THE FIRING SQUAD SYNCHRONHRATION PROBLEM FOR GRAPHS

Yasuaki NISHITANI
Research Institute of Electrical Communication, Tohoku University, Sendai 980, Japan

Namio HONDA
Department of Electronics, Nagoya University, Nagoya 464, Japan

Communicated by A. Salomaa
Received October 1979

Abstract

In this paper, we give a solution of the Firing Squad Synchronization Problem for graphs. The synchronization times of solutions which have been obtained are proportional to the number of nodes of a graph. The synchronization time of our solution is proportional to the radius r_{G} of a graph G ($3 r_{G}+1$ or $3 r_{G}$ time units), where r_{G} is the longest distance between the general and any other node of \boldsymbol{G}. This synchronization time is misimum for an infinite number of graphs.

1. Introduction

The problem of synchronizing a finite (but arbitrarily long) one-dimensional array of finite automata, known as the firing squad synchronization problem, was proposed by Myhill in 1957 and Moore [10]. This problem was solved by Goto [2], Waksman [15], and Balzer [1], and they obtained the minimum synchronization time $2 n-2$ for an n-element array. The problem was generalized in many different ways by Moore and Longdon [11], Herman [3, 4], Rosenstiehl [13, 14], and Kobayashi [8, 9].

This paper deals with the firing squad synchronization problem for graphs, which was studied by Rosenstiehl [13, 14], Kobayashi [5, 6, 7], and R.Jmani [12]. Given a graph with a specified node and an finite automaton, we consider a network in which a copy of the finite automaton is placed on every node of the graph and these finite automata on the nodes are connected along every edge of the graph. The state of each finite automaton at time $t+1$ depends on its own state and those of its neighbours at time t. The problem consists in defining the structure of the finite automato. so that the automaton on the specified node, called the general, can causc all finite automata to enter a particular state, called the firing state, exactly at the same time.

The synchronization times of solutions which have been obtained, are proportional to the number n of nodes of a graph ($4 n-6$ in [13] and $2 n$ in [5,14]), except for Romeni's improved results for some special class of graphs. In this paper we
present a solution whose synchronization time is proportional to the radius r_{G} of a graph G (about $3 r_{G}$), where r_{G} is the longest distance between the specified node (the general) and any other node of the graph G. Note triat r_{G} is essentially different from and less than the number of nodes of the graph. The synchronization time of our solution is minimum for graphs whose generals are (informally speaking) at the center of the graphs. Our solution is based on the synchronization of a particular type of digraphs called 'quasi-circuit structures'.

2. Preliminaries

Throughout this paper, by d we denote some fixed posixive intezer. A digraph structure of valence d, or simply a digraph structure, is a 4-tuple $G=\left(X, U, x_{\mathrm{g}}, d\right)$, where X is a finite set of cells, x_{g} a particular cell in X called the general cell, and U a finite set of arcs of the form $(x, y, i)(x, y \in X, 1 \leqslant i \leqslant d)$ satisfying the condition: for each pair of y and i there is at most one arc of the form (x, y, i). If the e is an $\operatorname{arc}(x, y$, i) in U, a cell x is called the $[i$ th] predecessor of a cell y, [denoted by $y(i)]$. (See Fig. 1 (b).) If for a cell y and an integer $i(1 \leqslant i \leqslant d)$, there is no $\operatorname{arc}(x, y, i)$ in U, we say that the i th predecessor $y(i)$ of y does not exist.

A sequence of cells $\left[x_{0}, \ldots, x_{l}\right]$ of a digraph structure G is a path of length l from a cell x to a cell y, where $x_{0}=x, x_{l}=y, x_{i} \neq x_{i}$ for any i, j with $0 \leqslant i<j \leqslant l-1$, and x_{i-1} is a predecessor of x_{i} for each $i=1, \ldots, l$. A path $\left[x_{6}, \ldots, x_{l}\right]$ is said to be cyclic if $x_{0}=x_{l}$. The distance from a cell x to a cell y in G, denoted by $d_{G}(x, y)$, is the length of the shortest path from x to y. Especially, the distance from the general cell x_{g} to a cell x is denoted by $d_{G}(x)$. We denote $\max \left\{d_{G}(x) \mid x\right.$ is a cell of $\left.G\right\}$ by r_{G}, called the radius of G.

A digraph structure G is said to be connected if for any two cells x and y of G, there is at least one path from x to y. A digraph structure in which for any two cells x and y,

\Downarrow

(a)

(b)

Fig. 1. 4 digraph structure and ag af h structure.
if there is an $\operatorname{arc}(x, y, i)$, then there is an $\operatorname{arc}(y, x, j)$, is said to be symmetric. We call a connected symmetric digraph structure of valence d a graph structure of valence d, or simply a graph structure. We denote the class of ali graph structures of valence d by \mathscr{G}. Usually, in a graph structure we call the [ith] predecessor of a cell x the [i th] adjacent cell of x, and in figures of graph structures we represent each two opposite arcs by one undirected arc as shown in Fig. 1(a).

An automaton with d input terninals, or simply an automaton, is a 6 -tuple $M=(S$, $s_{\mathrm{e}}, s_{\mathrm{q}}, s_{\mathrm{g}}, s_{\mathrm{f}}, \lambda$), where
(1) S is a finite set of states,
(2) s_{e} is an element not in S [the external signal],
(3) s_{q}, s_{g}, and s_{f} are particular distinct elements in S [the quiescent state, the general state, and the firing state, respectively], and
(4) λ is a transition function from $S \times\left(S \cup\left(s_{\mathrm{e}}\right\}\right)^{d}$ into S such that $\lambda\left(s_{\mathrm{q}}, s_{1}, \ldots d_{\mathrm{d}}\right)=$ s_{q} if each of s_{1}, \ldots, s_{d} is either s_{q} or s_{e}.

Let G be a digraph structure ard let M be an automaton. We consider a network such that for each cell x of G, a copy of M is placed on x. In the network, the i th input terminal of the automaton on a cell x is connected with the output terminal of the automaton on the i th predecessor $x(i)$ of x if $x(i)$ exists and otherwise, open. Hereafter an automaton on a cell x will be also called a cell x. Formally the state of a cell x at time t, denoted by $s(x, t, G, M)$, is defined as follows. For $t=0, s(x, 0, G, M)$ is s_{g} or s_{q} according as $x=x_{\mathrm{g}}$ or not. For $t>0, s(x, t, G, M)$ is $\lambda\left(s(x, t-1, G, M), s_{1}\right.$, $\left.\ldots, s_{d}\right)$, where s_{i} is $s(x(i), t-1, G, M)$ if the i th predecessor $x(i)$ of x exists and is s_{e} otherwise. (See Fig. 1(b).)

We say that a cell x of a digraph structure G fires at time t by an automaton M if $s(x$, $\left.t^{\prime}, G, M\right) \neq s_{\mathrm{f}}$ for any $t^{\prime}<t$ and $s\left(x_{i}, G, M\right)=s_{\mathrm{f}}$. We say that a digrapin structure G fires at time t by an automaton M if all cells of G fires at time t by M. If there is such a time t, it is called the synchromization time of M for G and is denoted by $t(G, M)$.

Let \mathscr{D} be a subclass of digraph structures. An automaton M is called a solution of the firing squad synchronization problem for \mathscr{D}, or simply a solution for \mathscr{F}, if each digraph structure in \mathscr{D} fires by M.

3. A solution for \mathscr{G}

In this section, we give a solution for the class \mathscr{G} of all graph structures, called the $(3 r+1)$-solution. Its synchronization time for a graph structure G is $3 r_{G}+1$ time units. The principal idea is based on the synchronization of a particular type of digraph structures called quasi-circuit structures and the reduction of any graph structure to a quasi-circuit structure. In Section 3.1, we definc quasi-circuit structures and observe that their synchronization is reduced to the synchronization of circuit structures. In Section 3.2, we give the reduction of a graph structure to a quasi-circuit structure. In Section 3.3, we consider the synchronization of circuit structures and finally give the $(3 r+1)$-solution.

3.1. A quasi-circuit structure

A quasi-circuit structure of length n (and valence d) is a digraph structure $D_{n}=\left(X_{D}\right.$, $\left.U_{D}, x_{g}, d\right)$ such that each cell in X_{D} has at least one predecessor and X_{D} is partitioned into clisjoint nonempty subsets X_{0}, \ldots, X_{n-1} with $X_{0}=\left\{x_{g}\right\}$ such thi.t all predecessors of the cells in X_{k} are contained in X_{k-1} for $k=0, \ldots, n-1$ where $X_{-1}=X_{n-1}$.

Example 1. In Fig. 2(a), we give a quasi-circuit structure of length 8 . There are cyclic paths of length 8 (shown as bold arcs). Generally, in D_{n} there is at least one cyclic path, all cyclic paths have length n and pass through x_{g}, and for any ceil x, the length of every path from x_{g} to x is equal to $d_{D_{n}}(x)(<n)$.

