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Abstract. tn this paper, we give a solution of the Firing Squad Synchronization Problem for graphs. 
The synchronization *imes of solutions which have been obtained are proportional to the number 
or nodes of a graph. T~e synchronization time of our solution is proport[onal to the radius rG of a 
graph G (3re; + 1 or 3rG time units), where rG is the longest distance between the general and any 
other node of G. This synchronization time is m[,~imum for an infinite number of graphs. 

1. Introduction 

The problem of synchronizing a finite (but arbitrarily long) one-dimensional array 
of finite automata, known as the firing squad synchro~tization problem, was proposed 
by Myhill in 1957 and Moore [10]. This problem was solved by Goto [2], Wak.,;man 
[15], and Balzer [1], and they obtained the minimum synchronization time 2n - 2 for 
an n-element array. The problem was generalized in many different ways by Moore 
and Longdon [11], He.rman [3, 4], Rosenstiehl [13, 14], and Kobayashi [8, 9]. 

This paper deals with the firing squad synchroniz~tion problem for graphs, which 
was studied by Rosenstiehl [13, 14], Kobayashi [5, 6, 7], and R, amani [12]. Given a 
graph with a specified node and an finite automaton, we consider a network in which 
a copy of the finite automaton is placed on every node of the graph and these finite 
automata on the nodes are connected along every edge of the graph. The state of 
each finite." automaton at time t+  1 depends on its own state and those o[ its 
neighbours at time t. The problem consists in defining the structure of the finite 
automato.l so that the automaton on the; specified node, called the general, can cau~c 
all finite automata to enter a particular state, called the firing state, exactly at the 
same time. 

The synchronization times of solutions which have been obtained, are propor~. 
tional to lhe number n of nodes of a graph (4n - 6  in [13] and 2n in [5, 14]), except 
for Rom~ni's improved results for seine special class of graphs. In this pa[z:er ,re 
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present a solution whose synchronization time is proport ional  to the radius re of a 
graph G (about 3to), where re is the longest distance between the specified node (the 
general) and any other node of the graph G. Note that r~ is essentially different from 
and less than the number of nodes of the graph. :['he synchronization time of our 
solution is mi~dmum for graphs whose generals are (informally s[,eaking) at the 
center of the graphs. Our solution is based on the synchronization of a particular type 
of digraphs called 'quasi-circuit structures' .  

2. Preliminaries 

Throughout  this paper, by d we denote some fixed positive integer. A digraph 
structure of  valence d, or simply a digraph structun;, is a 4-tuple G = (X, U, xg, d), 
where X is a finite set of cells, Xg a particular cell in X called the general cell, and U a 
finite set of arcs of the form (x, y, i) (x, y ~ X, 1 ~< i ~< d) satisfying the condition: for 
each pair of y and i there is at most one arc of the form (x, y, i). If the:e is an arc (x, y, 

i) in U, a cell x is called the [ith] predecessor of a cell y, [denoted by y(i)]. (See Fig. 
1 (b).) If for a cell y and an integer i (1 ~< i ~< d), there is no arc (x, y, i) in U, we say that 
the ith predecessor y(i) of y does not exist. 

A sequence of cells [Xo , . . . ,  xt] of a digraph structure G is a path of length I from a 
cell x to a cell y, where Xo = x, xt = y, xi # xi for any i, j with 0<~ i < / <~ ! -- 1, and xi-~ is 
a predece,Jsor of xi for each i = 1 , . . . ,  I. A path [ x o , . . . ,  xt] i~ said to be cyclic if 
xo = xt. The distance from a cell x to a cell y in G, denoted by dG(y, 3'), is the length of 
the shortest path from x to y. Especially, the distance from the general cell xs to a cell 
x is denoted by de(x).  We denote max{da(x)l x is a cell of G} by re, called the radius 
of G. 

A digraph structure G is said to be connected if for any two cells x and y of G, there 
is at least one path from x to y. A digraph struct~re in wh=.ch for any two cells x and y, 
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Fig. 1. 4, digraph structure and a g al:,h structure. 
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if there is an arc (x, y, i), then there is an arc (y, x, j), is said to be symmetric. We call a 

connected symmetric digraph structure of valence d a graph structure of valence d, or 
simply a graph structure. We denote the class of ali graph structures of valence d by ~3. 

Usually, in a graph structure we call the [ith] predecessor of a cell x the [ith] adjacent 
cell of x, and in figures of graph structures we represent  each two opposite arcs by one 
undirected arc as shown in Fig. l(a). 

