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Abstract. In this paper, we give a solution of the Firing Squad Synchronization Problem for graphs.
The synchronization *imes of solutions which have been obtained are proportional to the number
of nodes of a graph. The synchronization time of our solution is proportional to the radius 7 of a
graph G (37 + 1 or 3¢ time units), where rg is the longest distance between the general and any
other node of G. This synchronization time is minimum for an infinite number of graphs.

1. Introduction

The problem of synchronizing a finite (but arbitrarily long) one-dimensional array
of finite automata, known as the firing squad synchronization problem, was proposed
by Myhill in 1957 and Moore [10]. This problem was solved by Goto [2], Waksman
[15], and Balzer [1], and they obtained the minimum synchronization time 2n —2 for
an n-element array. The problem was generalized in many different ways by Moore
and Longdon [11], Herman [3, 4], Rosenstiehl [13, 14], and Kobayashi [8, 9].

This paper deals with the firing squad synchronization problem for graphs, which
was studied by Rosenstiehl [13, 14], Kobayashi [5, 6, 7], and Romani [12]. Given a
graph with a specified node and an finite automaton, we consider a network in which
a copy of the finite automaton is pluced on every node of the graph and these finite
automata on the nodes are connected along every edge of the graph. The state of
each finit: automaton at time /+1 depends on its own state and those of its
neighbours at time . The problem consists in defining the structure of the finite
automato.1 so that the automaton on the specified node, called the general, can causc
all finite antomata to enter a particular state, called the firing state, exactly at the
same time.

The synchronization times of solutions which have been obtained, are propor-
tional to the number n of nodes of a grapk (4n —6 in[13] and 2n in [S, 14]), except
for Romeni’s improved results for seme special class of graphs. In this paper ‘e
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present a solution whose synchronization time is proportional to the radius 7 of a
graph G (about 3rg), where g is the longest distance between the specified node (the
general) and any other node of the graph G. Note tnat rg is essentially different from
and less than the number of nodes of the graph. The synchronization time of our
solution is minimum for graphs whose generals are (informally sp-eaking) at the
center of the graphs. Our solution is based on the synchronization of a particular type
of digraphs called ‘quasi-circuit structures’.

2. Preliminaries

Throughout this paper, by d we denote some fixed positive intezer. A digraph
structure of valence d, or simply a digraph structure, is a 4-tuple G = (X, U, x,, d),
where X is a finite set of cells, x, a particular cell in X called the general cell,and U a
finite set of arcs of the form (x, y, i) (x, y € X, 1 <i =< d) satisfying the condition: for
each pair of y and i there is at most one arc of the form (x, y, i). If the.eis an arc (x, v,
i)in U, a cell x is called the {ith] predecessor of a cell y, [denowed by y(#)]. (See Fig.
1(b).) If for acell y and an integer i (1 <i <d), there isno arc (x, y, i) in U, we say that
the ith predecessor y(i) of y does not exist.

A sequence of cells [xo, . . . , x;] of a digraph structure G is a path of length | from a
cellx toacelly, where xo=x,x; =y, x; # x; forany i, j withO<i<j</--1,and x;,_, is
a predecessor of x; for each i=1,..., l. A path [xg, ..., x] i said to be cyclic if
xo = x1. The distance from a cell x to a cell y in G, denoted by dg(r, v), is the length of
the shortest path from x to y. Especially, the distance from the general cell x, to a cell
x is denoted by ds(x). We denote max{ds(x)|x is a cell of G} by rg, called the radius
of G.

A digraph structure G is said to be connected if for any two cells x and y of G, there
is at least one path from x to y. A digraph structi:re in which for any two cells x and y,

(s)

X =¥(i) y = x(j)

j X(d)

(S4)

ta) (b)

Fig. 1. A digraph structure and a g aph structure.
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if there is an arc (x, y, i), then there is an arc (y, x, j), is said to be symmerric. We call a
connected symmetric digraph structure of valence d a graph structure of valence d, or
simply a graph structure. W denote the class of ali graph structures of valence d by %.
Usually, in a graph structure we call the [ith] predecessor of a cell x the [ith] adjacent
cell of x, and in figures of graph structures we represent each two opposite arcs by one
undirected arc as shown in Fig. 1(a).

An automaton with d input ter'ninals, or simply an automaton, is a 6-tuple M = (S,
Se, Sq» Sgs St» A), Where

(1) § is a finite set of states,

(2) seis an element not in § [the external signall,

(3) sq, Sg, and s¢ are particular distinct elements in S [the quiescent state, the
general state, and the firing state, respectively], and

(4) A is a transition function from S X (S U (s.})? into S such that A (8q> $15...da)=
Sq if each of s34, ..., s4 is either sq or s..

Let G be a digraph structure ar.d let M be an automaton. We consider a network
such that for each cell x of G, a copy of /1 is placed on x. In the network, the ith input
termina! of the automaton on a cell x is connected with the cutput terminal of the
automaton on the ith predecessor x(i) of x if x(/) exists and otherwise, open.
Hereafter an automaton on a cell x will be also called a cell x. Formally the state of a
cell x at time ¢, denoted by s(x, ¢, G, M), is defined as follows. For t =0, s(x, 0, G, M)
is s, or sq according as x = x, or not. For t >0, s(x, t, G, M) is A (s(x, t — 1, G, M), s,
.+« 84), Where s; is s(x (i), t — 1, G, M) if the ith predecessor x (i) of x exists and is s,
otherwise. (See Fig. 1(b).)

We say that a cell x of a digraph structure G fires at time ¢ by an automaton M if s(x,
t', G, M) # s¢for any ¢' <t and s(x. t, G, M) = s;. We say that a digrapi structure G
fires at time ¢ by an automaton M if all cells of G fires at time ¢ by M. If there issuch a
time ¢, it is called the synchro»ization iime of M for G and is denoted by #(G, M).