Next we define a circuit structure of length n, denoted by $C_{n}=\left(X_{\mathcal{C}}, U_{C}, x_{0}, 1\right)$, as a digraph structure of valence 1 which consists of one cyclic path of length n. (See Fig. 2(b).)

Let $M=\left(S, s_{\mathrm{e}}, s_{\mathrm{q}}, s_{\mathrm{g}}, s_{\mathrm{f}}, \lambda\right)$ be an automaton with one input terminal. A modified automaton $M^{\prime}=\left(S^{\prime}, s_{\mathrm{e}}, s_{\mathbf{q}}^{\prime}, s_{\mathbf{g}}^{\prime}, s_{\mathrm{f}}^{\prime}, \lambda^{\prime}\right)$ of M is an automaton with d input terminal such that
(1) $S^{\prime}=S, s_{\mathrm{q}}^{\prime}=s_{\mathrm{q}}, s_{\mathrm{g}}^{\prime}=s_{\mathrm{g}}$, and $s_{\mathrm{f}}^{\prime}=s_{\mathrm{f}}$, and
(2) for any two states s and s^{\prime} in S^{\prime}, if $\left(s_{1}, \ldots, s_{d}\right) \in\left(\left\{s^{\prime}\right\} \cup\left\{s_{c}\right\}\right)^{d}-\left\{s_{e}\right\}^{d}$, then $\lambda^{\prime}(s$, $\left.s_{1}, \ldots, s_{d}\right)=\lambda\left(s, s^{\prime}\right)$.

Fig. 2. (a) A quasi-circuit struciure of length 8 and (b) a circuit structure of length 8.

Lemma 3.1. Let M be an automaton with one imput terminal and M^{\prime} a modified automaton of M. Let D_{n} and C_{n} be a quasi-circuit structure of length n and a circuit structure of length n respectively. Then for each cell x in X_{k} of $D_{n}, s\left(x, t, D_{n}, M^{\prime}\right)=s\left(x_{k}\right.$, $\left.t, C_{n}, M\right)$, where x_{k} is a cell of C_{n} with $d_{C_{n}}\left(x_{k}\right)=k$.

Proof. It is proved by the induction on t. The lemma holds at time $t=0$ since the only general cells x_{g} of D_{n} and x_{0} of C_{n} are in the general state s_{g} and all other cells are in the quiescent state s_{q} at time 0 . Suppess that the lemma holds at time t. I.et x be a cell in X_{k} of D_{n}. Then $s\left(x, t+1, D_{n}, M^{\prime}\right)=\lambda^{\prime}\left(s\left(x, t, D_{n}, M^{\prime}\right), s_{1}, \ldots, s_{d}\right)$, where each of s_{1}, \ldots, s_{d} is $s\left(x(i), t, D_{n}, M^{\prime}\right)$ or s_{e}. By the induction hypothesis, $s\left(x, t, D_{n}, M^{\prime}\right)=s\left(x_{k}\right.$, $\left.t, C_{n}, M\right)$ and for each $x(i) s\left(x(i), t, D_{n}, M^{\prime}\right)=s\left(x_{k-1}, t, C_{n}, M\right)$ since $x(i)$ is contained in X_{k-1}. Since x has at least one predecessor, $\left(s_{1}, \ldots, s_{d}\right)$ is in ($\left\{s\left(x_{k-1}, t, C_{n}\right.\right.$, $\left.M)\} \cup\left\{s_{e}\right\}\right)^{d}-\left\{s_{e}\right\}^{d}$. Hence

$$
s\left(x, t+1, D_{n}, M^{\prime}\right)=\lambda\left(s\left(x_{k}, i, C_{n}, M\right), s\left(x_{k-1}, t, C_{n}, M\right)\right)=s\left(x_{k}, t+1, C_{n}, M\right)
$$

By Lemma 3.1, the synchronization problem of q̣uasi-circuit structures is reduced to that of circuit structures. If we can construct an automaton M_{R} which reduces graph structures to quasi-circuit structures and an automaton M_{c} which synchronizes circuit structures, then we obtain a solution for the class \mathscr{G} of graph structures which simulates $\boldsymbol{M}_{\mathrm{R}}$ and then simulates the modified zutomaton of $\boldsymbol{N}_{\mathrm{c}}^{\boldsymbol{r}}$.

3.2. Reduction

In this section, we consider the reduction of a graph structure G to a quasi-circuit structure of length $2 r_{G}$, where r_{G} is the radius of G. Before explaining the reduction, we give some definitions and notations.

In a graph structere G, a path $\left[x_{0}, \ldots, x_{l}\right]$ is called a descending path of a cell x if $x_{0}=x$ and $d_{G}\left(x_{j-1}\right)<d_{G}\left(x_{j}\right)$ for $j=1, \ldots, l$. A ce!! x is terminal if x has no descending path of length $\geqslant 1$, that is x has no adjaceni cell y with $d_{G}(y)>d_{G}(x)$. A descending path of x is maximal if it has the maximum leng h among all descending paths of x. We denote the length of a maximal descending path of x by $l_{G}(x)$. Note that for the general cell $x_{g}, l_{G}\left(x_{g}\right)$ is equal to the radius r_{G} and if a path $\left[x_{0}, \ldots, x_{l}\right]$ is a maximal descending path of x_{0}, then $\left[x_{1}, \ldots, x_{l}\right]$ is also a maximal descending path of x_{1} with $l_{G}\left(x_{1}\right)=l_{G}\left(x_{0}\right)-1$.

Given a graph structure G, we have the reduced digraph structure G^{\prime} of G as follows. (See Fig. 3.)

First, we assign each cell x of G a d-vector $m(x)=\left(m_{1}(x), \ldots, m_{d}(x)\right)$, where for each $i=1, \ldots, d$, if $d_{G}(x(i))<d_{G}(x)$, then $m_{i}(x)=1$, if there exists a maximal descending path $\left[x_{0}, \ldots, x_{l}\right]$ of x such that $x_{1}=x(i)$, then $m_{i}(x)=2$, and else $m_{i}(x)=3$. Then we divide each cell x of G which :s neither the general cell nor a erminal ce!!, intu $w o$ subcells $x^{(1)}$ and $x^{(2)}$, called the first subcell of x and the second subcell of x, respect vely.

(a)

$$
\begin{aligned}
& m\left(x_{g}\right)=(2,3,3,3) \\
& m\left(x_{1}\right)=(1,3,3,2) \\
& m\left(x_{2}\right)=(1,3,2,3)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& m\left(x_{3}\right)=(1,3,3,3) \\
& m\left(x_{4}\right)=(1,3,2,3) \\
& m\left(x_{5}\right)=(1,1,3,3)
\end{aligned}
$$

(c)

Fig. 3. Reduction of a graph siructure: (a) a graph structure \boldsymbol{G}; (b) the reduced digraph structure \boldsymbol{G}^{\prime} of \boldsymbol{G}; (c) d-vectors of the celis of G.

The set of cells of G^{\prime} consists of all such subcells, the general cell of G, and the terminal cells of G. The general cell of G^{\prime} is the general cell of G. The predecessors $0^{:}$: cells of G^{\prime} are determined by the d-vectors as follows. The predecessors of the first subcell $x^{(1)}\left[\right.$ a terminal cell $\left.x_{\mathrm{t}}\right]$ are all $x(i)^{(1)}$'s with $m_{i}(x)=1\left[x_{\mathrm{t}}(i)^{(1) \text { s }}\right.$ s with $m_{i}\left(x_{\mathrm{t}}\right)=1$, where if $x(i)\left[x_{\mathrm{t}}(i)\right]$ is the general cell $x_{\mathrm{g}}, x(i)^{(1)}\left[x_{\mathrm{t}}(i)^{(1)}\right]$ means $x_{\mathrm{g}}\left[x_{\mathrm{g}}\right]$. The predecessors of the second subcell $x^{(2)}$ [the general cell x_{g}] are all $x(i)^{(2)}$ s with $n_{i}(x)=2\left[x_{\mathrm{g}}(i)^{(2)}\right.$ with $\left.m_{i}\left(x_{\mathrm{g}}\right)=2\right]$, where if $x(i)\left[x_{\mathrm{g}}(i)\right]$ is a terminal cell $x_{\mathrm{t}}, x(i)^{(2)}\left[x_{\mathrm{g}}(i)^{(2)}\right]$ means $x_{\mathrm{t}}\left[x_{\mathrm{t}}\right]$.

说xample 2. In Fig. 3, we give the reduction of a graph structure. Ther's we show maximal descending paths as bold arcs.

For any descending path $\left[x_{0}, \ldots, x_{l}\right]$ in G, there is a path $\left[x_{0}^{(1)}, \ldots, x_{l}^{(1)}\right]$ in G^{\prime} since $d_{G}\left(x_{i-1}\right)<d_{G}\left(x_{j}\right)$ for $j=1, \ldots, l$, and for any maximal descending path $\left[x_{0}, \ldots, x_{l}\right]$, there is a path $\left[x_{0}^{(1)}, \ldots, x_{l-1}^{1)}, x_{l}, x_{l-1}^{(2)}, \ldots, x_{0}^{(2)}\right]$ in G^{\prime} since a path $\left[x_{j}, \ldots, x_{l}\right]$ in G is
also a maximal descending path of x_{j} for $j=1, \ldots, l$. Hence, corresponding to the only maximal descending paths of x_{g}, there are cyclic paths in G^{\prime}, which have length 2_{G}.

