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Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated
with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure
include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-
Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genesmay not be themost suitable bio-
markers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-
on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose–coursemi-
croarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression
immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radia-
tion exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of
radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation
level. This report includes raw gene expression data files from the resulting microarray experiments from all
three radiation levels ranging from a lower, typical exposure than an astronautmight see (0.3 Gy) to high, poten-
tially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus
(GEO), accession GSE64375.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Direct link to deposited data

Data is available in the Gene Expression Omnibus (GEO) [1,2] acces-
sion GSE64375 through the direct link http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE64375

2. Value of the data

• Available data on transcriptional profiling of ionizing radiation expo-
sure is sparse at best and this dataset provides novel data on immedi-
ate transcriptional responses for both coding and non-coding RNAs at
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Concentration and purity data for microarray samples.

Sample
Number

Volunteer
Number

Radiation
Level

Concentration
ng/ul

260/280 260/230 RIN

1 1 0.0 Gy 81 2.08 2.20 8.20
2 2 0.0 Gy 99 2.09 2.02 5.90
3 3 0.0 Gy 93 2.08 2.13 6.60
4 4 0.0 Gy 62 2.08 2.05 7.90
5 1 0.3 Gy 67 2.06 2.14 8.30
6 2 0.3 Gy 130 2.08 2.23 5.40
7 3 0.3 Gy 97 2.03 2.04 6.70
8 4 0.3 Gy 68 2.08 2.14 7.30
9 1 1.5 Gy 68 2.06 2.19 7.90
10 2 1.5 Gy 167 2.08 2.13 6.50
11 3 1.5 Gy 99 2.09 2.13 6.20
12 4 1.5 Gy 77 2.07 2.18 7.50
13 1 3.0 Gy 62 1.99 2.06 7.30
14 2 3.0 Gy 88 2.11 2.06 6.90
15 3 3.0 Gy 94 2.09 2.02 6.70
16 4 3.0 Gy 68 2.10 2.04 6.80
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three distinct levels of radiation: 0.3 Gy (low), 1.5 Gy (medium), and
3.0 Gy (high).

• Immediate transcriptional response biomarkers to radiation exposure
can be elucidated by combining the radiation exposure data and
determining common transcriptional responses.

• Dose-specific transcriptional responses immediately following radia-
tion exposure can be determined using the available dataset which
can be used to extract sensitive and specific biomarkers.

• Identification of appropriate biomarkers for general radiation expo-
sure as well as dose-dependent markers found within blood plasma
samples makes it possible to design appropriate diagnostic tests for
measuring radiation exposure. Such a test could be employed on
long-term space flights to diagnose whether or not an astronaut has
been exposed to radiation and at what level so appropriate treatment
options can be explored.

3. Experimental design, materials and methods

3.1. Experimental design

All procedures were performed in accordance with published NASA
and NIH Guidelines, the University of Louisville Institutional Review
Board (IRB), and the University of Louisville Institutional Biosafety Com-
mittee (IBC). In this study, we sought to understand transcriptional
changes in human blood samples resulting from exposure to three dif-
ferent levels of radiation. The experimental design consisted of blood
draws from four volunteers which was separated into four samples.
Blood from each volunteer was then exposed to 0.0 Gy, 0.3 Gy, 1.5 Gy,
and 3.0 Gy of radiation independently as described in Section 3.2.
Table 2
Sample information.

