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TREM and TREM-like receptors are a structurally similar protein family encoded by genes clustered on
chromosome 6p21.11. Recent studies have identified a rare coding variant (p.R47H) in TREM2 that confers
a high risk for Alzheimer’s disease (AD). In addition, common single nucleotide polymorphisms in this
genomic region are associated with cerebrospinal fluid biomarkers for AD and a common intergenic
variant found near the TREML2 gene has been identified to be protective for AD. However, little is known
about the functional variant underlying the latter association or its relationship with the p.R47H. Here,
we report comprehensive analyses using whole-exome sequencing data, cerebrospinal fluid biomarker
analyses, meta-analyses (16,254 cases and 20,052 controls) and cell-based functional studies to support
the role of the TREML2 coding missense variant p.S144G (rs3747742) as a potential driver of the meta-
analysis AD-associated genome-wide association studies signal. Additionally, we demonstrate that the
protective role of TREML2 in AD is independent of the role of TREM2 gene as a risk factor for AD.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Genome-wide association studies (GWAS) are a very powerful
approach for identification of novel loci associated with disease
status or other complex traits. However, these single nucleotide
polymorphisms (SNPs) are usually not the functional variants
driving the association and, in many cases, regional linkage
disequilibrium (LD) prevents identification of a single candidate
gene in the region. Often, additional studies are required to
demonstrate unambiguously that the gene and/or variant impli-
cated in disease risk is functionally related to pathogenesis.

Recently, the International Genomics of Alzheimer’s Project
(IGAP) identified 11 new loci (p < 10�8) associated with risk for
Alzheimer’s disease (AD), and 13 additional suggestive loci (p value
between10�6 and 10�8) (Lambert et al., 2013). Among the latter
group, there is an inter-genic SNP (rs9381040; p < 6.3 � 10�7)
located 5.5 Kb downstream from TREML2 and 24 Kb upstream from
TREM2. The TREM and TREM-like receptor genes clustered on chro-
mosome 6p21.1 (Ford and McVicar, 2009) have different patterns of
LD among them (Cruchaga et al., 2013). This genomic region has
previously been implicated in genetic risk for AD (Benitez et al.,
2013; Bertram et al., 2013; Cruchaga et al., 2013; Guerreiro et al.,
2013; Jonsson et al., 2012; Reitz and Mayeux, 2013). A low fre-
quencymissense variant inTREM2 (p.R47H,minorallele frequency¼
0.003) was reported to substantially increase risk for AD (Benitez
et al., 2013; Guerreiro et al., 2013). SNPs in this region were also
found to be associatedwith a cerebrospinalfluid (CSF) biomarker for
AD (phospho-tau181 levels) (Cruchaga et al., 2013). Because of the
design of the IGAP study (a meta-analysis) and the low frequency of
the TREM2 variant, it was not possible to determine whether the
GWAS signal of this variant (rs9381040) was independent of the
TREM2-p.R47H variant. In this study, we used exome-sequencing
data to identify the most likely functional variant in TREML2
responsible for the GWAS signal and to determine whether this
signal is independent of TREM2-p.R47H (rs75932628) variant.
2. Methods

2.1. Exome sequencing Knight-Alzheimer’s Disease Research Center
(ADRC)

Enrichment of coding exons and flanking intronic regions was
performed using a solution hybrid selection method with the Sure-
Select human all exon 50 Mb kit (Agilent Technologies, Santa Clara,
CA, USA) following the manufacturer’s standard protocol on 46 un-
related AD cases and 39 unrelated controls from the Knight-ADRC.
This was performed by the Genome Technology Access Center at
Washington University in St Louis (https://gtac.wustl.edu/). The
capturedDNAwas sequenced by paired-end reads on the HiSeq 2000
sequencer (Illumina, San Diego, CA, USA). Raw sequence reads were
aligned to the reference genome National Center for Biotechnology
Information (NCBI) 36/hg18 by using Novoalign (Novocraft Technol-
ogies, Selangor, Malaysia). Base and/or SNP calling was performed
using SNP SAMtools (Li et al., 2009). SNP annotation was carried out
using version 5.07 of SeattleSeq Annotation server (see URL) (Benitez
et al., 2011). On average, 95% of the exome had fold coverage >8.

2.2. UK-National Institute on Aging (UK-NIA) Dataset

A description of the UK-NIA dataset can be found in Guerreiro
et al. (2013). Briefly, this dataset includes whole-exome
sequencing data from 143 AD cases and 183 controls (Table 1).