Let & be a subclass of digraph structures. An automaton M is called a solution of
the firing squad synchronization problem for &, or simply a solution for %, if each
digraph structure in & fires by M.

3. A snlution for ¥

In this section, we give a solution for the class ¥ of all graph structures, called the
(37 + 1)-solution. Its synchronization time for a graph structure G is 3rg+1i time
units. The principal idea is based on the synchronization of a particular type of
digraph structures called quasi-circuit siructures and the reduction of any graph
structure to a quasi-circuit structure. In Section 3.1, we define quasi-circuit struc-
tures and observe that their synchronization is reduced to the synchronization of
circuit structures. In Section 3.2, we give the reduction of a graph siructure to a
quasi-circuit structure. In Section 1.3, we consider the synchronization of circuit
structures and finally give the (37 + 1)-solution.
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3.1. A guasi-circuit structure

A quasi-circuit structure of length n (and valence d) is a digraph structure D, = (Xp,
Up, x,, d) such that each cell in Xp, has at least one predecessor and X, is partitioned
into clisjoint nonempty subsets Xy, . . ., X, with X, = {x,} such th: t all predeces-
sors of the cells in X, are contained in Xz, fork =0,...,n—1where X_1=X,_,.

Example 1. In Fig. 2(a), we give a quasi-circuit structure of length 8. There are cyclic
paths of length 8 shown as bold arcs). Generally, in D, there is at least oae cyclic
path, ali cyclic paths have length » and pass through x,, and for any celil x, the length
of every path from x, to x is equal to dp_(x) (<=).

Next we define a circuit structure of length n, denoted by C, = (X, Ug, xo, 1), as
a digraph structure of valence 1 which consists of one cyclic path o? length n. (See
Fig. 2(b).)

Let M = (S, se. Sq, Sg» S, A) be an automaton with one input terminal. A modified
automaton M' = (S', s, Sq, Sg, St, L") of M is an automaton with d input terminal such
that

(1) §'=S, sq =5q, Sz =g, 2nd s¢ = 5¢, and

(2) for any two states s and s’ in S, if (54, . .., sa) € {s'}Ulsch)? —{se}?, then A'(s,
S1y...,854)=A(s, s').

P T

(b)

Fig. 2. (a) A quasi-circuit struciure of length 8 and (b) a circuit structure of iength 8.
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Lemma 3.1. Let M be an automaton with one imput terminal and M' a modified
automaton of M. Let D, and C, be a quasi-circuit structure of length n and a circuit
structure of leagth n respectively. Then foreach cell x in X, of D,, s(x, t, D,, M') = s(xy,
t, C,, M), wheve x; is a cell of C, with d¢, (xi) = k.

Proof. Itisproved by the inducticn on ¢. The lemma holds at time ¢ = 0 since the only
general cells x,; of D, and x, of C, are in the general state s, and all other cells are in
the quiescent state s at time 0. Supposc that the lemma holds at time «. T.et x be a cell
in X; of D,. Then s(x, t+1, D, M)=A'(s(x, t, D,, M), 51, ..., 54), where each of
S1y...,8qi88(x(i), t, D,, M') or s.. By the inductior: hypothesis, s(x, t, D,, M') = s (xx,
t, C,, M) and for each x (i) s(x(i), t, D,, M') = s(xr 1, ¢, C,., M) since x (i) is contained
in Xx_1. Since x has at least one predecessor, (s1,...,54) is in {({s(xx-1, 8, C,,
M)}u{se)? —{se}”. Hence

s(x, t+ 1’ Dm 1“!') = A(S(.X'k, 'y Cm M)a S(xk—la L Cm M)) = 3(xk9 r+ 19 Cm M)

By Lemma 3.1, the synchronization problem of quasi-circuit structures is reduced
to that of circuit structures. If we can construct an automaton Mg which reduces
graph structures to quasi-circuit structures and an automaton M, which synchronizes
circuit structures, then v/e obtain a solution for the class ¢ of graph structures which
simulates Mg and then simulates the modified automaton of M.

3.2. Reduction

In this section, we consider the reduction of a graph structure G to a quasi-circuit
structure of length 2rg, where r¢ is the radius of G. Before explaining the reduction,
we give some definitions and notations.

In a graph structare G, a path [xo, . . ., x;] is called a descending path of a cell x if
xo=x and dg(xj-1)<dg(x;) for j=1,...,1. A cell x is terminal if x has o
descending path of length = 1, that is x has no adjaceni cell y with dg(y)>dg(x). A
descending path of x is maximal if it has the maximum length among all descending
paths of x. We denote the length of a maximal descending path of x by /z(x). Note
that for the general cell x,, Ig(x,) is equal to the radius rg and if a path [xo, . . ., x;]is a
maximal descending path of xo, then [x;, . . ., x;]is also a ;;raximal descending path of
xy with lg(x1) = lg(xe)—1.

Given a graph structure G, we have the reduced digraph structure G' of G as
follows. (See Fig. 3.)

First, we assign each cell x of G a d-vector m(x) = (my(x), ..., my(x)), where for
each i =1,....d, if dg(x(i))<ds(x), then m;(x)=1, i there exists a maximal
descending path [xo,..., x;] of x such that x,=x(i), then m;(x)=2, and else
m;(x) =3. Then we divide each cell x of G which ‘s reither the general ccll nor a
cerminal cell, intv iv o subcells x and x®, called the first subcell of x and the second
subcell of x, respect vely.
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Xq Ky

Xs X2

X O
(a) (D)
mixg) = (2,3, 3,3) miXgy) = (1,3,3,3)
mx,) =(1,3,3,2) mixg = (1,3,2,3)
mx) =(1,3,2,3) mixs) = {i,143,3)

(c)

Fig. 3. Reduction of a graph siructure: (a) a graph structure G; () the reduced disraph structure G’ of G;
(c) d-vectors of the celis of G.