Sample number Sample name CEL file

1 SAMPLE_0.0Gy_1h-1 PS_Vol1_0.0GY.CEL
2 SAMPLE_0.0Gy_1h-2 PS_Vol2_0.0GY.CEL
3 SAMPLE_0.0Gy_1h-3 PS_Vol3_0.0GY.CEL
4 SAMPLE_0.0Gy_1h-4 PS_Vol4_0.0GY.CEL
5 SAMPLE_0.3Gy_1h-1 PS_Vol1_0.3GY.CEL
6 SAMPLE_0.3Gy_1h-2 PS_Vol2_0.3GY.CEL
7 SAMPLE_0.3Gy_1h-3 PS_Vol3_0.3GY.CEL
8 SAMPLE_0.3Gy_1h-4 PS_Vol4_0.3GY.CEL
9 SAMPLE_1.5Gy_1h-1 PS_Vol1_1.5GY.CEL
10 SAMPLE_1.5Gy_1h-2 PS_Vol2_1.5GY.CEL
11 SAMPLE_1.5Gy_1h-3 PS_Vol3_1.5GY.CEL
12 SAMPLE_1.5Gy_2h-4 PS_Vol4_1.5GY.CEL
13 SAMPLE_3.0Gy_2h-1 PS_Vol1_3.0GY.CEL
14 SAMPLE_3.0Gy_2h-2 PS_Vol2_3.0GY.CEL
15 SAMPLE_3.0Gy_2h-3 PS_Vol3_3.0GY.CEL
16 SAMPLE_3.0Gy_2h-4 PS_Vol4_3.0GY.CEL
3.2. Sample preparation

Whole blood was drawn from four (4) volunteers using a Safety
Winged IV blood draw set (Exel International, St. Petersburg, FL) in
7-ml lavender topped Ethylenediamineteraacetic acid (EDTA)
anticoagulant-containing vacutainers. Blood samples were aliquoted
and kept at room temperature throughout the radiation and white
blood cell (WBC) isolation process.

Whole blood sampleswere radiated at the Kentucky Lion Eye Center
using a Gammacell 1000 Elite (Cs-137) (Best Theratronics Ltd., Ottawa,
Canada) for 0 s (control— 0.0 Gy exposure), 3 s (0.30 Gy exposure), 16 s
(1.5 Gy exposure), or 32 s (3.0 Gy exposure).

Approximately 30 min after completion of the radiation cycle, red
blood cells (RBC) were lysed by adding 15 ml of NH4Cl RBC lysis buffer
for each ml of whole blood (1:15 v/v dilution) in order to isolate
leukocytes. The tubes were agitated for 5 min on a rocker platform
and centrifuged for 5 min at 1500 RPM at room temperature. Cells
were suspended in 10 ml of phosphate-buffered saline (PBS) and
centrifuged again twice for 5 min at 1500 RPM. WBCs were suspended
in 2 ml PBS, equivalent to the initial volume of the whole blood. WBCs
were centrifuged 5 min at 1500 rpm. Supernatant was discarded and
cell pellets were suspended in 600 ul RLT lysis buffer (Qiagen, Venlo,
The Netherlands) and tubes were vortexed vigorously and stored at
−70 °C until RNA purification. Purification of total RNA was performed
using the RNAeasyMini Kit (Qiagen). Optional on-columnDNase diges-
tion was performed to eliminate genomic DNA contamination. Total
RNA was eluted in 60 ul of RNase-free water. The quantity analysis of
the total RNA was performed with a Nanodrop spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE). The quality of the total
RNAwas checked using an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Inc., Santa Clara, CA) (Table 1).

Biotinylated cDNAwere prepared according to the standard protocol
for Affymetrix® GeneChip®WT Expression protocol (Affymetrix® Inc.,
Santa Clara, CA) from 100 ng total RNA, which includes an Ambion WT
Expression kit followed by a GeneChip®WT Terminal Labeling and Hy-
bridization kit. Following fragmentation, microarrays were hybridized
at the University of Louisville Genomics Core Facility in a single batch.
cDNA were hybridized for 16 h at 45 °C to Affymetrix® GeneChip®
Human Gene 1.0 ST v1 Arrays (GEO platform GPL6244) according to
the GeneChip® WT Terminal Labeling and Hybridization User Manual
from Affymetrix®.
3.3. Data acquisition

GeneChips® were scanned using an Affymetrix® GeneChip® Scan-
ner 3000 7G (Affymetrix®) and the GeneChip® Command Console®
software version 3.1 (Affymetrix®), resulting in 16 raw CEL files
Volunteer number Dose GEO sample ID