2.3. Alzheimer’s disease genetic consortium methods

Data used in the preparation of this articlewere obtained from the
Alzheimer’s disease genetic consortium (ADGC). A description of the
samples included in the study as well as the methods used can be
found inNaj et al. (2011). Imputeddata from10,067ADcasesand9606
controls from the ADGC were used in this study (Naj et al., 2011).
Genome-wide imputation was performed per cohort using MACH
software with HapMap phase 2 (release 22) CEPH Utah pedigrees
reference haplotypes and genotype data passing quality control as
inference. Imputation quality was determined as r2 and only SNPs
imputed with r2 � 0.50 were included in the analysis. A multivariate
logistic regressionwasperformedtoevaluate theassociationbetween
genetic markers and risk for late-onset AD (LOAD) adjusting for age,
gender, population substructure, and study-specific effects.

2.4. For use of genetic and environmental risk for Alzheimer’s
disease genotype data from “the 610 group”

Data used in the preparation of this article were obtained from
the Genetic and Environmental Risk for Alzheimer’s disease (GERAD)
Consortium. The imputed GERAD sample comprised 3177 AD cases
and 974 healthy elderly (age>70) control subjects with available age
and gender data. Cases and elderly screened control subjects were
recruited by the Medical Research Council (MRC) Genetic Resource
for AD (Cardiff University; Institute of Psychiatry, London; Cambridge
University; Trinity College Dublin), the Alzheimer’s Research UK
Collaboration (University of Nottingham; University of Manchester;
University of Southampton; University of Bristol; Queen’s University

https://gtac.wustl.edu/


Table 1
TREML2 variants identified by exome-sequencing

Location in
chromosome 6

rs# AA change EVS, MAF AD(n¼189) Control
subjects
(n ¼ 225)

OR (95% CI) p value LD with
rs9381040

Condel Sift Polyphen

Hets MAF Hets MAF r2 D0

41166154 rs77704965 D23G 0.22 0 0% 4 2% d 0.17 0.018 1 Neutral Tolerated Benign
41166149 rs62396355 V25A 5.05 6 3% 15 7% 0.45 (0.17e1.2) 0.11 0.018 1 Neutral Tolerated Benign
41166075 rs35512890 M50V d 16 8% 27 12% 0.67 (0.35e1.3) 0.24 d d Neutral Tolerated Benign
41162562 rs61734887 S129T 4.52 12 6% 22 10% 0.62 (0.30e-1.3) 0.2 0.051 1 Neutral Tolerated Benign
41162538 d L137H d 0 0% 1 0% d 0.35 d d Neutral Tolerated Benign
41162518 rs3747742 S144G 30.44 82 43% 104 47% 0.89 (0.6e1.31) 0.56 0.67 0.86 Neutral Tolerated Benign
41162371 rs145455750 T193A 0.27 0 0% 1 0% d 0.35 d d Neutral Tolerated Benign
41162204 rs115991880 S248A 0.34 2 1% 5 2% 0.47 (0.09e2.45) 0.36 0 0 Deleterious Deleterious Benign

Coding variants in TREML2 were extracted from 46 unrelated AD cases and 39 unrelated controls from the Knight-ADRC study and from 143 unrelated AD cases and 186
unrelated controls from the NIA-UK exome-sequencing study. The r2 and D0 values reported here are coming from the Pilot 1 of the 1000 K genome project.
Key: AD, Alzheimer’s disease; CI, confidence interval; LD, linkage disequilibrium; OR, odds ratio.
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Belfast; the Oxford Project to InvestigateMemory and Ageing, Oxford
University); Washington University, St Louis, United States; medical
research council PRION Unit, University College London; London and
the South East Region AD project, University College London;
Competence Network of Dementia, and Department of Psychiatry,
University of Bonn, Germany; the National Institute of Mental Health
AD Genetics Initiative. A number of 6129 control subjects were
drawn from large existing cohorts with available GWAS data,
including the 1958 British Birth Cohort (http://www.b58cgene.sgul.
ac.uk), the KORA F4 Study and the Heinz Nixdorf Recall Study. All
AD cases met criteria for either probable (National Institute of
Neurological and Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Association [NINCDS-
ADRDA], Diagnostic and Statistical Manual of Mental Disorders
[DSM-IV]) or definite (Consortium to Establish a Registry for Alz-
heimer’s Disease [CERAD]) AD. All elderly controls were screened for
dementia using the MMSE or ADAS-cog, were determined to be free
from dementia at neuropathological examination or had a Braak
score of 2.5 or lower. Genotypes from all cases and control subjects
were previously included in the AD GWAS by Harold et al. (2009).
Imputation of the dataset was performed using IMPUTE2 and the
1000 genomes (http://www.1000genomes.org/) Dec2010 reference
panel (NCBI build 37.1). The imputed data was then analyzed using
logistic regression including covariates for country of origin, gender,
age, and 3 principal components were obtained with EIGENSTRAT
(EIGENSOFT 4.2) (Patterson et al., 2006) software based on individual
genotypes for the GERAD study participants.
2.5. European Alzheimer’s disease initiative consortium