An automaton with d input ter,nmals, or simply an automaton, is a 6-tuple M =  (S, 
Se~ Sq, Sv Sf, A), where 

(1) S is a finite set of states, 
(2) s~ is an element not in S [the external signal], 
(3) Sq, sv and s~ are particular distinct elements in S [the quiescent state, the 

general state, and the firing state, respectively], and 
(4) A is a transition ]'unction from S × (S u (s~}) d into S such that A (sq, s ~ , . . ,  dd) = 

Sq if each of s ~ , . . . ,  Sd is either sq or Se. 

Let G be a digraph structure ar  d let M be an automaton.  We consider a network 
such that for each cell x of G, a copy of M is placed on x. In the network,  the ith input 

terminal of the automaton on a cell x is connected with the output  terminal of the 
automaton on the ith predecessor x(i) of x if x(i) exists and otherwise, open. 
Hereafter  an automaton on a cell ~ will be also called a cell x. Formally the state of a 
cell x at time t, denoted by s(x, t, G, M), is defined as follows. For  t = 0, s(x, O, G, M) 
is s s or Sq according as x = Xg or not. For t > 0, s(x, t, G, M) is A (s(x, t - 1, G, M),  sl, 

. . . ,  Sd), where si is s(x(i), t -  1, G, M)  if the ith predecessor x(i) of x exists and is Se 
otherwise. (See Fig. l(b).) 

We say that a cell x of a digraph structure G fires at time t by an automaton M if s (x, 

t', G, M )  ~ st for any t' < t and s(x  t, G, M) = s~. We say that a digraph structure G 
fires at time t by an automaton M it all cells of G fires at time t by M. If there is such a 
time t, it is called the synchro.',;,zatfon ~ime of M for G and is denoted by t(G, M). 

Let ~ be a subclass of digraph structures. An automaton M is called a solution of 
the firing squad synchronization p~oblem for ~, or simply a solution for ~, if each 
digraph structure in ~ fires by M. 

3. A s~iution for 

In this section, we give a solution for the class ~3 of all graph structures, called the 
(3r + 1)-solution. Its synchronization time for a graph structure G is 3r~ + I time 
units. The principal idea is based on the synchronizatio~ of a particular type of 
digraph structures called quasi-circuit structures and the reduction of any graph 
structure to a quasi-circuit structure. In Section 3.1, we defint quasi-circuit struc- 
tures and observe that their synchronization is reduced to the synchronization of 
circuit structures. In Section 3.2, we give the reduction of a graph structure to a 
quasi-circuit structure. In Section 3.3, we consider the synchronization of circui~ 

structures and finally give the (3r ÷ l )- solution. 
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3.1. A quasi-circuit structure 

A quasi-circuit structure of length n (and valence d) is a digraph structure/9, = (XD, 
Uo, xg, d) such that each cell in X o  has at least one Fredecessor and XD is partitioned 
into (lisjoint nonempty subsets X o , . . . ,  X,_~ with Xo = {xg} such th: t all predeces- 
sors of the cells in Xk are contained in Xk-~ for k ='- 0 , . . . ,  n - 1 where X_~ = X,_~. 

Example 11. In Fig. 2(a), we give a quasi-circuit structure of length 8. There are cyclic 
paths of length 8 (shown as bold arcs). Generally, in D ,  there is at least one cyclic 
path, all cyclic paths have length n and pass through xs, and for any cell x, the length 
of every path from xg to x is equal to do.(x) (<n).  

Next we define a circuit structure of length n, denoted by C,, = (Xc, Uc, Xo, 1), as 
a digraph structure of valence 1 which consists of one cyclic path of length n. (See 
Fig. 2(b) . )  

Let M = (S, s¢ Sq, Sg, Sf, /~) be an automaton with one input termihal. A modified 
' s;, )t') of  M is an automaton with d input terminal such automaton M '  = (S', Se, s ", ss, 

that 
# f (1) S' = S, sq =Sq, Sg =ss, and s; =sf, and 

(2) for any two states s and s' in S', if ( s l , . . . ,  sa)e ({s'} u {so}) a -{s=} a, then X'(s, 
s ~ ,  . . . , s d )  = 2t ( s ,  s ' ) .  

