) = —1.10486, F(0.373) = 0.0133519,
and so from (2.57) equation

F(x)=0

has a unique solution in the interval (c, 0.373). Using Newton’s Method, we can prove that this solution is d = 0.372132
with the precision set to six decimal places. Obviously, d € (c, 0.3730). This completes the proof of statement (iii).
(iv) We consider the function

Q) =hN®F(x), c<x<d, (2.59)
then
Q'(x) = h"()F(x) + h' (x)F'(x),

2.60

Q"(x) = h"(X)F(x) + 2h"(O)F' (x) + N (x)F"(x), c¢<x<d, (2:60)
where from (2.31) and (2.51)

R (x) = 96~ 4+ 64e *(1 —2x) > 0, forc <x <d. (2.61)

Since d is the unique solution of equation F (x) = 0, from (2.31) and (2.57) we get that
Fx) <F(d)=0, c<x<d. (2.62)
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Relations (2.31), (2.51), (2.56)-(2.58), (2.60), (2.61), (2.62) imply that

Q'(x) <0, c<x<d. (2.63)
Since from statement (iii) and (2.59)

Q(c)=Q() =0 (2.64)
then from (2.63) equation

Q=0

has a unique solution in the interval (c, d). Using Newton’s Method, we can prove that this solution is x = 0.294221, with
the precision set to five decimal places.
Therefore, since from (2.27), (2.33) and (2.59)

Q(0.294221) = 0.707952,
and (2.64) holds, we have that (2.32) is true. This completes the proof of statement (iv) and the proof of the lemma. O

In the following proposition we study the existence of a unique positive equilibrium for system (1.1).

Proposition 2.2. Consider the system of algebraic equations

x=(1-2y)(1—e™)

y=>1-2x)(1—-—e5), x,ye(0,0.5). (265)
Then the following statements are true:
(i) If

0<A<1, 0<B<1 (2.66)
the system (2.65) has a unique nonnegative solution (x,y) = (0, 0).

(ii) If (2.28) holds, then system (2.65) has a unique positive solution (X, y), X,y € (0, 0.5).
Proof. (i) We consider the functions

Ep)=1—-20)1—e™ —y, Kx=01-2x)1—-e)—x, xye(0,0.5). (2.67)
Then from (2.66) and (2.67) we get

E@y)=-20—-e) +A4eY1-2y)—1<0,

K'x)=-20—-e™ +Be®1-2x)-1<0
which imply that

E(y) <E(0) =0, K(x) <K(0) =0. (2.68)

Therefore, from (2.65), (2.67) and (2.68) we take that (x, y) = (0, 0) is the unique nonnegative solution for system (2.65).
This completes the proof of statement (i).
(ii) Suppose that (2.28) holds. We set

G(x) = (1 —2g(x))(1 —e ™) _x,  xe[0,0.5], (2.69)
where g(x) was defined in (2.27). From (2.28) we have that

0 <g(x) < (1—2x)Bx=—2Bx*>+Bx < g < % x € (0,0.5). (2.70)
Furthermore, from (2.28) and (2.33) we get that

g’ (x) = —4Be™ B — B2e™®*(1—2x) <0, 0<x<0.5, (2.71)
and

g(0)=B>0, g(05=-21—e3)<0, (2.72)

and so g’(x) has a unique solution xy € (0, 0.5) such that

g'x) >0, for0<x<xp and g'(x) <0, forxy <=x <0.5. (2.73)
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In addition, from (2.27) and (2.69) we get

G(0) =0, G(0.5) = —0.5, (2.74)
and

G(x) = —28'(x)(1 — e ™) 4 Ag/(x)e W (1 —2g(x)) — 1 =g’ (X)H(x) — 1. (2.75)
Using (2.27), (2.28),(2.72) and (2.75)

G(O0)=AB—1>0, G(0.5) =—2A(1—e"?)—1<0. (2.76)
Relations (2.74) and (2.76) imply that equation G(x) = 0 has a solution x € (0, 0.5). Then from (2.70)
0<gk) <0.5,

and so (x, y) is a solution of system (2.65), such thatx, y € (0, 0.5).
We prove now that (x, y) is the unique solution of system (2.65).
From (2.27) we have that

H'(x) = —Ag'(x)e ™™ (4 + A(1 — 2g(x))) , (2.77)
and so from (2.28), (2.70) and (2.73) we get

H'(x) <0, forO<x<2xy and H'(x) >0, forxy <x <0.5. (2.78)
First, suppose that

H(x) >0, for0<x < 0.5. (2.79)

From (2.71),(2.73), (2.78) and (2.79) we have that g’'(x), H(x) are positive and decreasing functions for 0 < x < xg. So from
(2.75), G'(x) is a decreasing function for 0 < x < xo.
In addition, from (2.73), (2.75) and (2.79)

G(x) <0, forxyg<x<0.5.
Therefore, from (2.76) we get that there exists a unique X' € (0, xg), such that
Gx) >0, for0<x<x and G(x) <0, forx <x<0.5.