All AD cases were ascertained by neurologists from Bordeaux,
Dijon, Lille, Montpellier, Paris, Rouen, and were identified as French
Caucasian (Dreses-Werringloer et al., 2008; Group, 2003). Clinical
diagnosis of probable ADwas established according to the DSM-III-R
and NINCDS-ADRDA criteria. Control subjects were selected from the
3C Study (Group, 2003). This cohort is a population-based, prospec-
tive (7-years follow-up) study of the relationship between vascular
factors and dementia. It has been carried out in 3 French cities:
Bordeaux (southwest France), Montpellier (southeast France), and
Dijon (central eastern France). A sample of non-institutionalized,
over-65 subjects was randomly selected from the electoral rolls of
each city. Between January 1999 and March 2001, 9686 subjects
meeting the inclusioncriteria agreed toparticipate.After recruitment,
392 subjects withdrew from the study. Thus, 9294 subjects were
finally included in the study (2104 in Bordeaux, 4931 in Dijon, and
2259 in Montpellier). Genomic DNA samples 38 of 7200 individuals
were transferred to the French Centre National de Génotypage. First
stage samples that passed DNA quality control were genotyped with
Illumina Human 610-Quad BeadChips (n ¼ 452). At the end, we
removed 308 samples because theywere found to befirst- or second-
degree relatives of other study participants, or were assessed non-
European descent based on genetic analysis using methods
described in Heath et al. (2008). In this final sample, at 7 years of
follow-up, 459 individuals suffered from AD with 97 prevalent and
362 incident cases. These AD cases were included as cases in the Eu-
ropean Alzheimer’s disease initiative (EADI) discovery dataset. We
retained the other individuals as control subjects (n ¼ 6017). The
imputation was performed using 1000 Genomes multi-ethnic data
(1000 G phase 1 integrated variant set release v3) as reference panel.
Imputationwasperformed in2 steps:pre-phasingwith SHAPEIT (v2),
followed by imputation with IMPUTE2. SNPs are used in the impu-
tation process if call rate >98%, Hardy-Weinberg equilibrium (HWE)
p value > 1e-6, minor allele frequency (MAF) > 1.

2.6. CSF levels dataset

A description of the CSF dataset used in this study can be found in
Cruchaga et al. (2013) and data included 1269 unrelated individuals
recruited through the Knight-ADRC at Washington University (n ¼
501, 73% CDR ¼ 0), the Alzheimer’s Disease Neuroimaging Initiative
(n ¼ 394, 27% Clinical Dementia Rating [CDR] ¼ 0), a biomarker
consortium of Alzheimer disease centers coordinated by the Univer-
sity of Washington (n ¼ 323, 61% CDR ¼ 0), and the University of
Pennsylvania (UPenn) (n¼ 51, 2% CDR¼ 0). Briefly, CSF tau, phospho-
tau-181 (ptau), and amyloid beta (Ab42) levels were from research
participants enrolled in longitudinal studies at the Knight-ADRC,
ADNI, University of Washington, and University of Pennsylvania. CSF
collection and Ab42, tau, and ptau181measurementswere performed
as described previously (Fagan et al., 2006). The samples were geno-
typed using Illumina chips. Cases received a diagnosis of dementia of
theAlzheimer’s type,usingcriteriaequivalent to theNational Institute
of Neurological and Communication Disorders and Stroke-Alz-
heimer’s Disease and Related Disorders Association for probable AD
(McKhann et al.,1984). Controls received the same assessment as the
cases but were nondemented. All individuals were of European
descent and written consent was obtained from all participants.