I'-- -- -~ I ''----'~ I"" .... 't I" .... ~ I" l" ~ I"*- -- 

. . . . .  , \ !  ? - - f  ' 
,, ~ " ~ !  I ' ' J  ! ~  ' ~  I I ' , - . ~  
X,., i ., t I k ' , \ 

, I . ! d ' - 5  ~ × , ,  I 2" -D I X i Xz i '" ",-"L.2 ; "6 , L - ) i  
I I I 
,, .,I ~ . ~ ..... I [ . . . . .  I 

X3 X4  X5 X7 

(a) 

~0 XI X2 X 3 X 4 X 5 X 6 X 7 

(b)  
Fig. 2. (a) A quasi-circuit struc'~ure of length 8 and (b) a circuit structure of length 8. 
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Lemma 3.1. Let  M be an automaton with one imput terminal and  M '  a modified 
automaton of  M. Let D ,  and  C, be a quasi-circuit structure of  length n and a circuit 
structtt,e of  length n respectively. Tt~en for each cell x in Xk o l D , ,  s(x, t, D~, M' )  = S(Xk, 
t, C,, M ) ,  whe, e xk is a cell o f  C,  with dc.  (Xk) = k. 

ProoL It is proved by the inductic, n on t. The lemma holds at time t = 0 since the only 
general cells xg of /9 ,  and Xo of C,, are in the general state s~ and all other cells are in 
the quiescent state Sq at time 13. Suppe~c that the lemma holds at time t. l.et x be a cell 
in Xk of D,.  Then s(x, t + 1, D, ,  M ' )  = A '(s(x, t, D, ,  M' ) ,  sl, . . . , Sd), where each of 

s ~ , . . . ,  Sd is S(X (i), t, D , ,  M ' )  or s~. By the induction, hypothesis, s (x, t, D , ,  M ' )  = s (Xk, 
t, C,, M)  and for each x(i) s(x(i) ,  t, D, ,  M ' )  = S(Xk-1, ~.', C,, M )  since x(i)  is contained 
in Xk-~. Since x has at least one predecessor, ( s~ , . . .  ,Sd) is in ({S(Xk-~, t, C,,, 
M)}w{Se})d--{Se} d. Hence 

s(x, t + 1, D, ,  M ' )  = A(S(Xk, ~, C,, M ) ,  S(Xk-l, t, C,, M) )  = ~ (Xk, t + 1, C,, M) .  

By Lemma 3.1, the synchronization problem of quasi-circuit structures is reduced 
to that of circuit structures. If we can construct ,m automaton MR which reduces 
graph structures to quasi-c;.rcuit structures and an automaton AI~ which synchronizes 
circuit structures, then we obtain a solution for the class ~ of graph structures which 
simulates MR and then simulates the modified automaton of ~ .  

3.2. Reduction 

In this section, we ,:onsider the reduction of a graph structure G to a quasi-circuit 
structure ¢,f length 2r6, where rt~ is the radius of G. Before explaining L he reduction, 
we give some definitions and notations. 

In a graph structure G, a path [ x 0 , . . . ,  xt] is called a descending path of a cell x if 
Xo=X and do(x j -~ )<d6(x j )  for / - 1 , . . . , L  A ce!! x is terminal if x has ~o 
descending path of length ~> 1, that is x has no adjacent cell y with d6(y)  > dG(X). A 
descending path of x is maximal  if it has the maximum lenf~h among all descending 
paths of x. We denote the length of a maximal descending path of x by 16(x). Note 

that for the general cell xg, 16(xg) is equal to the radius re and if a path [Xo, . . . ,  xt] is a 
maximal descending path of x0, then [ x l , . . . ,  xt] is also a z~laximal descending path of 

xl with l~ (x l )=  lG(xo)-  1. 
Given a graph structure G, we have the reduced digraph structure G'  of  G as 

follows. (See Fig. 3.) 
First, we assign each cell x of G a d-vector m ( x ) = ( m ~ ( x ) , . . . ,  ma(x)) ,  where for 

each i =  1 , . . . .  d, if d G ( x ( i ) ) < d ~ ( x ) ,  then m~(x)= 1, i.~: there exists a maximal 
descending path [Xo , . . . , x t ]  of x such thet x~ =x( i ) ,  then m~(x)= 2, and else 
m~(x) = 3. Then we divide each cell x of G which !s neither the general cell nor a 
~erminal ceil, into ~ o  st, bcells x ~ and x ~2~, called the first subcell o f x  and the second 

subcell o[ x, respect eely. 
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m ( x  2) = ( i t :5 ~ 2 ~ :5 ) mtx~) = ( i I I ~ 3 ~ 3 ) 

(c )  

Fig. 3. Reduction of a graph s~ructure: (a) a graph structure G; (b) the reduced di graph structure G' of G; 
(c) d-vectors of the cells of G. 