Thus, x is the unique solution of equation G(x) = 0, such that x € (0, 0.5) and so (x, y) is the unique solution of system
(2.65), such thatx, y € (0, 0.5).
Now, suppose that there exists an x € (0, 0.5), such that H(x) < 0. Then from (2.78) and since from (2.27) and (2.28)

H() =H((0.5)=A>0 (2.80)
we get that there exist exactly two real numbers x1, Xx,, such that

H(xq1) =H(x;) =0, 0<x; <Xxg<x<D0.5. (2.81)
From (2.78), (2.80), (2.81) we have that

H(x) >0, for0<x<xjorx; <x<0.5 and H(x) <0, forx; <x < x;. (2.82)

From (2.71), (2.73), (2.78) and (2.82), and since x; < Xo, we have that g’(x), H(x) are positive and decreasing functions for
0 < x < x1.So from (2.75), G'(x) is a decreasing function for 0 < x < x1, and since from (2.75), (2.76) and (2.81)

G0)>0, G(x)=-1<0,
we have that there exists an x” € (0, x1), such that

Gx) >0, for0O<x<x" and G(x) <0, forx”" <x<x;. (2.83)
In addition, using (2.73), (2.75) and (2.82) and since x; < X

G(x) <0, forx; <x <xg. (2.84)
We, also, claim that

G(x) <0, forxp<=x < x,. (2.85)
First, we prove that

¢ < xo, (2.86)
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and
X; <d, (2.87)

where c, d were defined in statement (iii) of Lemma 2.1.
Since xp is the unique solution of equation g’(x) = 0, for 0 < x < 0.5, and (2.72) holds, in order to prove (2.86) it is
sufficient to prove that

g'(c) >0, forany1l < B <4. (2.88)
From statements (i) and (iii) of Lemma 2.1 we have
g'c)>Hn(c)=0, 1<B<4

and so (2.88) is true.
In addition, from (2.81) and (2.82), in order to prove (2.87), it is sufficient to prove that

Xo<d (2.89)
and

H(d) >0 forany1 <A <4, 1<B<4. (2.90)
From (2.38), (2.42) and (2.43) we get

- V17

5
R(B) < R(1), for1<B<4 and —1 <x <0.373. (2.91)

Using (2.33), (2.34) and (2.91) we get
5—4/17

g <-21—e™+e*(1—-2x), 1<B<4and —a <x<0.373,
and since from the proof of statement (iii) of Lemma 2.1, d = 0.372132, we have

gd) < —2(1—e% +e 91 —2d) = —0.445204 < 0. (2.92)

Relations (2.73) and (2.92) imply that (2.89) is true.
In addition, from statements (ii) and (iii) of Lemma 2.1 we have

H() >F(d) =0, 1<A<4, 1<B<4

and so (2.90) is true.
From relations (2.73), (2.82), statements (i), (ii) of Lemma 2.1 and since 0.19 < x; < xg < X, < 0.373, we get that

g XHX) < W(X)F(x), forxy <x < x;. (2.93)

Using statement (iv) of Lemma 2.1, relations (2.75), (2.86), (2.87), (2.93), and since Xy < x;, we get that our claim (2.85) is
true.
Finally, from (2.73), (2.75), (2.82) and since x, < x, we get that

X) < orx; < x < 0.5. .
G(x) <0 fi 0.5 (2.94)

Relations (2.83)-(2.85) and (2.94) imply that x is the unique solution of equation G(x) = 0, such thatx € (0, 0.5),and so (x, ¥)
is the unique positive solution of system (2.65) such that x, y € (0, 0.5). This completes the proof of the proposition. [0

In the last proposition we study the convergence of the positive solutions of system of difference equations (1.2).
Proposition 2.3. Consider system (1.2). Let (x5, yn) be a solution of (1.2) such that (1.3) are satisfied. Then the following
statements are true:

(i) If (2.66) are satisfied, the solution (x,, y,) tends to the zero equilibrium (0, 0) of (1.2) asn — oo.
(ii) Suppose that (2.28) are satisfied and there exists an m € N such that for n > m either