Lemma 3.2. Given a graph structure $G=\left(X, U, x_{\mathrm{g}}, d\right)$, let $G^{\prime}=\left(Y, V, x_{\mathrm{g}}, d\right)$ be the reduced digraph structure of G defined above. Then G^{\prime} is a quasi-circuit structure of iength $2 r_{G}$.

Proof. By definition, each cell of G^{\prime} has at least one predecessor. Let $Y_{0}=\left\{x_{\mathrm{g}}\right\}$ and for $k=1, \ldots, 2 r_{G}-1$, let $Y_{k}=Y_{k}^{(1)} \cup Y_{k}^{t} \cup Y_{k}^{(2)}$, where

$$
\begin{aligned}
& Y_{k}^{(1)}=\left\{x^{(1)} \mid x \text { is a non-terminal cell of } G, x \neq x_{\mathrm{g}}, \text { and } d_{G}(x)=k\right\}, \\
& Y_{k}^{\mathrm{t}}=\left\{x_{\mathrm{t}} \mid x_{\mathrm{t}} \text { is a terminal cell of } G \text { and } d_{G}\left(x_{\mathrm{t}}\right)=k\right\}, \\
& Y_{k}^{(2)}=\left\{x^{(2)} \mid x \text { is a non-terminal cell of } G, x \neq x_{\mathrm{g}}, \text { and } d_{G}(x)+2 l_{G}(x)=k\right\} .
\end{aligned}
$$

For each ce!l $x\left(x \neq x_{\mathrm{g}}\right)$ of $G, d_{G}(x) \leqslant d_{G}(x)+2 l_{G}(x) \leqslant 2 r_{G}-1$. Hence $Y=$ $\bigcup_{k=0}^{2 r_{G}^{-1}} Y_{k}$. For $k=0, \ldots, 2 r_{G}-1, Y_{k}$ is nonempty since for each cell x_{j} on a maxirnal descending path $\left[x_{0}, \ldots, x_{r_{G}}\right]$ of $x_{g}, d_{G}\left(x_{j}\right)-j$ and $\left.d_{G}\left(x_{j}\right)+2 l_{G} x_{j}\right)=2 r_{G}-j$. It is clear that $Y_{k} \cap Y_{l}=\emptyset$ if $k \neq l$. Therefore, Y is partitioned into disjoint nonempty subsets $Y_{0}, \ldots, Y_{2 r_{G}-1}$ with $Y_{0}=\left\{x_{g}\right\}$.

We show that all nredecessors of ceils in Y_{k} are contained in Y_{k-1} for $k=$ $1, \ldots, 2 r_{G}-1$ and all predecessors of x_{g} in Y_{0} are contained in $Y_{2 r_{G}-1}$.

Let $0 \leqslant k \leqslant 2 r_{G}-1$. Let $y \in Y_{k}$.
Assume that $y \in Y_{k}^{(1)}$. Then there exists a non-terminal cell x of G such that $x^{(1)}=y$ and $d_{G}(x)=k$. There are two cases to consider.
(1) $d_{G}(x) \geqslant 2$: Any $x(i)$ with $m_{i}(x)=1$ is nor the general cell since $d_{G}(x(i))=$ $d_{G}(x)-1 \geqslant 1$. Hence the predecessors of $y\left(=x^{(1)}\right)$ are all $x(i)^{(1)}$ s with $m_{i}(x)=1$ by definition. Since $m_{i}(x)=1$ and $d_{G}(x)=k, d_{G}(x(i))=d_{G}(x)-1=k-1$. Thus all predecessors of y are contained in $Y_{k-1}^{(1)}$.
(2) $d_{G}(x)=1$: In this case, $y \in Y_{1}^{(1)}$. The cell $x(i)$ with $m_{i}(x)=1$ is the general cell since $d_{G}(x(i))=d_{G}(x)-1=0$. Hence the predecessor of $y\left(=x^{(1)}\right)$ is only the general cell x_{g} by definition. Thus the predecessor of y is contained in Y_{0}.

A similar argument shows that if $y \in Y_{k}^{t}$, all predecessors of y are contained in $Y_{k-1}^{(1)}$ when $k \geqslant 2$ and in Y_{0} when $k=1$.

Assume that $y \in Y_{k}^{(2)}$. Then there exists a non-terminal cell x of G such that $x^{(2)}=y$ and $d_{G}(x)+2 l_{G}(x)=k$. There are two cases to consider.
(1) $l_{G}(x) \geqslant 2$: Every $x(i)$ with $m_{i}(x)=2$ is non-terminal since $l_{G}(x(i))=$ $l_{5}(x)-1 \geqslant 1$. Hence the predecessors of $y\left(=x^{(2)}\right)$ are all $x(i)^{(2)}$ s with $m_{i}(x)=2$ by definition. Since $m_{i}(x)=2 \quad$ and $\quad d_{G}(x)+2 l_{G}(x)=k, \quad d_{G}(x(i))+2 l_{G i}(x(i))=$ $\left(d_{G}(x)+1\right)+2\left(l_{G}(x)-1\right)=d_{G}(x)+2 l_{G}(x)-1=k-1$. Thus all predecessors of y are contained in $\boldsymbol{Y}_{k-1}^{(2)}$.
(2) $l_{G}(x)=1$: Every $x(i)$ with $m_{i}(x)=2$ is terminal since $l_{G}(x(i))=l_{G}(x)-1=0$. Hence the predecessors of $y\left(=x^{(2)}\right)$ are all $x(i)$'s with $m_{i}(x)=2$ by definition. Since
$l_{G}(x(i))=0, \quad m_{i}(x)=2$, and $d_{G}(x)+2 l_{G}(x)=k, \quad d_{G}(x(i))=d_{G}(x(i))+2 l_{G}(x(i) ;=$ $d_{G}(x)-1=k-1$. Thus all predecessors of y are contained in Y_{k-1}^{t}.

A similar argument shows that if $y \in Y_{0}$, then all predecessors of y are contained n $Y_{2 r_{G}-1}^{(2)}$ when $r_{G} \geqslant 2$ and in $Y_{2 r_{G}-1}^{t}$ when $r_{G}=1$.

Thus G^{\prime} is a quasi-circuit structure of length $2 r_{G}$.

Now we construct an automaton M_{R} which realizes the above reduction. The realization of the quasi-circuit structure $D_{2 r_{G}}$ from a given graph structure G by M_{R} means that every cell x (with M_{R}) of G computes and stores its own d-vector $m(x)$. We assume that M_{R} has $d+1$ registers s, r_{1}, \ldots, r_{d}. The first register s holds a signal in $S_{R}=\left\{G_{0}, G_{1}, G_{2}, H_{0}, H_{1}, I, J, Q_{0}\right\}$ and each of the remaining d registers r_{1}, \ldots, r_{d} holds an element of $\{0,1,2,3\}$. Thus each state of M_{R} has the form $\left(s, r_{1}, \ldots, r_{d}\right)$. The transition table of M_{R} is given by Table 1. In Table 1, by $s(x)$ and $r_{i}\left(x_{i}\right.$, we denote the contents of the register s and the register r_{i} of a cell x, respectively. and by R_{0}, we denote the set of integers i with $r_{i}(x)=0$.

Now we explain the behavior of the network cefined by a given graph structure G and M_{R}. (See Fig. 4.) At time $0, s(x)=G_{0}$ or $s(x)=Q_{0}$ according as x is the general cell or not, and $r_{i}(x)=0$ for $i=1, \ldots, d$. The behavior of the retwork is partitioned into three parts.
(1) The general cell sends the sigrat H_{0} to all ceits aiong descending paths. Each cell x with $s(x)=Q_{0}$ sets $s(x)=H_{0}$ if there is an adjacent cell y such that $s(y)=H_{0}$ or G_{0}.