The set of cells of G' consists of all such subcells, the general cell of G, and the
terminal cells of . The general cell of G' is the general cell of G. The predecessors o:
cells of G' are determined by the d-vectors as follows. The predecessors of the first
subcell x'"’[a terminal cell x,] are all x(i)"”’s with m,(x) = 1 [x (/) M’s with m;(x) =1,
where if x(i) [x.(7)] is the general cell x,, x (i) [x(i)"] means x, [xg]. The pre-
decessors of the second subcell x® [the general cell x,] are all x(;)®s with
mi(x) =2 [x,(0)* with my(x,)=2), where if x(i)[xg(i)] is a terminal cell
o, x(1)? [x,(/)*] means x, [x.].

Example 2. In Fig. 3, we give the raduction of a graph structure. Ther: we show
maximal descending paths as bold arcs.

For any descending path [xo, . . ., x;]in G, thereisapath [xJ’, . .., x!"]in G'since

do(xi-1)<dg(x;)forj=1 ..., and for any maximal descending path [xo, ..., x/],
thereisapath [xg. ..., x,"y, x, x24,. .., x1in G'since apath [x, ..., x]in G is
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also a maximal descending path of x; for j =1, ..., Hence, corresponding tc the
only maximal descending paths of x,, there are cyclic paths in G', which have length
21"(,‘.

Lemma 3.2. Given a graph structure G =(X, U, x,, d), let G' =(Y, V, x4, d) be the
reduced digraph structure of G defined above. Then G' is a quasi-circuit structure of
length 2rg.

Proof. By definition, each cell of G’ has at least one predecessor. Let Y, = {x,} and
fork=1,..., 2rs—1,let Vi =Y’ U YUY, where

Y ={x"|x is a non-terminal cell of G, x # x,, and dg(x) =k},
Yk ={x:|x. is a terminal cell of G and dg(x,) =k},

Y ={x?|x is a non-terminal cell of G, x # x,, and d, (x) +2lg(x) = k}.

For each cell x(x#xy) of G, dg(x)<dg(x)+2lg(x)<2rc—1. Hence Y =

2'30" 'Y.. For k=0,...,2rc—1, Y« is nonempty since for each cell xjon a
maxirnal descending path [xo, . . . , x,5] of x5, dg(x;) —j and dg(x;) + 2l x;) = 2rg —J.
Itis ciear that Y, n Y, =0if k # |. Therefore, Y is partitioned into disjoint nonempty
subsets Yo, ..., Ya,,-1 with Yy =1{x.}.

We show that all nredecessors of ceils in Y, are contained in Y,.; for k =
1,...,2rc -1 and all predecessors of x,; in Y, are contained in Y.

Let0<k<2rg—1.LetyeY,.

Assume that y € Y. Then there exists a non-terminal cell x of G such that x
and dg(x) = k. There are two cases to consider.

(1) de(x)=2: Any x(i) with m;{x)=1 is not the genera! cell since dg(x(i)) =
ds(x)—1=1. Hence the predecessors of y(=x'") are all x(i"""’s with m;(x) =1 by
definition. Since m;(x)=1 and dg(x)=k, dg(x(i))=ds(x)—1=k—1. Thus all
predecessors of y are contained in Y- ,.

(2) dg(x)=1:Inthis case, y € Y". The cell x(i) with #1;(x) = 1 is the general cell
since dg(x(i)) = dg(x)— 1 = 0. Hence the predecessor of y (= x'") is cnly the general
cell x; by definition. Thus the predecessor of y is contained in Y.

A similar argument shows that if y € Y}, all predecessors of y are contained in
Y{’, when k=2 andin Y, when k=1,

Assume that y € Yi2. Then there exists a non-termina! cell x of G such that xP=y
and dg(x)+2ls(x) = k. There are two cases to consider.

(1) lg(x)=2: Every x(i) with m;(x)=2 is non-terminal since Ig(x(i))=
I5(x)—1=1. Hence the predecessors of y(=x'?) are all x(i)*"’s with m;(x) =2 by
definition. Since m;(x)=2 and dg(x)+2l(x)=k, dgx())+2c(xu))=
da(x)+1)+2(lg(x)—1)=dg(x)+2lg(x)— 1 =k — 1. Thus all predecessors of y are
contained in Y2,.

(2) lg(x)=1: Every x(i) with m;{x) =2 is terminal since Ig(x(i))=Ilg(x)-1=0.
Hence the predecessors of y(=x®) are all x(/)’s with m,(x) = 2 by definition. Since

(l)z

y



46 Y. Nishitani. N. Honda

lo(x()) =0, mi(x)=2, and dg(x)+2g(x)=k, do(x(i))=dg(x(i))+2lc(x(i);=
dg(x)—1=k—1. Thus all predecessors of y are contained in Y} _;.

A similar argume..t shows that if y € Y, then all predecessors of y are contained in
Y$® _, whenrg=2andin Y%, whenrg=1.

Thus G' is a quasi-circuit structure of length 2r¢.

Now we construct an automaton Mg which realizes the above reduction. The
realization of the quasi-circuit structure D,,; from a given graph structure G by Mg
means that every cell x (with AMz) o7 G computes and stores its own d-vector m(x).
We assume that My has d + 1 registers s, 1, . . . , 74. The first register s holds a signa}
in 5r ={Go, G1, G1, Hy, Hi, I, J, Qo} and each of the remaining d registers r,, ..., 7,
holds an element of {0, 1, 2, 3}. Thus each state of Mg hasthe form (s, 71, ..., 7). The
transition table of Mk is given by Table 1. In Table 1, by s(x) and r;(x}, we denote the
contents of the register s and the register r; of a cell x, respectively. and by R,, we
denote the set of integers i with r;(x) =0.