1 0.0 Gy GSM1569806
2 0.0 Gy GSM1569807
3 0.0 Gy GSM1569808
4 0.0 Gy GSM1569809
1 0.3 Gy GSM1569810
2 0.3 Gy GSM1569811
3 0.3 Gy GSM1569812
4 0.3 Gy GSM1569813
1 1.5 Gy GSM1569814
2 1.5 Gy GSM1569815
3 1.5 Gy GSM1569816
4 1.5 Gy GSM1569817
1 3.0 Gy GSM1569818
2 3.0 Gy GSM1569819
3 3.0 Gy GSM1569820
4 3.0 Gy GSM1569821

ncbieo:GSM1569806
ncbieo:GSM1569807
ncbieo:GSM1569808
ncbieo:GSM1569809
ncbieo:GSM1569810
ncbieo:GSM1569811
ncbieo:GSM1569812
ncbieo:GSM1569813
ncbieo:GSM1569814
ncbieo:GSM1569815
ncbieo:GSM1569816
ncbieo:GSM1569817
ncbieo:GSM1569818
ncbieo:GSM1569819
ncbieo:GSM1569820
ncbieo:GSM1569821


Table 3
Number of differentially expressed genes (DEGs) detected by Limma at p ≤ 0.05 for low
(0.3 Gy vs. 0.0 Gy), mid (1.5 Gy vs. 0.0 Gy) and high (3.0 vs. 0.0 Gy) radiation levels.

DEG Type Low radiation Mid radiation High radiation

Up 223 165 202
Down 216 238 292
Combined 439 403 494
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which were subsequently submitted to GEO (Table 2). These CEL files
were processed in RStudio version 0.98.501) [3] using R (version 3.0.1
2013-05-16 “Good Sport”) [4] and Bioconductor packages [5]. CEL files
were pre-processed and normalized in R using the oligo package [6]
and robust multichip averaging (RMA) [7]. CEL files were organized
into a single category for comparison, based on dose-dependent re-
sponses at an early time point averaging roughly 1 h post-exposure.
Low radiation is defined as 0.3 Gy; mid radiation as 1.5 Gy; and high ra-
diation as 3.0 Gy.

Differentially expressed genes (DEGs), defined as Affymetrix® tran-
script sets, were determined using Limma [8] and a p-value cutoff of
0.05. Using these levels, approximately 400–500 differentially DEGs
were determined at each radiation level, relative to control (Table 3).
Many of these DEGs appear to be specific to a particular level of radia-
tion exposure, while a small number are shared as general radiation re-
sponse biomarkers. Further analysis of these genes based on categorical
enrichments was performed using categoryCompare [9] (results not
shown).

3.4. Expression of radiation-modulated biomarkers

Several genes have previously been considered as potential bio-
markers for radiation exposure, including most prominently γH2AFX,
TP53, and CDKN1A. Phosphorylation of H2AFX has been used in assays
to determine radiation exposure due to its role in DNA double-stranded
break repair [10–14] while TP53 is known to function as a transcription
factor which is radiation-modulated [15–20] and CDKN1A is a down-
stream target of TP53 which regulates progression through the cell
Fig. 1.Dose-dependent gene expression patterns for CDKN1A, H2AFX, and TP53. At a tran-
scriptional level, only CDKN1A shows a response that could be used as a biomarker. Phos-
phorylation of H2AFX cannot be measured transcriptionally, and TP53 shows only a slight
(statistically insignificant) change which results in statistically significant downstream
effects.
cycle [21–23]. A plot of the dose-dependent changes in expression of
these three biomarkers (Fig. 1) illustrates that two of the three may
not be the best to use at a transcriptional level, due to the lack of
measurement of protein modifications of H2AX as well as low de-
tectable changes of TP53 which may still affect downstream
targets [16]. Taken together, this illustrates the potential value of
this dataset in detection of either independent or sets of biomarkers
for ionizing radiation exposure at low, mid, and high radiation
levels.
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