Table 1

\begin{tabular}{|c|c|c|c|}
\hline \& Before the step \& \& Afte: the step \\
\hline \(s(x)\) \& the condition for the rransition \& \(s(x)\) \& \(r_{i}^{\prime}(x)\) (the content of \(r_{i}\) after the step) \\
\hline \(G_{0}\) \& \& \(G_{1}\) \& \[
r_{i}^{\prime}(x)= \begin{cases}3 \& \text { if } x(i) \text { does not exist } \\ 0 \& \text { else }\end{cases}
\] \\
\hline \(Q_{0}\) \& \begin{tabular}{l}
\[
\exists i \in R_{0} s(x(i))=H_{0}, G_{0}
\] \\
otherwise
\end{tabular} \& \(H_{0}\)

Q_{0} \& | $r_{i}^{\prime}(x)= \begin{cases}1 & \text { if } s(x(i))=H_{0}, G_{0} \\ 3 & \text { if } x(i) \text { does not exist } \\ 0 & \text { else }\end{cases}$ |
| :--- |
| unchanged |

\hline H_{0} \& | $\exists i \in R_{0} s(x(i))=Q_{0}$ |
| :--- |
| otherwise | \& H

I \&

\hline $$
\begin{aligned}
& H_{i} \\
& \left(G_{1}\right)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \forall i \in R_{0} s(x(i))=J, I \\
& \text { otherwise }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& J \\
& \left(G_{2}\right) \\
& H_{1} \\
& \left(G_{1}\right)
\end{aligned}
$$
\] \&

\hline G_{2} \& \& G_{2} \& unchanged

\hline I \& \& I \& unchanged

\hline J \& \& J \& unchanged

\hline
\end{tabular}

time	$s(x(1))$	$s(x(2))$	$s(x(3))$	$s(x(4))$	$s(x)\left(r_{1}(x), \ldots, r_{5}(x)\right)$
$d_{G}(x)-1$	H_{0}	Q_{0}	Q_{0}	Q_{0}	$Q_{0}(0,0,0,0,0)$
$d_{G}(x)$	H_{1}	H_{0}	Q_{0}	Q_{0}	$H_{0}(1,0,0,0,0)$
$d_{G}(x)+1$	H_{1}	I	H_{0}	H_{0}	$H_{1}(1,3,0,0,3)$
$d_{G}(x)+2 l_{G}(x(3))+1$	H_{1}	I	J	H_{1}	$H_{1}(1,3,0,0,3)$
$d_{G}(x)+2\left(l_{G}(x(3))+1\right)$	H_{1}	I	J	H_{1}	$H_{1}(1,3,3,0,3)$
$d_{G}(x)+2 l_{G}(x)$					
$d_{G}(x)+2 l_{G}(x)+1$	H_{1}	I	J	J	$H_{1}(1,3,3,0,3)$
		I	J	J	$J(1,3,3,2,3)$

Fig. 4. Behavior of M_{R} on cells of a graph structure, where $d_{G}(x(1))<d_{G}(x)=i_{G}(x(2))<d_{G}(x(3))=$ $d_{G}(x(4)), x(2)$ is terminal, and $x(4)$ is on the inaximal descending path of x but $x(3)$ is not (i.e.

$$
\left.l_{G}(x(3))<l_{G}(x(4))=l_{G}(x)-1\right)
$$

At the same time for each $i=1, \ldots, d$ the cell x sets $r_{i}(x)=1$ if $s(x(i))=H_{0}$ or G_{0} (i.e. $\left.d_{G}(x(i))<d_{G}(x)\right), r_{i}(x)=3$ if $x(i)$ does not exist, and $r_{i}(x)=0$, otherwise (i.e. $\left.d_{G}(x(i)) \geqslant d_{G}(x)\right)$. This move of x occurs at time $d_{G}(x)$.
(2) Each cell recognizes whether it is terminal or not. Each cell x with $s(x)=H_{0}$ sets $s(x)=\mathbb{E}_{\mathrm{K}}$ if there exists i with $\left.\mathrm{s}^{\prime} x(i)\right)=Q_{0}$ (i.e. x is not termiral) and sets $s(x)=I$ if there is no i with $s(x(i))=Q_{0}$ (i.e. x is terminal). At the same time, the cell x changes the value of $r_{i}(x)$ from 0 to 3 for every i with $s(x(i))=H_{0}$ (i.e. $d_{G}(x(i))=d_{G}(x)$). This move of x occurs at time $d_{G}(x)+1$.
(3) Each terminal cell sends the reflexive signai J toword the general cell c'ong the descending paths (in reverse direction). Each non-terminal cell x with $s(x)=H_{1}$ changes the value of $r_{i}(x)$ as soon as the cell x detects that $s(x(i))$ has changed from H_{1} into J or I. If there exists $i(j \neq i)$ with $r_{j}(x)=0$ and $s(x(j))=H_{1}$ at that time, $r_{i}(x)$ changes to 3 (from 0) and $s(i)$ is unchanged, and otherwise $r_{i}(x)$ changes to 2 (from 0) and $s(x)$ changes to J (from H_{1}). In the latter case, $x(i)$ is on a maximal descending path of x, tut in the former case, $x(i)$ is not on any maximal descending path of x. The time when $r_{i}(x)$ changes to 2 (for the latter case) is $d_{G}(x)+2 l_{G}(x)+1$.

Hence each cell x of G has $m(x)$ as $\left(r_{1}(x), \ldots, r_{d}(x)\right.$ at time $d_{G}(x)+2 l_{G}(x)+1$. Precisely the following fact is obtained.

Fact 3.3. Given a graph structure G and the above automaton M_{R}, ior each cell x of G the time when $r_{i}(x)$ changes to 1 (from 0) is $d_{G}(x)$ and for each no:-terminal cell x of G the time when $r_{i}(x)$ changes to 2 (from 0$)$ is $d_{G}(x)+2 l_{G}(x)+1$.

3.3. The $(3 r+1)$-solution

In the previous section, we presented an autornaton which redaces any graph structure to a quasi-circuit structure. The synchronization of the quasi-circuit structure or a part of the quasi-circuit structure that completely covers the original graph structure gives the synchronization of the graph structure. Moreover by Lemma 3.1, the synchronization of any quasi-circuit structure is reduced to that of a circuit structure. Thus, in this section, we consider the synchronization of circuit structures and finally give solutions for the class \mathscr{G} of all grapl, structures.

A soiution for the class of circuit structures was given by Kobayashi [8, 9]. Its synchronization time for C_{n} is $2 n-1$ time units, which is minimum. The authors have obtained independently a similar solution M_{c} called the circuit solution.

Using the circuit solution M_{c}, we can easily give a solution $M_{4 r}$ for \mathscr{G} whose synchronization time for a graph structure G is $4 r_{G}$ time units. The automata $M_{4 r}$ on a given graph structure G simulate the automata M_{R} (as given in the previous section) to reduce G into a quasi-circuit structure $D_{2_{G}}$, and simuiate the modified automata M_{c}^{\prime} of M_{c} (cf. Section 3.1) which are assumed to be placed on the reduced quasi-circuit structure $D_{2 r_{G}}$ of G. Thus, for each cell x which is neither the general cell nor a terminal cell, $M_{4 r}$ on x simulates M_{R} on x and simulates M_{c}^{\prime} on the first and the second subcells ($x^{(1)}$ and $x^{(2)}$ respectively) of x. For the general cell x_{g} [a terminal cell $\left.x_{\mathrm{t}}\right], M_{4 \mathrm{r}}$ on $x_{\mathrm{g}}\left[x_{\mathrm{t}}\right]$ simulates M_{R} on $x_{\mathrm{g}}\left[x_{\mathrm{t}}\right]$ and simulates; M_{c}^{\prime} on $\boldsymbol{x}_{\mathrm{g}}\left[x_{\mathrm{t}}\right]$. Fact 3.3. and Lemma 3.2 imply that by M_{R}, the predecessors of $x^{(1)}\left[x_{i}\right]$ are determined at time $d_{D_{2 r_{G}}}\left(x^{(1)}\right)\left[d_{D_{2_{G}}}\left(x_{t}\right)\right]$ and those of $x^{(2)}\left[x_{g}\right]$ are determined at time $d_{D_{2 r_{G}}}\left(x^{(2)}\right)+$ $1\left[2 r_{G}+1\right]$. Thus the general cell of G can start to simulate M_{c}^{\prime} one time unit later after the simulation of M_{R} starts (at time 0). We make $M_{4 r}$ so that each cell fires whea M_{c}^{\prime} simulated by $\mathcal{M}_{4 r}$ on it moves to che firing state F (of M_{c}^{\prime}). Since the automata M^{\prime} synchronize $D_{2 r_{G}}$ at time $2\left(2 r_{G}\right)-1=4 r_{G}-1$, we ottain the solution $M_{4 r}$ for \mathscr{H}_{G} whose synchronization time for G is $1+\left(4 i_{G}-1\right)=4 r_{G}$ time units.

We can improve the solution $M_{4 r}$ by considering the following two facts.
(1) The synchronization of a graph structure G is achieved by synchronizing the first subcells, the general celi, and terminal cells of the reduced quasi-circuit structure $D_{2 r_{G}}$ of G.
(2) A terminal cell farthest from x_{g} divides each cyclic path passing through it in $D_{2 r_{G}}$ into iwo halves.

Hence we have the following modified problem. Let $\left(C_{2 n}, x_{n}\right)$ be a circuit structure $C_{2 n}$ with a designated cell x_{n}, in which the cell x_{n} can move to a particular state at time
$n\left(=d_{C_{2 n}}\left(x_{n}\right)\right)$. In other words, when the cell x_{n} receives the first signal from the general cell, it can know that it divides $C_{2 n}$ into two halves $\left[x_{0}, \ldots, x_{n-1}\right.$] and [$x_{n}, \ldots, x_{2 n-1}$]. The problem is to construct an automaton with one input terminal which synchronizes all cells on the semicircuit $\left[x_{0}, \ldots, x_{n}\right]$ fo. the class of $\left(C_{2 n}, x_{n}\right)$. This automaton is called the semicircuit solution.