Now we explain the behavior of the network aefined by a given graph structure G
and Mpg. (See Fig. 4.) At time 0, s(x) = G or s(x) = Qo according as x is the general
cell or not, and r;i(x)=0fori=1,..., d. The behavior of the ctwork is partitioned
into three parts.

(1) The general cell sends the sigi.al H; i all celis along descending paths. Each cell
x with s(x) = Qg sets s(x) = H, if there is an adjacent cell y such that s(y) = Hg or Go.

Table 1
Before the step After the step
s(x) the condition for six) ri(x) (the content of r;
the transition after the step)
Gy G, rlx) = {3 if x (i) does not exist
0 else
Qo Jie Ry s(x(i)) = Hy, G, H, 1 if s(x(8)) = Ho, Go
ri(x)=¢3 if x(i) does not exist
0 else
otherwise Qo unchanged
H, Aie Ry six(i))=Q, H, A if s(x()) = Hp
ri{x)=
N r(x) else
ot is : ) =
erwise I r(x)= {3 if s(x(i)) = Hyp
ri(x)  else
H, VieRos(x()=J,1 J r,mz{z ifie Ro
(Gy) {(G2) f r(x) else
otherwise H, rx) = {3 if s(x(i)=J,1
(Gy) ! ri(x) else
G, G, unchanged

unchanged

J J unchanged
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/"'—O

/"// 2
C---—-O——(x
s| a4
Se -
fime S(X() s(x@) S(X3) (X)) | SX) (N (X)y eeoyls (X))
dg(x)— 1 Ho Qo Qo Qg 00(01070?0’0)
dG(X) H| Ho Qo QQ Ho( '70107010)
dg(X)+| H| I Ho Ho H2(|,3,°,0,3)
dglx)+2 1gX(3))+1 H, I J H, H, (1,3,0,0,3)
dg(x)+2(lgx3N+ 1) | H, I J H, H (1,3,3,0,3)
dg(X)+21gx) H, I J J H (1,3,3,0,3)
dg(x)+21gx)+1 H, I J J J (1,3,3,2,3)

Fig. 4. Behavior of My on cells of a graph structure, where dg(x(1)) <dg(x)=-i6(x(2))<dc(x(3)) =
dg(x(4)), x(2) is terminal, and x(4) is on the inaximal descending path of x but x(3) is not (i.e.
Ig(x(3))<ig(x(4)) = lg(x)—1).

At the same tim¢ foreachi=1,...,d the cell x sets r;(x) =1 if s(x(i)) = Hp or G
(i.e. dg(x(i)) <dg(x)), ri(x) =3 if x(i} does not exist, and r;(x) =0, otherwise (i.e.
dg(x(i)) =dg(x)). This move of x occurs at time dg(x).

(2) Each cell recognizes whether it is terminal or not. Each cell x with s(x ; = Hj sets
s(x) = H if there exists ¢ wiih ¢/ x(i)) = Qp (i.e. x is not termir:al) and sets s(x) = I if
there is no i with s(x(i)) = Qy (i.¢. x is t2rminal). At the same time, the cell x changes
the value of r;(x) from 0 to 3 for every i with s(x(i)) = Ho (i.e. dg(x({)) = dc(x)). This
move of x occurs at time dg(x)+1.

(3) Each terminal cell sends the reflexive signai J toword the general cell «"9i1g the
descending paths (in reverse direction). Each non-terminal cell x with s(x) = H,
changes the value of r,(x) as soon as the cell x detects that s(x(i)) has changed from
H, into J or I If there exists j(j # i) with r;(x) = 0 and s(x(j)) = H, at that time, r;(x)
changes to 3 (from 0) and s (x) is unchanged, and otherwise r;(x) changes to 2 (from 0)
and s(x) changes to J (from FI,). In the latter case, x(7) is on a maximal descending
path of x, butin the fermer case, x(¢) is not on any maximal descending path of x. The
time when r;(x) changes to 2 (for ihe latter case) is dg(x)+2lg(x)+1.
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Hence each cell x of G has m(x) as (ri(x), ..., ra(x) at time dgx)+2lg(x)+1.
Precisely the following fact is obtained.

Fact 3.3. Given a graph structure G and the above automaton Mg, ‘or each cell x of
G the time when r;(x) changes to 1 (from 0) is d(x) and for each noa-terminal cell x
of G the time when 7;(x) changes to 2 (from 0) is dg(x) +2lg(x) + L.

3.3. The (3r+ 1)-solution

In the previous section, we presented an automaton which reauces any graph
structure to a quasi-circuit structure. The synchronization of the quasi-circuit
structure or a part of the quasi-circuit structure that completely covers the original
graph structure gives the synchronization of the graph structure. Moreover by
Lemma 3.1, the synchronization of any quasi-circuit structure is reduced to that of a
circuit structure. Thus, in this section, we consider the synchronization of circuit
structures and finaliy give solutions for the class ¥ of all grapl: structures.

A sojution for the class of circuit structures was given by Kobayashi [8, 9]. Its
synchronization time for C, is 2n — 1 time units, which is minimum. The authors have
obtained independently a similar solution M, called the circuit solution.

Using the circuit solution M., we can easily give a solution M, for ¢ whose
synchronization time for a graph structure G is 4rs time units. The automata M,, on
a given graph structure G simulate the automata My (as given in the previous
section) to reduce G into a quasi-circuit structure D,,_, and simu.ate the modified
automata M of M, (cf. Section 3.1) which are assumed to be placed on the reduced
quasi-circuit structure D,,, of G. Thus, for each cell x which is neither the general
cell nor a terminal cell, My, on x simulates Mg on x and simulates M on the first and
the second subcells (x" and x® respectively) of x. For the general cell x, [a terminal
cell x,], M, on x, [x.] simulates Mg on x, [x,] and simulates M. on x, [x,]. Fact 3.3.
and Lemma 3.2 imply that by MR, the predecessors of x‘"’ [,] are determined at time
dp,, (x") dp,, (x)] and those of x® [x,] are determined at time dp,,_(x*)+
1[2rg +1]. Thus the general cell of G can start to simulate M/ one time unit latcr
after the simulation of Mp, starts (at time 0). We make My, so that each cell fires whea
M. simulated by M}, on it moves to che firing state F' (of M). Since the automata M’
synchronize D,,; at time 2{2rg)—1=4r;—1, we ottain the solution M, for ¥
whose synchronization time for G is 1+ (4rg — 1) = 4rg time units.