The set of cells of G'  consists of all such subcells, the general cell of G, and the 
terminal cells of G. The general cell of G'  is the general cell of G. The predecessors e', 
cells of G'  are determined by the d-vectors as follows. The predecessors of the first 
subcell x (1) [a terminal cell xt] are all x(i)(l)'s with m,(x) = 1 [xt(i)(t)'~s with rni(xt) = i: ,  
where if x(i)[xt(;)] is the general cell xg, x(i) (~) [xt(i) (1)] means xg [xg]. The pre- 
decessors of the second subcell x (2) [the general cell xg] are all x(i)(2)'s with 
mi(x)=2[xg(i) (2) with mi(Xg)=2], where if x(i)[xg(i)] is a terminal cell 
;~t, x(i) rE) [xg(i) ~2~] means xt [xt]. 

Example 2. In Fig. 3, we give the reduction of a graph structure. Ther,~" we show 
maximal descending paths as bold arcs. 

For any descending path [Xo, .. . ,x t] inG,  there Js a path [x (1)o , . .  . ,  x~ 1) ] in G'  since 
do(xi-~) < dG(x i) for ] = ~ . . . .  , l, and for any maximal descending path [Xo , . . . ,  xt], 

(2) . , xg  G' . ,  there is a path [Xto 1) . . . .  , xlP~, xl, xl-1,. ,  in since a path [xi, • • xt] in G is 
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also a maximal descending path of x,, for j = 1 , . . . , / .  Hence, corresponding to the 

only maximal descending paths of x~, there are cyclic paths in G ' ,  which have length 
2 ~ .  

Lemma 3.2. Given a graph structure G = (X, U, xg, d), let G' := (Y, V, xg, d) be the 
reduced digraph structure of (7 defined above. Then G' is a q~,asi-circuit structure of 
length 2to. 

Proo| .  By definition, each cell of G '  has at least one predecessor. Let  Yo = {Xg} and 

for k = 1 , . . . ,  2 t o -  1, let Yk = Y~k ~) ~ Y~ ~ Y~k ~'), where 

Y~k ~) = {x¢~)lx is a non-terminal cell of G, x ~ x~, and de(x )=  k}, 

Y~, = {xtlxt is a terminal cell of G and do(xt) = ~}, 

Y~k 2) = {x'~)lx is a non-terminaJ cell of G, x ~ x~, and d6(x)  + 2l~(x) = k}. 

For each cell x(x~xg)  of G, dG(X)<~dG(.r)+21G(X)<~2rG--1. Hence Y =  

[..j~ffl Yk. For k = 0 , . . . ,  2 r ~ - 1 ,  Yk is nonempty since for each cell xi on a 
maxi:nal descending path [Xo, . .  . ,  x,.o] of x~, do(x i ) - ]  and do(xi) + 2lo~xi) = ,.re" - j .  
It is clear that Y~, n Yt = 1~ if k ~ I. Therefore, Y is partit ioned into disjoint nonempty 

subsets Y o , . . . ,  Y2,~-1 with Yo=(Xg}. 
We show that all predecessors of ceds in Yk are contained in Y,~__~ for k = 

1 , . . . ,  2rG-- 1 and all predecessors of xg in Yo are contained in Y2r~-~. 
Let 0 ~< k ~< 2ro - 1. Let y ~ Yk. 
Assume that y ~ Ytk~). Then there exists a non-terminal  cell x of G such that x t~=  y 

and do(x) = k. There are two cases to consider. 
(1) dc(x)>~2: Any xti) with mi!x)= 1 is not the general cell since dG(X(i))= 

d e ( x ) -  1 ~> 1. Hence the predecessors of y( = x t~)) are all x(ii~t~'s with m~(x) = 1 by 
definition. Since mi(x)= 1 and do(x)=k ,  dG(x(i))=dG(x)--I  = k - 1 .  Thus all 
predecessors of y are contained in Y~k!_ ~ ~. 

(2) de(x) = 1" In this case, y ~ y~l). The cell x(i) with mi(x):= 1 is the general cell 
since do(x(i)) = d e ( x ) -  1 = 0. Hence the predecessor of y ( = x ~)) is only the general 

cell xg b3 definition. Thus the predecessor of y ~s contained in Yo. 
A similar argument shows that if y ~ Y~,, all predecessors of y are contained in 

-l  when k >~ 2 and in Yo when k = 1, 
Assume that y ~ Y~k 2). Then there exists a non-terminal  cell x of G such that x ~'~ = y 

and de(x)+ 2 / o ( x ) =  k. There are two cases to consider. 
(1) lo(x)>~2: Every x(i) with m / ( x ) = 2  is non-terminal since IG(x(i))= 

l.~(x)-- 1 >~ 1. Hence the predecessors of y( = x C2)) are all x(i)t2)'s with m~(.r) = 2 by 
definition. Since m i ( x ) = 2  and de(x)+21o(x)= k, dG(X(i))+2lc~(x~t))= 
~do(x) + 1) + 2(1o (x) - 1) = do(x) + 2lo(x) - 1 = k - 1. Thus all predecessors; of y are 

contained in Y~k2- )_ ~. 
(2) lo(x) = 1" Every x(i) with mi(x) = 2 ,.'s terminal since lc~(x(i)) = l~(x'}- 1 = 0. 