We first explain the circuit solution $M_{\mathrm{c}}=\left(S_{\mathrm{c}}, S_{\mathrm{e}}, Q, P_{00_{2}} F, \lambda_{\mathrm{c}}\right)$, and then explain how to modify $\boldsymbol{M}_{\mathrm{c}}$ to obtain a semicircuit solution $\boldsymbol{M}_{\mathrm{h}}$. Since it is laborious to describe the details of the behavior of M_{c}, we explain only the basic idea for the case when n is an integer of the form 2^{m}, and present the transition table of M_{c} in the Appendix.

The propagation of 'signals' of M_{c} in C_{n} is depicted in Fig. 5 by using a diagram.

Fig. 5. Propagation of 'signals' of M_{c} in C_{n}.

The horizontal axis represents cells of C_{n} and the vertical axis represents time. The (z, t) entry represents the state of a cell x_{z} with $d_{C_{n}}\left(x_{z}\right)=z$ at time t. Note that two points $(0, t)$ and (n, t) are the same point. Let z_{i}^{k} and $t_{i} b=k\left(n / 2^{i}\right)$ and $2 n-n / 2^{i}\left(i=0, \ldots, m-1, k=0, \ldots, 2^{m-1}-1\right)$ respectively.

There is one special signal P_{00} called the general signal. P_{00} is the general state of M_{c}. Hence P_{00} is at $(0,0)$. Moreover P_{00} 's are generated at $\left(z_{i}^{*}, t_{i}\right)$ in the following way. Each P_{00} generates the following series (sequence of signals in the diagram):

- P-series with velocity $v=0$ (cells/time unit),
- BC-series with $v=\frac{1}{3}, \frac{3}{7}, \ldots,\left(2^{i}-1\right) /\left(2^{i+1}-1\right), \ldots$,
- A_{0}-series with $v=1$, and
- RS-series with $v=\frac{2}{3}, \frac{4}{7}, \ldots, 2^{i} /\left(2^{i+1}-1\right), \ldots$.

When
(1) an \boldsymbol{A}_{0}-series meets a P-series, or
(2) an RS-series meets a P-series, or
(3) a BC-series meets an A_{n}-series,
a new general signal P_{00} is generated at the point. These new P_{6} 's generate new P, $\mathrm{BC}, \mathrm{A}_{0}$, RS-series and these series in turn generate new P_{00} 's and so on. In Fig. 5, the A_{0}-series and the RS-series from (0,0) meet the P-series from $(0,0)$ at $\left(z_{0}^{0}, t_{0}\right)$, $\left(z_{1}^{0}, t_{1}\right), \ldots,\left(z_{j}^{0}, t_{j}\right), \ldots$ The $B C$-series from $(0,0)$ meet the A_{0}-series from $(0, n)=\left(z_{0}^{0}, t_{0}\right)$ at $\left(z_{1}^{1}, t_{1}\right),\left(z_{2}^{3}, t_{2}\right), \ldots,\left(z_{i}^{2 i-1}, t_{i}\right), \ldots$ Then, at time $t_{m-i}=2 n-2$, every cell x_{z} - vith $z=2 k\left(k=0, \ldots, 2^{m-1}\right)$ is in the state P_{00}, and hesice all cells of C_{n} can fire at time $2 n-1$.
More precisely, M_{c} has two general signals P_{00} and $P_{11} . P_{11}$ is \mathbf{v} jed for the case, where n is nst of the form 2^{m}. The behavior of M_{c} for C_{13} is given in Fig. 6. In Fig. 6 the two signals K and T are used to produce BC -series and RS-series as trigger signals respectively. For more details, see [8].

Now we give the semicircuit solution $M_{\mathrm{h}}=\left(S_{\mathrm{h}}, \Delta_{\mathrm{e}}, Q, P, F, \lambda_{\mathrm{h}}\right)$. The state set S_{h} includes that of M_{c}. We explain only the basic idea for the case, where n is 2^{m}, and present the transition table of M_{h} in the Appendix.

The propagation of 'signals' of M_{h} in $\left(C_{2 n}, x_{n}\right)$ is depicted in Fig. 7, in which the propagation of 'signals' of M_{c} in C_{n} is also shown for the reference. We construct M_{h} so that the signals generated at (z, t) in $\left(C_{2 n}, x_{n}\right)$ are identical to those at $(z, t-n$ in C_{n} for $0 \leqslant z \leqslant n-1$ and $t \geqslant 2 n+z$, that is, P_{00} 's are generated at $\left(z_{j}^{0}, t_{j}+n\right)$ and $\left(z_{j}^{2 i-1}, t_{j}+n\right)($ for $;=0, \ldots, m-1)$ in $\left(C_{2 n}, x_{n}\right)$.
M_{h} has two special signals P and P_{00}^{\prime} in addition to $P_{00} . P$ is the general state of M_{h}. Hence P is at $(0,0) . P$ generates a P^{\prime}-series with velocity $v=0$, an A-series with $v=1$, and $V W$-series with $v=\frac{1}{5}, \frac{3}{11}, \ldots,\left(2^{\prime}-1\right) /\left(3 \cdot 2^{i}-1\right), \ldots P_{00}^{\prime}$ is generated at (n, n), that is P_{00}^{\prime} is the state of the designated cell x_{n} at time $n\left(=d_{C_{2 n}}\left(x_{n}\right)\right) . P_{00}^{\prime}$ generates a $P_{00}^{\prime \prime}$-series with $v=0$, an A_{0}-series with $v=1$, and RS-series with $v=\frac{2}{3}, \frac{4}{7}$, $\ldots, 2^{i} /\left(2^{i+1}-1\right), \ldots$

General signals $P_{0 c}$'s are generated by the following rules in addition to the rules of M_{c}. When (4) an A_{0}-series meets a P^{\prime}-series, or (5) a VW -series meets an A_{0}-series, a new general signal P_{00} is generated at the point.

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	P_{00}												
1	P_{1}	AOC											
2	P_{0}	B_{2}^{2}	A_{01}										
3	P_{1}	B_{0}	L^{\prime}	A_{00}									
4	P_{0}		C_{1}^{2}	T	A_{01}								
5	P_{1}	K	C_{2}	S_{C}^{1}		A.00							
6	P_{0}		C_{0}	B_{2}^{2}	S_{1}	T	A_{01}						
7	F_{1}	K		B_{13}	S_{2}^{1}	T		A_{00}					
8	P_{0}		K	B_{2}	B_{2}	R_{2}		T	A_{01}				
9	P_{1}	K		B_{0}	B_{3}	L.'	R_{1}	T		A_{00}			
10	P_{0}		K		C_{1}	B_{2}^{2}	R_{2}	T		T	A_{01}		
11	P_{1}	K		K	C_{2}	B_{0}	L'	S_{0}		T		A_{00}	
12	P_{0}		K		C_{0}		C_{1}^{2}	T	S_{1}	T		T	A_{01}
13	P_{11}	K		K		B_{1}	C_{2}	S_{0}^{1}	S_{2}	T		T	
14	P_{0}	A_{10}	K		K	B_{2}	C_{3}	B_{2}^{2}	S_{1}	R_{2}		T	
15	P_{1}	B_{1}^{2}	A_{11}	K		B_{0}		C_{23}	S_{2}^{1}		R_{1}	T	
16	P_{0}	B_{2}	L^{\prime}	A_{10}	K		C_{1}	C_{3}	B_{2}	S_{1}	R_{2}	T	
17	P_{1}	B_{0}	L^{2}	T	A_{11}	k	C_{2}	K	C_{23}	S_{2}^{1}		S_{0}	
18	P_{0}		C_{1}	$\mathrm{S}_{\mathrm{n}}^{1}$		A_{10}	C_{0}		C_{0}	B_{2}^{2}	S_{1}	T	S_{1}
19	P_{1}	K	C_{2}	B_{1}^{2}	S_{1}	T	P_{20}	B_{1}		B_{13}	S_{2}^{1}	T	S_{2}
20	P_{00}		C_{0}	B_{2}	S_{2}^{1}	T	P_{2}	P_{00}		B_{2}	B_{2}^{2}	R_{2}	
21	P_{1}	A_{00}		B_{13}	L^{2}	R_{2}	P_{2}	P_{1}	A_{00}	B_{3}	B_{3}	L'	R_{1}
22	P_{0}	B_{2}^{2}	A_{01}	B_{2}	B_{2}	L^{\prime}	P_{21}	P_{0}	B_{2}^{2}	A_{01}	B_{2}	B_{2}^{2}	R_{2}
23	P_{11}	B_{0}	L^{\prime}	P_{11}	B_{3}	L^{2}	P_{2}	P_{11}	B_{0}	L^{\prime}	$P_{i 1}$	B_{3}	L^{\prime}
24	P_{0}	P_{22}	C_{1}^{2}	P_{0}	P_{22}	B_{2}	P_{22}	P_{0}	P_{22}	C_{1}^{2}	P_{0}	P_{22}	B_{2}^{2}
25	F	F	F	F	F	F	F	F	F	F	F	F	F

Fig. 6. Behavior of M_{c} for C_{13}.