2.7. Statistical analyses

We performed multivariate logistic regression to evaluate the
association between genetic markers and risk for LOAD adjusting for
age, gender, population substructure, and study specific effects using
PLINK (http://pngu.mgh.harvard.edu/purcell/plink/). Conditional
analysis was performed to identify additional independent signals by
conditioning on the top case-control GWAS hits. We first estimated
the odds ratios for SNPs across cohorts. Thesemodels calculate crude

http://www.b58cgene.sgul.ac.uk
http://www.b58cgene.sgul.ac.uk
http://www.1000genomes.org/
http://pngu.mgh.harvard.edu/purcell/plink/


Fig. 1. Odds ratios for rs9381040 (IGAP hit), rs3747742 (TREML2, p.S144G), and rs75932628 (TREM2, R47H) among AD patients, as compared with control subjects, at each study
center and overall. Shown are the combined estimates of the AD risk of possessing rs9381040 (IGAP hit), combined odds ratios analyses were homogeneous (p ¼ 0.69, by Woolf test
for heterogeneity). Panel (A), the rs3747742 (TREML2, p.S144G) (p ¼ 0.81, by Woolf test for heterogeneity), panel (B), the rs75932628 (TREM2, p.R47H) (p ¼ 0.97, by Woolf test for
heterogeneity), panel (C), rs75932628 (TREM2, p.R47H) after conditioning for rs3747742 (TREML2, p.S144G) panel (D). The triangles represent ADGC study, the inverted triangles
represent ARUK study, squares represent GERAD study, circles represent EADI study and the diamonds represent the summary odds ratio. The horizontal lines indicate the 95%
confidence intervals of the estimates. Abbreviations: ADGC, Alzheimer’s disease genetic consortium; ARUK, Alzheimer’s Research UK; EADI, European Alzheimer’s disease initiative;
IGAP, international genomics of Alzheimer’s project; GERAD, genetic and environmental risk for Alzheimer’s disease.
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odds ratios and confidence intervals from counts of heterozygous in
case patients and control subjects in each study. Thenweperformed a
fixed-effect model to combine the odds ratios from study-specific
estimates into a summary measure. No multiple-testing correction
was used in our analyses. The heterogeneity of effects was evaluated
using Woolf test for heterogeneity (Woolf, 1955). Meta-analysis was
conducted using the META package (http://www.stats.ox.ac.uk/
wjsliu/meta.html) in R (version 3.0.1).

Association of CSF ptau with the genetic variants was analyzed
as described previously (Cruchaga et al., 2010, 2011; Kauwe et al.,
2011). Briefly, CSF ptau values were log transformed to approxi-
mate a normal distribution. Because the CSF levels were measured
using different platforms (Innotest plate ELISA vs. AlzBia3 bead-
based ELISA, respectively), we were not able to combine the raw
data. We extracted from the log-transformed value, the mean
within each series for the log-transformation. No significant dif-
ferences in the transformed CSF values of the different series were
found. We used SAS (version 9.2) to analyze the association of SNPs
with CSF biomarker levels. Age, gender, site, and the first 3 principal
components were included as covariates. We also performed con-
ditional analyses by including several variants in the model.

2.8. Genotyping

rs9381040 and rs3747742 were extracted from the GWAS data
(Cruchaga et al., 2013), and confirmed by direct genotyping. The
TREM2-p.R47H was genotyped using KASP genotyping assay (LGC
Genomics), as previously described (Benitez and Cruchaga, 2013;
Cruchaga et al., 2009, 2010, 2012) on 2000 cases and control sub-
jects from the Knight-ADRC.

2.9. Cell-based analysis

Primary astrocytes and microglia were prepared from 2 litters
(16 pups) of P1 C57BL/6 mice. Individual mice were pooled and 12
replicate co-cultures were plated in 25 cm2
flasks. Co-cultures were

treated with 0.2 ng/mL of mouse interleukin-1 beta (IL-1b) (R&D
401-ML/CF) for 24 hours. Microglia was detached from the plate by
shaking at 125 rpm for 1 hour in a 37 �C incubator. RNA was
extracted using MiRNeasy mini kit (Qiagen 217004), according to
manufacturer’s instructions. The quantitative polymerase chain
reaction assays for mouse Trem2 (ID: Mm04209424), Treml2 (ID:
Mm01277362), and Saa3 (ID: Mm00441203) were obtained from
Life Technologies (NY, USA).
3. Results