Hence the predecessors of y( = x (~)) are all x(i) 's  with m, (x )=  2 by definition. Since 
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IG(X(i))=O, mi(x)--2, a n d  dG(x)+21G(x)=k, dG(x(i))=dt;(x(i))+21t~(x(i))= 
d~(x)- 1 = k -  1. Thus all predecessors of y are contained in Y},_~. 

A similar argume~.t shows that if y ~ Yo, then all predecessors of y are contained :n 

x,,¢2) when  rG >~ 2 and in t Y2,~-~ w h e n  rG = !.  2rG- 1 

Thus G' is a quasi-circuit structure of length 2r~. 

Now we construct an automaton MR which realizes the above reduction. The 
realization of the quasi,circuit structure D2,~ from a given graph structure G by MR 
means that every cell x (with Ms)  of G computes and stores its own d-vector re(x). 
We assume that MR has d + 1 registers s, r l , . . . ,  rd. The first register s holds a signal 
in SR = {Go, G1, G2, Ho, H1, I, J, Qo} and each of the remaining d registers r~ . . . .  , r,l 
holds an element of {0, 1, 2, 3}. Thus each state of MR has the form (s, r~ , . . . ,  ra). The 
transition table of MR is given by Table 1. In Table 1, by s(x) and r~(x;, we denote the 
contents of the register s and the register r~ of a cell x, respectively, and by R0, we 
denote the set of integers i with r~(x)= O. 

Nc;w we explain the behavior of the network defined by a given graph structure G 
and MR. (See Fig. 4.) At time 0, s(x) = Go or s(x) = Qo according as x is the general 
cell or not. and r~(x)=0 for i = 1 , . . . ,  d. The behavior of the r~etwork is partitioned 
into three parts. 

(1) The general cell sends the sig~,:.! h~, w all ce,~Is along descending paths. Each cell 
x with s(x) = Qo sets s(x) = Ho if there is an adjacent cell y such that s(y) = Ho or Go. 

Table 1 

Before the step After the s~tep 

s(x) the condition for s(x) 
the transition 

Go Gl  

Qo 

Ho 

H, 
(GI) 

G2 

I 

3i  ~ Ro s(x(i)) = Ho, Go Ho 

otherwise Qo 

=li ~ Ro s(x(i)) = Qo H1 

otherwise I 

Vi ~ Ro s(x(i)) -- J, I J 

~ L,vT) 
otherwise H1 

(G1) 

G2 

r[ (x) (the content of r~ 
after the step) 

r~(x) = {3 elseif x(i) does not exist 

i if s(x(i))--- Ho, Go 
r[(x) = if x(i) does not exist 

else 
unchanged 

r[(x) = {3 if s(x(i))= Ho 
r~(~c) else 

'(x) = {3 if s(x(i)) = Ho 
ri r~(Jc) else 

r~ (x) = {2 if i ~ Ro 
r~(Jc) elae 

, {3 if s(x(i))= J, I 
ri (x) = _rdx) else 

unchanged 

unchanged 

unchanged 
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t i m e s(x(~)) s (x(2)) s(x(3)) s(x(4)) s(x) ( ra cx), . . . ,  rs (x ) )  
. .  

dG(X ) -- 

dG(X ) 

dG(X) + I 

dG(x)+2 1G(X(3))+ J 

dG(X)+2(]G(X(3))+ t ) ]  

dG(X )+ 21G(X) 

dG(X )+ 21G(X)+ I 

Ho Qo Qo Qo 

HI Ho Qo Qo 

H I I H o H o 

H I I J H I 

H I I J H I 

H a I J 

Hi I J 

J 

J 

QO ( 0,0,0,0,0 ) 

HO( 1,0,0,0, o) 

Hi ( I, 3,0~0,3 ) 

H a ( 0 , 3 , 0 ,  0 , 3  ) 

H I ( 1 ~ 3 ~ 3 ~  0~3 ) 

HI ( 1 ~ 3 , 3 , 0 ~ 3 )  

J ( 1 ~ 3 , 3 , 2 ~ 3 )  

Fig. 4. Behavior of MR on cells of a graph structure, where dG(X(1))< dG(X)= .tG(x(2))< dc(.x(3))= 
dG(x(4)), x(2) is termiinal, and x(4) is on the maximal descending path of x but x(3) is not (i.e. 

lo(x(3)) < !o(x(4)) = IG(X) -- 1). 