In Fig. 7, the A_{0}-series from (n, n) meets the P^{\prime}-series from $(0,0)$ at $(0,2 n)$. Hence P_{00} is generated at $(0,2 n)=\left(z_{0}^{0}, t_{0}+n\right)$ by the rule (4). The RS-series from (n, n) meet the P-series from $(0,2 n)$ at $\left(z_{1}^{0}, t_{1}+n\right),\left(z_{2}^{0}, t_{2}+n\right), \ldots,\left(z_{j}^{0}, t_{j}+n\right), \ldots$ The VW -series from $(0,0)$ meet the A_{0}-series from $(0,2 n)$ at $\left(z_{1}^{1}, t_{1}+n\right),\left(z_{3}^{3}, t_{2}+\right.$ $n), \ldots,\left(z_{j}^{2 i-1}, t_{j}+n\right), \ldots$

From the above consideration, we can conciude that M_{h} on $\left(C_{2 n}, x_{n}\right)$ generates the same signals at (z, t) as M_{c} on C_{n} does at $(z, t-n)$ for $0 \leqslant z \leqslant n-1, t \geqslant 2 n+z$. Thus

Fig. 7. Propagation of 'signals' of M_{h} in $\left(C_{2 n}, x_{n}\right)$.
each of cells x_{0}, \ldots, x_{n-1} fires at time $3 n-1$. The device of the firing of the desigrated cell x_{n} is special. We make the designated cell x_{n} fire at time $3 n-1$ by the Y-series with $v=\frac{1}{3}$ generated by P at $(0,0)$. Hence all cells on the semicircuit $\left[x_{0}, \ldots, x_{n}\right]$ of $C_{2 n}$ fire at time $3 n-1$ simultaneously. Fig. 8 gives the semicircuit solution for (C_{12}, x_{6}).

Now we construct a solution for \mathscr{G} called the $(3 r+1)$-solution $M_{3 r+1}$ by using the semicircuit solution M_{h}. In the same way as $M_{4 r}$ does, each $M_{3 r+1}$ on a cell x of a given graph structure G simulates (1) one M_{R} on x, and (2) one M_{h}^{\prime} on x if x is either x_{g} or a terminal cell and two M_{h}^{\prime} on $x^{(1)}$ and $x^{(2)}$ otherwise. (M_{h}^{\prime} is the modified automaton of M_{h}.) The general cell starts to simulate M_{h}^{\prime} at time 1 . Here we must determine the designated cells of the reduced quasi-circuit structure $D_{2 r_{G}}$ of G. It is Jesirable to designate only all terminal cells x with $d_{G}(x)=r_{G}$ as the designated cells of $D_{2 r_{G}}$. But it costs too much time. Hence we define that all terminal cells of G are the designated cells of $D_{2 r_{G}}$. This designating is made when each terminal cell knows that it is terminal in the process of the reduction of G to $D_{2 r_{G}}$ by M_{R}. Then for every first subcell $x^{(1)}$, there is no designated cell on all paths from x_{g} to $x^{(1)}$ in $D_{2 r_{G}}$, and for

	0	1	2	3	4	5	6	7	8	9	10	11
0	P						1					
1	P_{0}^{\prime}	A					1					
2	P_{i}^{\prime}	V1	A				1					
3	P_{2}^{\prime}	V_{2}^{2}		A			1					
4	P_{3}^{\prime}	V_{3}^{3}			A		1					
5	P_{0}^{\prime}	V_{4}	Y^{\prime}			A	1					
6	P_{1}^{\prime}	V_{0}	Y^{2}				P_{00}^{\prime}					
7	P_{2}^{\prime}		W_{1}^{3}				$P_{00}^{\prime \prime}$	A_{00}				
8	P_{3}^{\prime}		W_{2}	V_{1}			$\mathrm{P}_{00}^{\prime \prime}$	L^{2}	A_{01}			
9	P_{0}		W_{3}	V_{2}^{2}			$P_{00}^{\prime \prime}$		L^{\prime}	A_{00}		
10	P_{1}^{\prime}	K'	W_{4}	V_{3}^{3}			$\mathrm{P}_{00}^{\prime \prime}$		L^{2}	T	A_{01}	
11	P_{2}^{\prime}		W_{0}	V_{4}	Y^{\prime}		$\mathrm{P}_{00}^{\prime \prime}$			So		A_{0}
12	P_{00}			V_{15}	Y^{2}		$P_{00}^{\prime \prime}$			L^{2}	S_{1}	T
13	P_{1}	A_{00}		V_{2}	V_{3}^{3}		$\mathrm{P}_{00}^{\prime \prime}$				S_{2}^{1}	T
14	P_{0}	B_{2}^{2}	A_{01}	V_{3}	V_{4}	Y^{\prime}	$P_{00}^{\prime \prime}$				L^{2}	R_{2}
15	P_{11}	B_{0}	L^{\prime}	P_{11}	V_{5}	Y^{2}	$P_{00}^{\prime \prime}$					L^{1}
16	P_{0}	P_{22}	C_{1}^{2}	P_{0}	P_{22}	V_{3}^{3}	$P_{00}^{\prime \prime}$					L^{2}
17	F	F	F	F	F	F	F					

Fig. 8. Behavior of M_{h} for $\left(C_{12}, x_{h}\right)$.
every cyclic path in $D_{2 r_{G}}$, there is a unique designated cell y and $d_{D_{2 V_{G}}}(y)=r_{G}$. There are designated cells that are not on cyclic paths. But the behavior of these cells cannot affect the behavior of the nirst subcells, the general cell, and the designated cells on cyclic paths. Thus the modified semicircuit solutions M_{h}^{\prime} on all first subcells, the general cell, and all designated cells on cyclic paths move to the firing state F (of $M_{\mathrm{h}}^{\prime \prime}$) at time $1+\left(3 r_{G}-1\right)=3 r_{G}$ by an argument similar to that used for proving Lemma 3.1. But for a designated cell y not on a cyclic path in $D_{2 r_{G}}, M_{\mathrm{h}}^{\prime}$ on it moves to F at time $3 d_{D_{2 r_{G}}}(y)<3 r_{G}$ since a designated cell fires when the Y-series with $v:=\frac{1}{3}$ from the general cell arrives to it. Hence we make $M_{3 r+1}$ fire as follows. For a non-terminal cell x [the general cell x_{g}] of $G, x\left[x_{\mathrm{g}}\right]$ fires at time $t+1$ if M_{h}^{\prime} on the first subicell $x^{(1)}$ of $x\left[\right.$ on x_{g}] moves to F at time t. For a terminal cell $x_{\mathrm{t}}, x_{\mathrm{t}}$ fires at time $t+1$ if M_{h}^{\prime} on the first subcell of an adjacent cell y of x_{t} with $d_{G}(y)<d_{G}\left(x_{t}\right)$ moves to F at time t. It requires one more time unit.

Theorem 3.4. The automaton $M_{3 r+}$ is a solution for \mathscr{G} and its synchronization time for G in \mathscr{G} is $3 r_{G}+1$ time units.

4. The (3r)-solution

In this section, we improve the $(3 r+1)$-solution $M_{3 r+1}$. The improved solution is called the ($3 r$)-solution $M_{3 r}$. Its synchronization time for a graph structure G in $\mathscr{G}_{\text {s }}$ and $\mathscr{G}-\mathscr{G}_{\mathrm{s}}$ are respectively $3 r_{G}$ and $3 r_{G}+1$ time units, where \mathscr{G}_{s} is the subclass of \mathscr{G} defined below.

In a graph structure G, a cell x with $d_{G}(x)=r_{G}$ is called a radial cell. A cell x for which there is no adjacent cell y with $d_{G}(y) \geqslant d_{G}(x)$, is called a solitary cell. Note that each solitary cell is terminal but a terminal cell is not necessarily solitary. Let \mathscr{G}_{s} be the class of all graph structures G such that all radial cells of G are solitary and the number of cells of G is more than or equal to 2 .

The fundamental behavior of $M_{3 r}$ is identical to that of $M_{3 r+1}$. The (3r)-solution $M_{3 r}$ reduces a given graph structure to a quasi-circuit structure simulating a slightly distinct automaton M_{S} from M_{R} which was simulated by $M_{3 r+1}$, anc simulates the modified semicircuit solutions M_{h}^{\prime}. Moreover, it is so devised that when all radial cells are solitary in a given graph structure, the general cell can know this fact and sends the signal informing it to all other cells by M_{s}.