Eight coding variants were validated in the TREML2 gene
(Table 1), which constitute the 53% (8/15) of the missense variants
reported for TREML2 gene in the Exome Variant server (release
ESP6500SI-V2) for European Americans. Only 3 variants exhibit a
MAF % higher than 1%: p.V25A (MAF ¼ 5%), p.T129S (MAF ¼ 4.5%),
and p.S144G (MAF ¼ 30%). Interestingly, according to our exome
sequencing results all these variants are more common in control
subjects than in AD cases, however they did not reach statistical
significance with our whole-exome sequence sample size, although
the three of them are more common in control subjects than AD
cases (Table 1). Interestingly, the missense variant p.S144G
(rs3747742) exhibited the highest LD (r2 ¼ 0.73, D0 ¼ 0.86) with the
GWAS SNP, rs9381040 (Table 1), and the higher MAF among the
validated missense variants in TREML2, which made it suitable for
further analysis. Next, we performed a meta-analysis of the data
from the ADGC, GERAD, EADI, and the Alzheimer’s Research UK;
studies (16,254 cases and 20,052 control subjects) we found that
the minor alleles of both rs9381040 (p ¼ 1.21 � 10�5; OR ¼ 0.92,
CI ¼ 0.88e0.95), and rs3747742 (p ¼ 8.66 � 10�5; OR ¼ 0.93, CI ¼
0.89e0.96) reduce risk for AD (Fig. 1, panel A and B). When
rs3747742 is included in a logistic regression model as a covariate,
rs9381040 is no longer significant (p ¼ 0.43), and vice-versa,

http://www.stats.ox.ac.uk/%7Ejsliu/meta.html
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indicating that these SNPs are tagging the same signal. In addition,
TREM2-p.R47H (rs75932628) was successfully imputed (imputation
quality score information ¼ 0.84 and 0.79) in the GERAD and EADI
studies, and it displays a strong association with AD risk (p ¼ 1.3 �
10�3; OR ¼ 1.92, CI ¼ 1.29e2.85) (Fig. 1, panel C). When rs3747742
or rs9381040 are included as covariates in a conditional analysis,
rs75932628 remains highly significant (p ¼ 1.27 � 10�4 and p ¼
1.19 � 10�4, respectively) (Fig. 1, panel D), suggesting that the
TREML2 and TREM2 signals are independent from each other.

We also performed a linear regression analysis for rs9381040
and rs3747742 with CSF levels of tau and ptau (n ¼ 1269 in-
dividuals) (Cruchaga et al., 2013). rs9381040 (p ¼ 4.11 � 10�4,
beta ¼ �0.02) and rs3747742 (p ¼ 1.4 � 10�4, beta ¼ �0.02) both
exhibit a strong association with CSF ptau levels. The respective
associations with CSF ptau are no longer significant when either
SNP is included as a covariate in the conditional analysis. These
results confirm via 2 independent datasets that the associations of
rs9381040 and rs3747742 with CSF biomarker levels and with AD
risk represent the same signal. The TREM2-p.R47H variant was also
genotyped in a subset of the CSF samples (n ¼ 835). In these
samples, 3 variants, rs9381040 (p ¼ 0.04, beta ¼ �0.02) (Fig. 2,
panel A), rs3747742 (p ¼ 0.02, beta ¼ �0.02) (Fig. 2, panel B), and
rs75932628 (p ¼ 0.0016, beta ¼ 0.2) (Fig. 2, panel C) demonstrate a
nominally significant associationwith CSF ptau levels. To determine
whether the TREML2 signal (rs3747742) is independent of TREM2-
p.R47H, we removed all of the p.R47H carriers from the analysis.
rs3747742 remained significantly associated with CSF ptau levels
(p ¼ 0.03) (Fig. 2, panel D). Furthermore, when TREM2-p.R47H was
included in the model as a covariate for rs3747742 analysis, the
association remained significant (p¼ 0.02), which suggests that the
TREM2 and TREML2 signals are independent. Importantly, these
associations confirmed the direction of the effect on CSF ptau
levels: the minor allele of rs3747742 is associated with lower ptau
Fig. 2. Association of TREM2 and TREML2 variants with CSF ptau levels. Panel (A) CSF ptau1
versus AA p ¼ 0.04. (Panel B) CSF ptau181 levels by rs3747742 genotype (TREML2, misse
rs75932628 genotype (TREM2, missense variant p.R47H). AG versus AA p ¼ 0.0016. Panel (D
GG versus AA excluding the variant p.R47H carriers p ¼ 0.03. The mean and the standard erro
Abbreviations: CSF, cerebrospinal fluid; IGAP, international genomics of Alzheimer’s project
levels (beta ¼ �0.02) and is predicted to be protective for AD risk
(OR ¼ 0.91; CI ¼ 0.86e0.97), while the minor allele of TREM2-
p.R47H is associated with an increased risk for AD (OR ¼ 1.91, CI ¼
1.85e1.97) and higher levels of CSF ptau (beta ¼ 0.2).