We can improve the solution My, by considering the following two facts,

(1) The synchronization of a graph structure G is achieved by synchronizing the
first subcells, the general cell, and terminal cells of the reduced quasi-circuit structure
D,,, of G.

(2) A terminal cell faithest from x, divides each cyclic path passing through it in
D,, into iwo halves.

Hence we have the following modified problem. 1.2t (Ca,, x..) be a circuit structure
Can with a designated cell x,,, in which the cell x,, can move to a particular state at time
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n (=dc,,(x,)). In other words, when the cell x, receives the first signal from the
general cell, it can know that it divides C,, into two halves [xo,..., x,-1] and
[Xns - - . » X2a-1]- The problem is to construct an automaton with one input terminal
which synchronizes all cells on the semicircuit [xo, . . ., x, ] fo. the class of {Cy,, x,).
This automaton is called the semicircuit solution.

We first explain the circuit solution M, = (S., s, Q, Pgo, F, A.), and then explain
how to modify M. to obtain a semicircuit solution M. Since it is laborious to describe
the details of the behavior of M., we explain only the basic idea for the case when » is
an integer of the form 2™, and present the transition table of M. in the Appendix.

The propagation of ‘signals’ of M. in C, is depicted in Fig. 5 by using a diagram.

0 n

&

time

BC —series

(28 +10)

an-|

Fig. 5. Propagation of ‘signals’ of M, in C,.
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The horizontal axis represents cells of C, and the vertical axis represents time. The
(z, t) entry represents the state of a cell x, with dc,(x.) = z at time #. Note that two
points (0, #) and (n, t) are the same pomt Let z¥ and & b: k(n/2' " and
2n—-n/24i=0,...,m—1,k=0,. ., 2™ 1 —1) respectively.

There is one spec1al signal Pgo called the general signal. Py, i lS the general state of
M,. Hence Py is at (0, 0). Moreover Pyo’s are generated at (z%, ) in the following
way. Each Py generates the following series (sequence of signals in the diagram):
- P-serizs with velocity v = 0 (cells/time unit),

- BC-series with v =3, 3,...,(2' - 1)/ -1),...,
- Ag-series with v =1, and

- RS-series with v =3,%,...,27/(2""" -1),....
When

(1) an Ay-series meets a P-series, or

(2) an RS-series meets a P-series, or

(3) a BC-series meets an An-series,

a new general signal Py is generated at the point. These new Pg,’s generate new P,
BC, Aq, RS-series and these series in turn generate new Py’s and so on. In Fig. 5, the
40-series and the RS-series from (0, 0) meet the P-series from (0, 0) at (=g, fo),
(z3, 1), ...,(zht),.... The BC-series from (0,0) meet the Ag-series from
0, n) =(z9, to) at (z1, 1), (23, 1), . . (22' - s %)y .... Then, at time 1,_;=2n-2,
every cell x, ~vith z =2k (k =0,..., 2"’ 1Y is in the state Pqo, and hei:ce all cells of
C, can fire zt time 2n —1.

More precisely, M. has two general signals Poo and P;,. P;; is uvsed for the case,
where n is not of the form 2™, The behavior of M, for C3 is given in Fig. 6. In Fig. 6
the two signals K and T are used to produce BC-series and RS-series as trigger
signals respectively. For more details, sece [8].

Now we give the semicircuit solution My, = (S, s5e, Q, P, F, Ap). The state set S,
includes that of M.. We explain only the basic idea for the case, where n is 2™, and
present the transition table of M, in the Appendix.

The propagation of ‘signals’ of M, in (C,a, x.) is depicted in Fig. 7, in which the
propagation of ‘signals’ of M. in C, is also shown for the reference. We construct
M, so that the signals generated at (z, t) in (C,,, x,,) are identical to those at (z, ¢t —n ;
in C, for 0sz<n-1and t=2n +z, that is, Poo’s are generated at (2}, t;+n) and
(77, t;+n) (for i =0, ..., m—1)in (Czn, Xn).

M, has two special signals P and Py, in addition to Poo. P is the general state of M,
Hence P is at (0, 0). P generates a P’'-series with velocity v =0, an A-series with
v=1, and VW-series with v =}, i, ..., (2'=1)/(3 - 2' = 1), .... P} is generated at
(n, n), that is Py is the state of the designated cell x, at tlme n(=dc,,(x,)). Poo
generates a P{o-series with v = 0, an A,-series with ¢ = 1, and RS-series with v =3, 5,

L2 -1),.. ..