For every terminal cell x_{t} of a given graph structure G, we ass: me that two M_{h}^{\prime} are placed on x_{t} and one of them behaves as if it is on a designated cell of $D_{2 r_{G}}$ (hence, it plays the same role as M_{h}^{\prime} in $M_{3 r+1}$ on $\boldsymbol{x}_{\mathrm{t}}$) and the other does as if it is not on a designated cell of $D_{2 r_{G}}$. By $M_{h}^{\prime}\left(x_{\mathrm{t}}\right)$ and $M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{t}}^{\prime}\right)$, we denote the former M_{h}^{\prime} and the latter M_{h}^{\prime} respectively. For a non-terminal celi \boldsymbol{x} of \boldsymbol{G} [the genera: cell x_{g}], by $M_{\mathrm{h}}^{\prime}\left(x^{(1)}\right)$ and $M_{\mathrm{h}}^{\prime}\left(x^{(2)}\right)\left[M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{g}}\right)\right]$ we also denote $M_{\text {, }}$ on the first subcell of x and M_{h}^{\prime} on the second subcell of $x\left[M_{\mathrm{h}}^{\prime}\right.$ on x_{g}] respectively. Then the following facts are obtained.

Fact 4.1. (1) For a radial cell $x_{\mathrm{r}}, M_{\mathrm{h}}^{\prime}\left(x_{r}^{\prime}\right)$ does not move to F at any time and $M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{r}}\right)$ moves to F it time $3 r_{\mathrm{G}}$.
(2) For a non-radial terminal cell $x_{\mathrm{t}}, M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{t}}^{\prime}\right)$ moves to F at time $3 r_{G}$ and $M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{t}}\right)$ moves to F at time $3 d_{G}\left(x_{t}\right)<3 r_{G}$.
(3) For a non-terminal cell $x\left[x_{\mathrm{g}}\right], M_{\mathrm{h}}^{\prime}\left(x^{(1)}\right)\left[M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{g}}\right)\right]$ moves to F at time $3 r_{G}$ (cf. Section 3.3).

Next, we explain the automaton M_{S} which reduces : graph structure to a quasi-circuit structure and makes all cells to recognize v. hether all radial cells are solitary or not. M_{s} has $d+1$ registers s, r_{1}, \ldots, r_{d}. The register s holds a signal in $S_{S}=\widehat{\mathcal{M}}_{R} \cup\left\{G_{s}, I_{s}, I_{0}, J_{s}, J_{0}\right\}$ where S_{R} is given by M_{R} (simulated by $M_{3 r+1}$), and each of r_{1}, \ldots, r_{d} holds an element of $\{0,1,2,3\}$. The behavior of M_{S} is similar to that of M_{R}, that is, the registers $r_{1}, \ldots r_{c i}$ play the same role as those of M_{R} do and the new signals $G_{s}, I_{s}\left(I_{0}\right)$, and $J_{s}\left(J_{0}\right)$ to be held in the register s essentially play the same role as G_{2}, I, and J do in M_{R} respectively. Hence we explain only how M_{S} makes ail cells of G recognize whether all radial cells are solitary or not. (See Fig. 9 and 10 where $r_{G}=3$.) The transition table of M_{S} is presented in Table 2, where $s(x)$ and $r_{i}(x)$ mean the same ones as in Table 1 and by $\boldsymbol{R}_{k}(k=0,1)$ we denote the set of integers i such that $r_{i}(x)=k$ and $x(i)$ exists.

	$\begin{array}{r} \\ x_{4} \\ x_{0} \quad x_{1} \\ \hline \end{array}$		$\begin{aligned} & x_{5} \\ & x_{2} \end{aligned}$	x_{6}
0	G_{0}			
1	G_{1}	H_{0}		
2	G_{1}	H_{1}	H_{0}	
3	G_{1}	H_{1}	H_{1}	I_{0}
4	G_{1}	H_{1}	J_{0}	I_{0}
5	G_{1}	Jo	J_{0}	I_{0}
6	$\mathrm{G}_{\text {S }}$	J_{0}	J_{0}	I_{0}
7	G_{S}	J_{S}	J_{0}	I_{0}
8	$\mathrm{G}_{\text {S }}$	$\mathrm{J}_{\text {S }}$	J_{S}	I_{0}

x_{7}	x_{8}
H_{0}	
H_{1}	I_{0}
J_{0}	I_{0}
J_{S}	I_{0}
J_{S}	I_{S}

x_{9}	x_{10}
H_{0}	
H_{1}	H_{0}
H_{1}	I
J	I
J	I
J	I
J_{S}	I
J_{S}	I_{S}

Fig. 9. Behavior of M_{S} for a graph structure G, where x_{0} is the general cell and all radial cells x_{3} and x_{6} are solitary.

	x_{0}	x_{1}	$\ddot{\lambda}_{2}$	x_{11} x_{3}
0	G_{0}			
1	G_{1}	H_{0}		
2	G_{1}	H_{1}	H_{0}	
3	G_{1}	H_{1}	H_{1}	H_{0}
4	G_{1}	H_{1}	H_{1}	I
5	G.	H_{1}	J	1
6	G	J	J	1
7	G_{2}	J	J	I
	\vdots			

x_{4}	x_{5}	x_{6}
H_{0}		
H_{1}	H_{0}	
H_{1}	H_{1}	I_{0}
H_{1}	J_{0}	I_{0}
J_{0}	J_{0}	Io
Jo	Jo	Io
Jo	J_{0}	Io

x_{7}	x_{0}
H_{0}	
H_{1}	I_{0}
J_{0}	I_{0}
\vdots	\vdots

x_{9}	x_{10}
H_{0}	
V_{1}	H_{0}
H_{1}	I
J	I
\vdots	\vdots

Fig. 10. Behavior of M_{S} for a graph structu e G, where x_{0} is the general cell and x_{3}, x_{6}, and x_{11} are radial but nein-r x_{3} nor x_{11} is solitary.

Table 2

(1) The general cell sends the signal H_{0} to all cells in the same way as it does by M_{R}. Each cell x recognizes at time $d_{G}(x)-1$ whether it is solitary or not. Note that x is solitary if and only if for every adjacent cell $y, s(y)$ is H_{0} or G_{0} and $s(x)$ is Q_{0}.
(2) A non-solitary cell x recognizes at time $d_{G}{ }^{\prime}(x)$ whether it is terminal or not in the same way as it does by $M_{i r}$.
(3) Each terminal cell x_{t} sends the reflexive signal toward the general cell in the same way as it does by M_{R}. Here if x_{t} is solitary, the signal J_{0} is sent at time $d_{G}\left(x_{t}\right)$, and if x_{t} is non-solitary, the signal J is sent at time $d_{G}\left(x_{t}\right)+1$.
(4) If all radial cells are solitary, the general cell x_{g} recognizes this fact at time $2 r_{G}-1$, that is, for all $x_{\mathrm{g}}(i)$ with $r_{i}\left(x_{\mathrm{g}}\right)=0, s\left(x_{\mathrm{g}}(i)\right)=J_{0}, I_{0}$ at that time. At the mexi time, x_{g} sets $s\left(x_{\mathrm{g}}\right)=G_{s}$ from G_{1} and then sends a signal J_{s} informing this fact to all cells. Each cell x receives this signal at time $2 r_{G}-1+d_{G}(x)$. Note that if there is a non-solitary radial cell, there is a cell $x_{\mathrm{g}}(i)$ with $r_{i}\left(\hat{x}_{\mathrm{g}}\right)=0$ and $s\left(x_{\mathrm{g}}(i)\right)=H_{1}$ at time $2 r_{G}-1$.

Thus the following fact is obtained.

Fact 4.2. If all radial cells are solitary, then every cell x recognizes this fact at time $2 r_{G}+a_{G}(x)-1$.

From Fact 4.1 and 4.2, we define the firing of $M_{3 r}$ by the following rules.
(1) For a terminal cell x_{t},
(i) x_{t} fires when $M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{t}}\right)$ moves to F if x_{t} recognizes that all radial cells are solitary before $M_{\mathrm{h}}^{\prime}\left(\boldsymbol{x}_{\mathrm{t}}\right)$ moving to F,
(ii) x_{t} fires when $\boldsymbol{M}_{\mathrm{h}}^{\prime}\left(\boldsymbol{x}_{\mathrm{t}}^{\prime}\right)$ moves to F if x_{t} recognizes that äll radial cells are sclitary after $M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{t}}\right)$ moving to F, and
(iii) otherwise, x_{t} fires at the next time when $M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{t}}(\mathrm{i})^{(1)}\right)$ with $d_{G}\left(x_{\mathrm{t}}(i)\right)<$ $a_{C}\left(x_{t}\right)\left(r_{i}\left(x_{t}\right)=1\right)$ moves to F.
(?) Fcr a non-terminal cell x [the general cell x_{8}],
(i) $x\left[x_{\mathrm{g}}\right]$ fires when $M_{\mathrm{h}}^{\prime}\left(x^{(1)}\right)\left[M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{g}}\right)\right]$ moves to F if $x\left[x_{\mathrm{g}}\right]$ recognizes that all radial cells are solitary, and
(ii) otherwise, $x\left[x_{\mathrm{g}}\right]$ fires at the next time when $M_{\mathrm{h}}^{\prime}\left(x^{(1)}\right)\left[M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{g}}\right)\right]$ moves to F.