In addition, TREM and TREM-like receptors modulate the innate
immune response by either amplifying or dampening Toll-like re-
ceptor-induced signals, playing critical roles in fine-tuning the in-
flammatory response (Ford and McVicar, 2009). TREM and TREM-
like receptors demonstrate different patterns of expression and
are likely to play different roles in the inflammatory response. To
further understand the relative expression of TREM2 and TREML2,
we analyzed gene expression in primary mouse microglia and
astrocytes stimulated by IL-1b. Treatment of microglia with IL-1b
repressed expression of TREM2 (Fig. 3, panel A), but increased
expression of TREML2 (Fig. 3, panel B). The opposing effects of this
inflammatory cytokine on TREM2 and/or TREML2 expression is
consistent with our genetic data and with evidence that TREM2
and/or DAP12 antagonizes inflammatory signaling in microglia
while TREML2 is not coupled to DAP12 signaling and plays a pro-
inflammatory role (Ford and McVicar, 2009).

4. Discussion

In summary, these results demonstrate that the associations of
missense variants in TREM2 and TREML2 with AD risk are inde-
pendent. Moreover, our analyses suggest that the AD-associated
GWAS signal is likely driven by the TREML2 coding missense
variant p.S144G (rs3747742); it results in a similar odds ratio to
rs9381040. We also validated 2 other coding variants p.V25A and
p.S129T in TREML2 gene in moderate LD (r2 ¼ 0.05 and D0 ¼ 1) with
the GWAS SNP, which both exhibited a higher frequency among
control subjects than in AD cases (Table 1). However, for both var-
iants we only obtained data by whole-exome sequencing which
81 levels by rs9381040 genotype (IGAP meta-analysis most significant SNP). AG þ GG
nse variant p.S144G). AG þ GG versus AA p ¼ 0.02. Panel (C) CSF ptau181 levels by
) CSF ptau181 levels by rs3747742 genotype (TREML2, missense variant p.S144G). AG þ
r of the mean (SEM) for the normalized residuals CSF ptau181 levels are shown in blue.
; SNP, single nucleotide polymorphisms.



Fig. 3. Microglial expression of TREM2 and TREML2 show opposing effects in the
presence of IL-1b. TREM2 panel (A) and TREML2 panel (B) gene expression were
analyzed in primary mouse microglia and astrocytes activated by 0.2 ng/mL IL-1b for
24 hours. Induction of Saa3 expression panel (C) serves as a positive control for IL-1b
stimulated activation. Abbreviation: IL-1b, interleukin-1 beta.
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limited our analysis about the role that these variants may play in
the association of TREML2 with AD risk. To prove that these addi-
tional variants are associated with AD risk we will need a larger
sample size. Additionally, the purpose of this study was to find a
functional coding variant in the TREML2 gene that could explain the
association for TREML2 which was found in the recent IGAP meta-
analysis. Our data suggest that there is a coding variant in TREML2
that could explain the GWAS signal, but our data cannot rule-out of
the presence of functional variants outside of the coding region.

We conclude that at least 2 genes in this gene cluster influence
risk for AD: TREM2-p.R47H is associated with increased risk for AD
(OR ¼ 1.91, CI ¼ 1.85e1.97) and TREML2-p.S144G is associated with
reduced risk for AD (OR ¼ 0.91; CI ¼ 0.86e0.97). The mechanisms
by which these variants influence AD risk are not currently un-
derstood, but it has been suggested that modulation of microglial
activation might influence clearance of Ab (Benitez et al., 2011).
These results underline the importance of the inflammatory
response in modulating risk for AD and suggest that other genes in
this gene family may also harbor risk alleles for AD.
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