General signals P,’s are generated by the following rules in addition to the rules of
M.. When (4) an A,-series meets a P’-series, or (5) 2 VW-series meets an A,-series,
a new general signal Py, is generated at the point.
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O | 2 3 4 5 6 7 8 9 O 11 42
0l Pool
Py 1 Aggl
2| Py |BS |Ag,
3|Py [Bo |L' |Agg
4 1P, C}| T |Ag
5P, | K|Cs|S¢ Poo
31 Py Co B3 1S | T |Aq
7[R | K Ba|Ss | T Ago|
8| P, K |B, |B, |R, T |Ag,.
9|P | K Bo|Bs|L' |[R | T Aoo
10| Py K C,|BE|R, | T T |Ag !
P | K K|{Cy|Bo|L |So T Aoo
12| Py K Co CElITIS | T T Ao,
131P, | K K B |Co 1SOIS| T T
18] Py [AQ| K K |By|Cs |B2]S, IR, Tl
15| P, [B2 A, | K Bo Cos| Sh R, | T
16| Py | By | U |Ap] K C,[C3(Bp|S |Ry|T
17| P, {Bo | L2 T [A, | K|Ch| K |CoxlSh So
18{ Py C, |84 Al Co Co|B3|S, | TS
19| P, | K |Co1B3 (S, | T Pyl B, Bis|Ss | T[S,

21| P, [Aoo]  |Bia| L2 |Ra | Po | P, |Aog| Bs|Bs | L' |R,
22| Py | B3 [Ag 1By By | L [Py | Py |BE A |By [BE|R,

24| Py |Pan|CT | Py |Paz|Ba | Paz| Po [Pan |CF | Py |Prn| B3

Fig. 6. Behavior of M_ for C,.

InFig. 7, the A,-series from {i1, n) meets the P'-series from (0, 0) at (0, 2#). I{ence
Py is generated at (0, 2n) = (20, {o+n) by the rule (4). The RS-series from (n, n)
meet the P-series from (0, 2n) at (2, ti+n), (23, t2+n),...,(z}, 4;+n),.... The
VW-series from (0, 0) meet the Ao-series from (0,2n) at (z},t;+n), (z3, 62+
n),..., (z,?"l, L+n),. ...

From the above consideration, we can conciude that M, on (C,,. x,,.) generates the
same signals at (z, ) as M. on C, doesat (2, t—n)forO0<z<n-1,t=2n+z Thus
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0 n 2n
0
p-series A-series
i \’
n
c)0 n
VW-series Ags series
Y-series \\
N .\\
R Ser]
Ny 2n ] RS-ceries

l !

i |

| |

| |

| |

i |

[ |

| |

2n-1 1\ 3n-14 >

C S S L B ey e — 4

Fig. 7. Propagation of ‘signals’ of My, in (C3,,, x,.).

each of cells xo,...,x,-; fires at time 3n—1. The device of the firing of the
desigrated cell x, is special. We make the designated cell x,, fire at time 3n — 1 by the
Y-series with v =3 generated by P at (0,0). Hence all cells on the semicircuit
[xo, . .., xn] of Ca, fire at time 3n —1 simultaneously. Fig. 8 gives the semicircuit
solution for (C;,, x¢).

Now we construct a solution for ¢ called the (37 + 1)-solution M, ., by using the
semicircuit solution My, In the same way as M,, does, each M;,., on a cell x of a
given graph structure G simulates (1) one Mg on x, and (2) one M h on x if x is either
xg or a terminal cell and two M}, on x'"’ and x'® otherwise. (M}, is the modified
automaton of My.) The general cell starts to simulate M}, at time 1. Here we must
determine the designated cells of the reduced quasi-circuit structure D5, of G.1tis
Jesirable to designate only all terminal cells x with d¢;(x) = rg as the designated cells
of D,,.. But it costs too much time. Hence we define that all terminal cells of G are
the designated cells of D,,,. This designating is made when each terminal cell knows
that it is terminal in the process of the reduction of G to D>, by Mg. Then for every
first subcell x'*, there is no designated cell on all paths from x, to x® in D,,_, and for
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0 | 2 3 4 5 6 7 8 9 10 1
olp !
| Py | A ! -
2 |F |V |A 3
3|/ [vB] [A ! B}
4 [P V3 A :
5 [Py [V, |Y! Al
6| P, Vo |Y2 Pho
7|F w? Poo| Aoo B
8| P W, | V! Poo| L2 |Ag,
9| Py Wy | V3 bo L' |Ago
0[P, | K |Ws' V3 Foo BT |4
A Wo |V, | Y fo S¢ Agol
12 | Pog Vig | Y2 Poo L2s, |7
13|P, [Agol |Va [V3 Poo Sh|T
14| Py [B2|Ag)| Vs | Va | Y' | Py L2 |R,
15 Py | Bo L' |Pi| Vs | Y2 | Poo L'
16| Py | Pag| C2 | Pg, | Pon| V3 | Foo L2
i7(F [F|F [F|F|F |F

Fig. 8. Behavior of M, for (C,,, xs).

every cyclic path in D,,_, there is a unique designated cell y and ¢ D2, (¥) =rc. There
are designated cells that are not on cyclic paths. But the behavior of these cells cannot
affect the behavior of the sirst subcells, the general ceil, and the designated cells on:
cyclic paths. Thus tiie modified semicircuit solutions Mj, on all first subcells, the
general cell, and all designated cells on cyclic paths move to the firing state F (of M'y,)
at time 1+ (376 — 1) = 3rs by an argument similar to that used for proving Lemma
3.1. But for a designated ceil y not on a cyclic path in D,,_, My, on it moves to F at
time 3dp,, (y) <3rg since a designated cell fires when the Y-series with v == 3 from
the general cell arrives to it. Hence we make M, . fire as follows. For a non-terminal
cell x {the general cell x,] of G, x [x,] fires at time ¢+ 1 if M}, on the first subcell x'"’
of x [on x;] moves to F at time ¢. For a terminal cel! x,, x, fires at time ¢ + 1 if My, on
the first subcell of an adjacent cell y of x; with dg(y) < dg{x.) moves to F at time ¢. It
requires one more time unit.

Theorem 3.4. The automaton M, .. is a solution for 6 and its synchronization time for
Gin$Gis 3rg+1 time units.
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4. The (3r)-solution

In this section, we improve the (3r + 1)-solution M3,.;. The improved solution is
cailed the (3r)-solution Ms,. Its synchronization time for a graph structure G in %
and %-%, are respectively 3rg and 3rg + 1 time units, where ‘%, is the subclass of ¢
defined below.