First, we consider the case where all radial cells are solitary. For a radial cell $x_{\mathrm{r}}, M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{r}}\right)$ has not yet moved to F at time $2 r_{G}+d_{G}\left(x_{\mathrm{r}}\right)-1=3 r_{G}-1$ when x_{r} recognizes that all radial cells are solitary. Hence x_{r} fires at tirne $3 r_{G}$ by the rule (i) of (1) and Faci 4.1 (1). For a non-radial terminal cell $x_{\mathrm{t}}, M_{\mathrm{h}}^{\prime}\left(x_{\mathrm{t}}\right)$ moves to F at time $3 d_{G}\left(x_{t}\right)$ and then recognizes that all radial cells are solitary at time $2 r_{G}+d_{G}\left(x_{t}\right)-1-3 d_{G}\left(x_{i}\right)$. Hence x_{t} fires at time $3 r_{G}$ by the rule (ii) of (1) and Fact 4.1 (2). Ali other cells fire at time $3 r_{G}$ by the rule (i) of (2), Fact 4.2, and Fact 4.1 (3). From the above discussion, if all radial cells are solitary, then all cells fire at time $3^{\circ}{ }^{\prime}$ os.

In the case where all radial cells are not solitary, it is clear by the rules (iii) of (1) and (ii) of (2) that all cells fire at time $3 r_{G}+1$.

Theorem 4.3. Th: automaton $M_{3 r}$ is a solution for $\mathscr{C}_{;}$, and its synchronization time is $3 r_{G}$ time units for \mathcal{G} in \mathscr{G}_{5} and is $3 r_{G}+1$ time units for G in $\mathscr{G}-\mathscr{G}_{s}$.

Finally, we point out that $M_{3 r}$ gives the minimum synchronization time for sorme subclass of \mathscr{G}.

For a graph structure G, let $t_{\min }(G)$ be the minimum value of the synchronization time $t(G, M)$ over all solations for \mathscr{G}. Kobayashi $[6,7]$ gave an algorithm to calculate
$t_{\text {min }}(G)$ for each graph structure G. Intuitively $t_{\text {min }}(G)$ is about $\max \left\{d_{G}(x)+\right.$ $d_{G}(x, y) \mid x$ and y are cells of $\left.G\right\}$. For any cells x and $y, d_{G}(x)+d_{G}(x, y)$ means the time required for x to leave the quiescent state and then for y to receive a signal from x.
Let $\mathscr{G}_{m 1}$ be the class of all graph structures G in \mathscr{G}_{s} having two radial cells x and y such that $d_{G}(x, y)=2 r_{G}$. Let $\mathscr{G}_{m 2}$ be the class of all graph structures G in $\mathscr{G}-\mathscr{G}_{s}$ having three radial cells x, y, and z such that x and y are adjacent and $d_{G}(x, z)=$ $d_{\mathcal{G}}(y, z)=2 r_{G}$.

By Kobayashi's algorithm, we obtain that for G in $\mathscr{G}_{m 1}, t_{\min }(G)=3 r_{G}$, and that for G in $\mathscr{G}_{m 2}, t_{\text {min }}(F)=3 r_{G}+1$. On the other hand, Theorem 4.3 shows that for G in $\mathscr{G}_{m 1}\left(\subseteq \mathscr{G}_{\mathrm{s}}\right), t\left(G, M_{3 r}\right)=3 r_{G}$, and that for G in $\mathscr{G}_{m 2}\left(\subseteq \mathscr{G}-\mathscr{G}_{\mathrm{s}}\right), t\left(G, M_{3 r}\right)=3 r_{G}+1$. Then we obtain the following result.

Theorem 4.4. Let $\mathscr{G}_{m}=\mathscr{G}_{m 1} \cup \mathscr{G}_{m 2} \cup\{G \in \mathscr{G} \mid$ the number of cells of G is equal to 1$\}$. For any graph structure G in $\mathscr{G}_{m}, t\left(G, M_{3 r}\right)=t_{\text {min }}(G)$.

5. Summary

We have given new solutions of the firing squad synchronization problem for the class of graph structures. The synchronization times of our solutions are proportional to the radius of a graph structure. Considering that the synchronization times of the solutions previously known are proportional to the number of nodes of a graph structure except special cases, our results are remarkable improvement for the problem. First, we have pointed out that the synchronization of a quasi-circuit structure is reduced to that of circuit structures. Using this fact, we have given two preliminary solutions whose synchronization times for a graph structure G are respectively $4 r_{G}$ and $3 r_{G}+1$ time units. Finally, we have given our final solutions whose synchronization time for a graph structure G is $3 r_{G}$ or $3 r_{G}+1$ time units depending upon a property of radial cells of G. Moreover, we have shown that this solution gives the minimum synchronization time for an infinite number of graph structures.

Appondix. The state transition tables of the circuit solution M_{c} and the semicircuit solutiond M_{h}.

Tables give the state of a cell at time $t+1$ corresponding to its own and its predecessor's state at time, t. In the tables, the symbol $*$ means any state other than being specified. Table 3 gives the state transition table of M_{c}. Table 4 gives the state transition table of M_{h} other than the ones given in table 3.

	0	
0	0^{-1}	0^{-1}
0	0	
	4	$*$

$\left[\begin{array}{llllllll}x^{-1} & a^{N} & x & u^{-1} & m^{N} & \alpha^{0} & \sigma \\ \hline \dot{n}^{-1} & a^{-1} & x & \infty^{0} & m^{m} & \alpha^{0} & *\end{array}\right]$

$N_{m}-1$	∞^{N}
	$*$

| 8 | |
| :---: | :---: | :---: |
| a^{8} | $\infty^{\prime \prime}$ |
| a^{2} | |

State of cell at time t	
State of predecessor at time t	"ew state of cell at time $t+1$

Table 4

Acknowledgment

The authors would like to thank Professors M. Kimura, M. Nasu, and A. Maruoka, and Dr. S. Okawa in Tohoku University for their useful discussions. Also they are grateful to Professor K. Kobayashi in Tokyo Institute of Technology for his helpful suggestions by which the ($4 r$)-solution is improved to the $(3 r+1)$-solution and also for his useful comrasts about the presentation of this paper.

References

[1] R. Balzer, An 8 -state m nimal time solution to the firing squad synchronization problem, Information ard Control 10 (19(7) 22-42.
[2] F. Goto, A minimal tim: soluti sn of the firing squad problem, Course Notes for Applied Mathematics 298 (Harvard University, 1062) 52-59.
[3] G.T. Herman, Models for cellular interactions in development without polarity of individual cells, Part II: Problems of synchronization and reguration, Internat. J. Systems Sci. 3 (1972) 149-175.
[4] G.T. Herman, W.-H. Liu, S. Rowland and A. Walker, Synchronization of growing cellular arrays, Information and Control $\mathbf{2 5}$ (1974) 103-122.
[5] K. Kobayashi, The firing squed synchronization problem for two-dimensional arrays, Information and Control 34 (1977) 177-197.
[6] K. Kobayashi, Minimum firing time of the two-dimensional firing squad synchronization problem, Research Reports on Information Sciences, Department of Intormation Science, T'okyo Institute of Technology, No. C-3 (1975).
[7] K. Kobayashi, On the minimal siring time of the firing squad synchronization problem for polyautomata networks, Theoret. Cumput. Sci. 7 (1978) 149-167.
[8] K. Kobayashi, A minimal time solution to the firing squad synchronization problem of rings with one-way information flow, Research Reports on Information Sciences, Department of Information Science, Tokyo Institute of Technology, No. C-8 (1976).
[9] K. Kobayashi, The firing squad synchronization problem for a class of po،yautomata networks, J. Comput. System Sci. 17 (1978) 300-318.
[10] E.F. Moore, The firing squad synchronization problem, in: E.F. Móore, Ed., Sequential Machines, Selected Papers (Addison-Wesley, Reading, MA, 1964) 213-214.
[11] F.R. Moore and G.G. Langdon, A generalized firing squad problem, Infor,nation and Conirol 12 (1968) 212-220.
[12] F. Romani, Cellular automata synchronization, Information Sci. 10 (1976) 299-318.
[13] P. Rosenstiehl, Existence d'automates finis capables de s'accor ler bien qu'arbitraiment connectes et nombreux, Internat. Compui. Centre Bull. 5 (1966) 245-261.
[14] P. Roseı.stiehl, J. .ی. riksel and A. Holliger, Intelligent graphs: Networks of finite automata capable of solving graph problems, in: R.C. Reed, Ed., Graph Theory and Computing (Academic Press, New York. 1973) 210-265.
[15] A. Waísman, An optimum solution to the firing squad synchronization problem, Informasion and Control 9 (1966) 66-77.