At the same time for each i = 1 , . . . ,  d the cell x sets ri(x) = 1 if s(x(i)) = Ho or G~ 
(i.e. d6(x( i ) )<dG(x)) ,  ri(x) = 3  if x(i) does not exist, and ri(x) =0 ,  otherwise (i.e. 
do(x(i)) >>-d6(x)). This  m o v e  of x occurs  at time dG(X). 

(2) Each cell recognizes whether it is terminal or not, Each ce]ii x with s(x ) = Ho sets 
s(x) ~ I-L if there exists t with ~';r(i)) = Qo (i.e. x is not termitial) and sets s(x) = I if 
there is no i with s(x(i)) = Qo (i.e,. x is terminal). At the same t~me, the cell x changes 
the value of rt(x) from 0 to 3 for every i with s(x(i)) = He (i.e. dG(x(i)) = dG(x)). This 
move of x occurs at time riG(X)+ 1. 

(3) Each terminal cell sends the reflexive signai J toword the general cell a 'ang the 
descending paths (in reverse direction). Each non-terminal cell x with s ( x ) - H ~  
changes the value of r~(x) as soon as the cell x detects that s(x(i)) has changed from 
H~ into J or I. If the, re exists./(] ~ i) with O(x) = 0 and s(x(])) = Ht  at that time, r~x) 
changes to 3 (from 0) and s~::) is unchanged, and otherwise r~(x) changes to 2 (from 0) 
and s(x) changes to ] (from H~). In the latter case, x(i) is on a maximal descending 
path of x, but in the fermer case, x(i) is not on any maximal descending path of x. The 
time when ri(x) changes to 2 (for ~he latter case) is dG(X)+21o(x)+ 1. 
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Hence each cell x of G has m(x) as ( r l ( x ) , . . . ,  rd(X) at time dG(X)+ 2IG(x)+ 1. 

Precisely the following fact is obtained. 

Fact 3.3. Given a graph structure G and the above automaton MR, '~or each cell x of 
G the time when r~(x) changes to 1 (from 0) is do(x) and for each noa-terminal cell x 
of G the time when r~(x) changes to 2 (from 0) is riG(x)+ 216(x) + ~. 

3.3. The (3r ÷ l)-solution 

In the previous section, we presented an automaton which reaaces any graph 
structure to a quasi-circuit structure• The synchronization of the quasi-circuit 
structure or a part of the quasi-circuit structure that completely covers the original 
graph slructure gives the synchronization of the graph structure. Moreover by 
Lemma 3.1, the synchronization of any quasi-circuit structure is reduced to that of a 
cma . .  structure. Thus, in this section, we conside.r the synchronization of circuit 
structures and finally give solutions for the class ca of all grapL structures. 

A solution for the class of circuit structures was given by Kobayashi [8, 9]. Its 
synchronization time for C. is 2n - 1 time units, which is minimum. The authors have 
obtained independently a similar solution Mc called the circuit solution. 

Using the circuit solution Me, we can easily give a solution M4~ for ca whose 
synchronization time for a graph structure G is 4rG time unit~. The automata M4, on 
a given graph structure G simulate the automata MR (as give~ in the previous 
section) to reduce G into a quasi-circuit structure D2r~, and simuiate the modified 
automata M" of Mc (cf. Section 3.1) which are assumed to be placed on the reduced 
quasi-circuit ~tructure D2,G of G. Thus, for each ce, ll x ~¢hich is neither the general 
cell nor a terminal cell, M4, on x simulates MR on x and simulates M" on the first and 
the second subcells (x c~ and x t2) respectively) of x. For the general cell xg [a terminal 
cell xt], M4, on x 8 [xt] simulates MR on xg [xt] and simulate,,; M" on x8 [xt]. Fact 3.3. 
and Lemma 3,.2 imply that by MR, the predecessors of x ~ [~;t] are determined at time 
do2,G (x ~l~) .. [do~,~(xt)] and those of x~Z)[xg] are determined at time dD,,~(x¢2~)+ 
1 [2rG + 1 ]. Thus the general cell of G can start to simulate M" one time unit lat~.r 
after the simulation of MR starts (at time 0). We make M4, so that each cell fires whea 
M'c simulated by M4,. on it moves to ~he fring state F (of M'~ ). Since the automata M '  
synchronize D2,~ at time 2(2rG)--1 =4rG--1 ,  we obtain the solution M4, for 
whose synchronization time for G is 1 + ( 4 r ~ -  1)= 4ro time units. 