In a graph structure G, a cell x with dg(x) =rg is called a radial cell. A cell x for
which there is no adjacent cell y with dg(y) = dg(x), is called a solitary cell. Note that
each solitary cell is terminal but a terminal cell is not necessarily solitary. Let ¢; be
the class of all graph structures G such that all radial cells of G are solitary and the
number of cells of G is more than or equal to 2.

The fundamental behavior of M3, is identical to that of Mj,.;. The (3r)-solution
M3, reduces a given graph structure to 2 quasi-circuit structure simulating a slightly
distinct automaton Mg from Mz which was simulated by M3, ., anc¢ simulates the
modified semicircuit solutions M. Moreover, it is so devised thai when all radial cells
are solitary in a given graph structure, the general cell can know this fact and sends the
signal informing it to all other cells by M.

For every terminal cell x, of a given graph structure G, we assume that two M}, are
placed on x, and one of them behaves as if it is on a designated cell of D,, (hence, it
plays the same role as My in Ms,.; on x,) and the other does as if it is not on a
designated cell of D,,,. By My, (x,) and M}, (x;), we denote the former M}, and the
latter M}, respectively. For a non-terminal celi x of G [the genera’ cell x.], by
M (xV) and M} (x®) [M}, (xg)] we also denote M, on the first subcell of x and M},
on the second subcell of x [My on x,] respectively Then the following facts are
obtained.

Fact4.1. (1) For aradial cell x,, M, (x;) does not move to F at any time and M}, (x,)
moves to F 1t time 3rg.

(2) For a non-radial terminal cell x,, M}, (x{) moves to F at time 3rg and M} (x,)
moves to F at time 3dg(x,) <3rg.

(3) For a non-terminal cell x [x,], M}, (x'”) [M}, (x;)] moves to F at time 3rg
(<f. Section 3.3).

Next, we explain the automaton Ms which reduces 7 graph structure to a
quasi-circuit structure and makes all cells to recognize v. hether all radial cells are
solitary or not. M- has d +1 registers s, ry, . .., rs. The register s holds a signal in
Ss = 5r U1iGs, I, Io, J,, Jo} where Sk is given by Mg (simulated by M3,,,), and each of
r,...,rsholds an element of {0, 1, 2, 3}. The behavior of M is similar to that of Mg,
that is, the registers ry, ... r, play the same role as those of Mgz do and tiie new
signals G, I (Io), and J;(Jy) to be held in the register s essentially play the samne role
as G, I, and J do in My respectively. Hence we explain only how M makes ail cells
of G recognize whether all radial cells are solitary or not. (See Fig. 9 and 10 where
rc = 3.) The transition table of M is presented in Table 2, where s(x) and r;(x) mean
the same ones as in Table 1 and by R.(k = 0, 1) we denote the set of integers i such
that r;(x) = k and x (i) exists.



o ~N 0 o P ouN

Firing squad synchronization problem for graphs

Xy X X, X X X
2

Xe X7 X Xio

Xg X5 Xe
Xo X Xz X3 X7 Xs X9 X0
Go
G, | Ho Ho Ho
G, [ H, |Ho Hi | 1o Hi | Ho
G |H {H | Io Jo | Io T
G, | H | Jo | Lo Jo | 1o Il
G, | Jo| Jo | Io Jo|lo| |0 ]I
Gs | 90| Jo | Lo Jol| o J 11
Gg | Js {Jo | I Js | Io Jg| I
Gs|Js [Js | o Js | Is Js |13

55

Fig. 9. Behavior of M for a graph structure G, where x is the general cell and all radial cells x3 and x¢ are
solitary.

~ 0 g N

Xo X *g ;‘(;l Xg X5 Xg X7 Xy X9 X
Go

G | Ho Ho He Ho

G |1, i Ho H, | Ho H, | Io _i_;‘;, Ho
G | H | H | Ho H [ H | Ip Jo | lo Hy | 1
G |H|H |1 H [ Jo i To Jol| Io J | 1
_G,_L HilJd |1 JoiJdo| Ilo Jo I_c,_ J |1

Gy 1J 1 J |1 Je | Jo | lo Jo | lo | J |1

Go|J |J |1 Jo | Jo | To Jo | lo J |1

Fig. 10. Behavior of Mj for a graph structu,e G. where x, is the general cell and x3, xs, and x;, are radial

but neiv~or x3 nor xq; 1s solitary.



56 Y. Nishitani, N. Honda
Table 2
Before the step After the step
s(x) the condition for s(x) ri(x) (the content of r;
the transition after the step)
G, G, r(x) = {3 if x(i) does not exist
0 else
00 ViERo S(X(i))=Ho, G() Io ' __{l if S(X(i))=Ho, GO
ri(x)=
3 else
giERo S‘x(i»=Ho, Go Ho 1 if S(X(l'))=H‘o, Go
and ri(x)=<3 if x(i) does not exist
JjeRos(x(i))=Qo 0 else
otherwise Qo unchanged
Ho V'ER()S(X{I))THO I ’ 3 lflGRo
ri(x)=
ri{x) else
otherwise H, , if s(x(i))=Hg
ri(x)=
ri(x) else
I‘I1 Vie Ro S(X(l'))=fo, Io Jo r‘(x)= if iERo
(G (Gs) ! ri(x) else
VieRos(xi)=J,1 J rx) = 2 ifieR,
(G2) ! ri(x) else
otherwise H, rx) = if s(x(D))=Jo, Ip, J. I
(Gh) ! ri(x) else
Iy JieR,s(x(i)=J, G i unchanged
(I )
otherwise Iy unchanged
)
Jo JieR,;s(x(i))=J, G, Js unchanged
) Js)
otherwise Jo unchanged
)
G, G, unchanged
G, G, unchanged
1 I, unchanged
J; J, unchanged

(1) The general cell sends the signal Hj to all cells in the same way as it does by
MRr. Each cell x recognizes at time dg(x) — 1 whether it is solitary or not. Note that x
is solitary if and only if for every adjacent cell y, s(v) is Hy or Gy and s(x) is Qo.