Xn < X, Yn <y (2.95)
or
Xn > X, Yn=. (2.96)

hold. Then (x,, y,) tends to the unique positive equilibrium (x, y) of (1.2)asn — oo.
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Proof. (i) From (1.2), (1.3),(2.2),(2.7) and (2.66) we get

Xnp1 < (I—y)(A—e™),  y<(—x)A—eP), n=0,1,....
Then from (1.3), (2.2), (2.7), (2.66) and Lemma 2.1 of [4] we have

Xn+1 < Yn, Y41 <Xp, n=0,1,... (2.97)
which imply that x,,,, Xan+1, Yan, Yont+1 are decreasing sequences. Therefore, there exist

lim x5, = lp, lim X1 =1, lim y, =mg, lim yy,q = my. (2.98)

n—00 n—00 =00 n—00
Using (2.2), (2.7) and (2.98) we get

0<ly,ly,mg,m < 1. (2.99)
Relations (2.97) and (2.98) imply that

h<mg, lh<my, mg=<h, m =<l
and so

Iy =mg, lg=m;. (2.100)
In addition, from (1.2), (2.98) and (2.100) we get

h=(0—-lh—IDA—e™), =1 —1y— )1 —e o), (2.101)

First, suppose that Iy = 0 (resp. l; = 0), then from (2.101) we get l; = (1 —[;)(1 — e~ (resp. [y = (1 — Ip) (1 — e~4l0))
and so using (2.66), (2.99) and Lemma 2.1 of [4] we get [; = O (resp. lp = 0).
Now, suppose that

lp #0, I #0 (2.102)
then from (2.101) we get that

1T—e ™ 1—e
= : (2.103)

L lo

1—e &

e
fx) = , €>0,x>0, (2.104)
X

then since e* > 1 + cx we get

= GFEDETT
X

and so f is a decreasing function. Therefore, from (2.66), (2.99), (2.102) and (2.103), we have I; = Iy and from (2.100) we get
that my; = mg. Hence, there exist the lim,_, o, X;;, lim,_, o . From statement (i) of Proposition 2.2 we get thatly = [, = 0
which contradicts to (2.102). Hence, from (2.100) [y = I; = mg = m; = 0 and so lim,_, o, X; = lim,_ oy, = 0. This
completes the proof of statement (i).

(ii) Suppose that (2.95) are satisfied. Using (1.2), (2.95) and since from statement (ii) of Proposition 2.2, %, y, € (0, 0.5),
we obtain that

X = (1=20)A—e™),  yog >0 =200 —e ™), n=m+1,m+2....
Then using Lemma 2.7 of [4], (2.2) and (2.95), it follows that

0

- (1 —e 1— e An X
Xosr > (1= 29)(1 — e ((1 _(;Ay)) - ;2((1 _‘;Ay)) > %yn. (2.105)

(1—ePm) _(Q—e™) 'y

> (1-2%)(1 —e & — = > Txp. 2.106

Yn+1 = ( )( ) (] — e—B") (1 — e—B") — “4n ( )
Then relations (2.105) and (2.106) imply that

Xn1 = Xn—1, Ynt1 = Yn-1, n=1,2,... (2.107)

Therefore, (2.98) are satisfied. From (2.2), (2.7), (2.98) and (2.107) we get

0 <lp,li,my,m; < 1.
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Using (2.98) and (2.105), (2.106) and (2.107) we take

X bY y
lp > —my, i = —mo, mg > J:/11, my > glo
y y X X
which imply that
X X
lo = =my, L = =mo. (2.108)
In addition, from (1.2) and (2.98) we get
m=0-lp—1)NA—eB0)  myg= (-1 —1l)(1—eB). (2.109)

So relations (2.108) and (2.109) imply that

X —Bm; %
my = (1_(m0+m1)3:/> (1—e 1)

! ) (2.110)
my = (1 — (Mg + ml)):/) (1—e M),
Then from (2.110) we get
et 1ot (2.111)
m; B me ‘

Since function f, defined in (2.104), is a decreasing function, from (2.111) we take m; = mg. Then from (2.108) it is obvious
that Iy = Iy. Since from the statement (ii) of Proposition 2.2 (x, y) is the unique positive equilibrium of (1.2), the proof of
this statement is completed. This completes the proof of the proposition. O

Finally, we give the following open problem.

Open problems. Study the asymptotic behavior of the positive solutions of the system of difference equations

k—1 k—1
Xnp1=(1— Zy”—f 1—e™),  ya=|1- an_j (1—e®n), ke{3,4,..).
j=0 Jj=0
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