We can improve the solution M4, by considering: the following two facts. 
(1) The synchronization of a graph structure G is achieved by synchronizing the 

first subcells, the general cell, and terminal cells of the reduced quasi-circuit structure 
l)2r~ of G. 

(2) A terminal cell farthest from xg divides each cyclic path passing through it in 
I)2,G into two halves. 

Hence we have the following modified problem. Let (C2., x.) be a circuit structure 
C2. with a designated cell x., in which the cell x. can move to a particular state at time 
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n (= dc=. (x,)). In other words, when the cell x, receives the first signal from the 
general cell, it can know that it divides C2, into two halves [Xo,. . . ,  ~:,-1] and 
[x , , . . . ,  r2,-t].  The problem is to construct an automaton with one input tenrtinal 
which synchronizes all cells on the sem~circuit [Xo,. . . ,  x,] fo. the class of {C2,,, x,). 
This automaton is called the semicircuit solution. 

We first explain the circuit solution Mc = (So, se, Q, Poo~ F, A~), and then explain 
how to mod.~fy Me to obtain a semieircuit solution Mh. Since it is laboriouts to desc~'ibe 
the details of the behavior of Me, we explain only the basic idea for the case when n is 
an integer of the form 2% and present the transition table of Me in the Appendix. 

The propagation of 'signals' of Mc in C, is depicted in Fig. 5 by using a diagram. 

0 n 

/ . . - - - - - - .m,- .  

P-series -series 

E 
° ~  
4 . -  

n=l 

BC-series 

(zS, to) 

RS 

2 n -  I 

Fig. 5. Propagation of 'signals' of M~ in C,. 
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The horizontal axis represents cells of C,  and the vertical axis re.presents time. The 
(z, t) entry represents the state of a cell xz with dc.  (xz) = z at time t. Note that two 
points (0, t) and (n, t) are the same point. Let  z/k and t i b* .  k ( n / 2  ~) and 

2n - n / 2 ~ i  = 0 , . . . ,  m -  1, k = 0 , . . . ,  2 "~-1-1)  respectively. 
There is one special signal Poo called the general signal. Poo is the general state of 

Me. Hence Poo is at (0, 0). Moreover  Poo'S are generated at (z~, ti) in the following 
way. Each Foo generates the following series (sequence of signals in the diagram): 
- P-seri~:s with velocity v = 0 (cells/time unit), 

1 3 - -  ) / ( 2 i + 1  
- BC-series with v - 3, 7 , . . . ,  (2 ~ 1 - 1), .... , 
- Ao-series with v = 1, and 

RS-series with v 2 4 2i/(2 i+1 1), " - - 3 ~  7 ~ . - .  ~ - -  - . . "  

When 
(1) an Ao-series meets a P-series, or 
(2) an RS-series meets a P-series, or 
(3) a BC-series meets an Ao-series,  

a - ew general signal Poo is generated at the point. These new P~:)'s generate new P, 
BC, Ao, RS-series and these series in turn generate new Po0'S and so on. In Fig. 5, the 
Ao-series and the RS-series from (0, 0) meet  the P-series from tO, 0) at (z °, to), 
, 0 0 ~ z ~ , t ~ ) , . . . , ( z i ,  tj), . . . .  The BC-series from (0,0) meet the Ao-series from 
(0, n ) = ( z  °, to) at (z], fl), (z 3, t2), . . . , (z 2~-~, ti), . . . .  Then, at time r~,_. = 2n - 2 ,  
every cell x~ ~dth z = 2k (k = 0 . , . . . ,  2 m-~) is in the state Poo, and hel.~ce all cells of 
C, can fire z~t time 2n - 1. 

More precisely, Mc has two general signals Poo and P~ ~. P ~  Js t~ ~cd for the case, 
where n is n,~t of the form 2 m. The behavior of M~ for C~3 is given in Fig. 6. In Fig. 6 
the two signals K and T are used to produce BC..series and RS-series as trigger 
signals respectively. For more details, see [8]. 

Now we give the semicircuit solution Mh = (Sh, :;e, Q, P, F, Ah). The state set Sh 

includes that of M~. We explain only the basic idea for the case, where n is 2",  and 
present the transition table of Mh in the Appendix.  

The propagation of 'signals' of Mh in (C2,, x,)  is depicted in Fig. 7, in which the 
propagation of ~signals' of M~ in C,, is also shown for the reference. We construct 
Mh so that the signals generated at (z, t) in (C2,,, x,)  are identical to those at (z, t -  n '  

in C,, for 0 ~< z ~< n - 1 and t ~> 2n + z. that is, Poo'S are generated at (z °, tj + n) and 
. , 2 i - I  
"i , t i + n ) ( f o r ; = O , . . . , m - 1 ) i n ( C 2 , , x , ) .  