(2) A ron-solitary cell x recognizes at time dg{x) whether it is terminal or not in
the same way as it does by M.

(3) Each terminal cell x, sends the reflexive signal toward the general cell in the
same way as it does by M. Here if x, is solitary, the signal J, is sent at time dg(x,), and

if x. is non-solitary, the signal J is sent at time dg(x.)+ 1.
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(4) If all radial cells are solitary, the general cell x, recognizes this fact at time
2rg —1, that is, for all x,(7) with ri(x;) =0, s(x¢(?)) = Jo, I at that time. At the ~exi
time, x, sets s(x;) = G, from G, and then sends a signal J; informing this fact to all
cells. Each cell x receives this signal at time 2rg — 1 +dg(x). Note that if there is a
non-solitary radial cell, there is a cell x(i) with r;(4z) =0 and s(x,(i)) = H, at time
2"0 -1.

Thus the following fact is obtained.

Fact 4.2. If all radial cells are solitary, then every cell x recognizes this fact at time
2"6 +GYG(X)_ 1.

Froin Fact 4.1 and 4.2, we define the firing of M3, by the following rules.
(1) For a terminal cell x,,
(i) x. fires when My, (x,) moves to F if x, recognizes that all radial cells are
sclitary before M}, (x;) moving to F,
(ii) x. fires when My, (x;) moves to F if x, recognizes that a!l radial cells are
sclitary after My, (x,) moving to F, and
(i) otherwise, x. fires at the next time when M} (x,(i)") with dg(x.(i) <
de:(x)(ri(x,) =1) moves to F.
(2) Fer a non-terminal <ell x [the general cell x,],
(i1 x [x,] fires when My, (x'P) [M}, (xg)] moves to F if x [x,] recognizes that
all radial cells are solitary, and
(ii; otherwise, x [x,] fires at the next time when M, () [M}, (x¢)] moves to
F.
First, we consid»r the case where all radial ceils are solitary. For a radial cell
X:, M1, (x;) has no: yet moved to F at time 2rg +dg(x,)—1=3rg — 1 when x;
recognizes that al! radial cells are solitary. Hence x, fires at time 3rg by the rule
(i) of (1) and Faci 4.1 (1). For a non-radial terminal cell x,, M}, (x;) moves to F
at time 3ds(x,) 2nd then recognizes that all radial cells are solitary at time
2r; +dg(x)—173ds(x,). Hence x; fires at time 3rg by the rule (ii) of (1) and
Fact 4.1 (2). Ali other cells fire at time 37 by the rule (i) of (2), Fact 4.2, and
Fact 4.1 (3). From the above discussion, if all radial cells are solitary, then all
cells fire at time 375.
In the case where all radial cells are not solitary, it is clear by the rules (iii) of
(1) and (ii) of (2) that all cells fire at time 3rg + 1.

Theorem 4.3. Tk automaton M, is a solution for €, and its synchronization time is
3rg time units for G in 4, and is 3rg + 1 time units for G in §— Y.

Finally, we point out that M3, gives the minimum synchronization time for some
subclass of ¥.

For a graph structure (7, let fin(G) be the minimum value of the synchronization
time t(G, M) over all solations for ¢. Kobayashi [6, 7] gave an algorithm to calculate
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tmin(G) for each graph structure G. Intuitively fnin(G) is about max{ds(x)+
dg(%, y)|x and y are cells of G}. For any cells x and y, dg(x)+ dg(x, y) means the
time reguired for x to leave the quiescent state and then for y to receive a signal
from x.

Let %,.; be the class of all graph structures G in ¥ having two radial cells x and y
such that dg(x, y)=2rs. Let 9, be the class of all graph structures G in 94—
having three radial cells x, y, and z such that x and y are adjacent ond dg(x, z) =
ds(y, z)=2rg.

By Kobayashi’s algorithm, we obtain that for G in 9,1, tmin(G) = 375, and that for
G in 9,2, tmin(F) =3rg+1. On the other hand, Theorem 4.3 shows that for G in
Gn1(= 9., t{G, M3,)=3rg, and that for G in G2 (£ 9— %), t(G, M;3,)=3rc+1.
Then we cbtain the following result.

Theorem 4.4. Let G, = b1 U Gunz2 U{G € 9| the number of cells of G is equal to 1}.
For any graph structure G in §,,,, t(G, M3,) = tqin(G).

5. Summary

We have given new solutions of the firing squad synchronization problem for the
class of graph structures. The synchronization times of our solutions are proportional
to the radius of a graph structiure. Considering that the synchronization times of the
solutions previously known are proportional to ¢he number of ncdes of a graph
structure except special cases, our results are remarkable improvement for the
problem. First, we have pointed out that the synchronization of a quasi-circuit
structure is reduced to that of circuit structures. Using this fact, we have given two
preliminary solutions whose synchronization times for a graph structure G are
respectively 4rg and 3rg + 1 time units. Finally, we have given our final solutions
whose synchronization time for a graph structure G is 3rg or 3rg+1 time units
depending upon a property of radial cells of G. Moreover, we have shown that this

solution gives the minimum synchronization time for an infinite number of graph
structures.

Appcndix. The state transition tables of the circuit solution M, and the semicircuit
solutiou M,,.

Tables give the state of a cell at time ¢+ 1 corresponding to its own and its
predecessor’s state at time ¢, In the tabies, the symbol * means any state other than
being specified. Table 3 gives the state transition table of M. Table 4 gives the state
transition table of M, other than the ones given in Table 3.
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