Mh has two special signals P and P~o in addition to Poo. P is the general state of Mh. 
Hence P is at (0, 0). P generates a P ' - s edes  with ve.iocity v := 0, an A-ser ies  with 

L 3 ,  ( 2 ' -  1 ) / ( 3 . 2  i 1), P~o is generated at v = 1, and VW-series with v =5, . . . ,  - . . . .  

(n, n), that is P[~o is the state of the designated ce]!l x,, at time n ( = d c 2 , ( x , ) ) .  P~o 
generates a t'~o-~;eries with v = O, an Ao-series with r, = 1, and RS-series with v 2 4 
. . . , 2 i / ( 2 i + 1 - 1 )  . . . . .  

General  signals Poo'S are generated by the following rules in addition to the rules of 
M~. When (4) an A0-series meets a P '-series,  or (5) ~ VW-serles meets an Ao-series,  
a new general signal Poo is generated at the point. 
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Fig. 6. Behavior of Mc for C13. 
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In Fig. 7, the Ao-series  from 0z, n) meets the P ' - se r ies  from (0, 0) at (0, 2n). I-lence 
Poo is generated at (0, 2 n ) =  (z °, to+ n) by the rule (4). The RS-series from (n, n) 

Z 0 .r O meet  the P-series  from (0, 2n) at ( z  °, h + n ) ,  ( 2, t 2 + n ) , . . . ,  (,./, t i + n ) ,  . . . .  The 
VW-series  from (0, 0) meet  the Ao-ser ies  f rom (0, 2n) at (z~, t , + n ) ,  (z!~, t2 + 
I ' / ) ~ . . .  z 2~-1  

, t z j  , t j + n ) ,  . . . .  

From the above consideratioa,  we can conclude that Mh on (C2,. x,,) generates  the 
same signals at (z, t) as Mc on C, does at (z, t - n) for 0 ~< z ~< n - 1, t ;.:~ 2n + z. Thus 
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p'--series -series 

2n 

0 

2n - I  

2 ~ 

3n- 

VW-series I \ \ \  ~-A..- series 

Fig. 7. Propagation of 'signals' of Mh in (C2,, x,,). 

each of cells Xo , . . . , x ,_ l  fires at time 3 n - 1 .  The device of the firing of the 
desigr~ated cell x, is special. We make the designated cell x, fi'~re at time 3n - 1 by the 
Y-series with v =½ generated by P at (0, 0). Hence all cells on the semicircuit 
[Xo,. . . ,  x,] of C2, fire at time 3n - 1 simultaneously. Fig. 8 gives the semicircuit 
solution for (C12, x6). 

Now we construct a solution for ~g called the (3r + 1)-solution M3,+1 by using the 
semicircuit solution Mh. In the same way as M4, does, each M3,+1 on a cell x of a 
given graph structure G simulates (1) one MR on x, and (2) one M~ on x if x is either 
xg or a terminal cell and two M~, on x ~~ and x t2) otherwise. (M~, is the modified 
automaton of Mh.) The general cell starts to simulate M~, at time 1. Here we must 
determine the designated cells of the reduced quasi-circuit structure D2rG of G. It is 
desirable to designate only all terminal cells x with dc~(x) = ro as the designated cells 
of D2,o. But it costs too much time. Hence we define that all terminal cells of G are 
the designated cells of D2,~. This designating is made when each terminal cell knows 
that it is terminal in the process of the reduction of G to D2,~ by MR. Then for every 
first subcell x t~), there is no designated cell on all path~ from xg to x t~) in D2,o, and for 
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Fig. 8. Behavior of Mh for (C12 , X~). 

every cyclic path in Dzr~, there is a unique designated cell y and do2,.~ (Y) = to. There 
are designated cells that are not on cyclic paths. But the behavior of these cells cannot 
affect the behavior o1[ the first subcells, the general cell, and the designated cells on 
cyclic paths. Thus the modified semicircuit solutions M~ on all first subcells, the 
general cell, and all designated cells on cyclic paths move to the firing state: F (of M~ ) 
at time 1 + ( 3 t o -  1)-- 3ro by an argument similar to that used for proving Lemma 
3.1. But for a designated cell y not on a cyclic path in D2,o, Mh on it move~; to F at 
time 3dD2,o (Y) < 3ro since a designated cell fires when the Y-series with v = ½ from 
the general cell arrives to it. Hence we make M3,+1 fire as follows. For a non-lerminal 
cell x [the general cell xg] of G+ x [xg] fires at time t + ! if Mh on the first subcell x ~) 
of x [on xg] mo,,es to F at time t. For a terminal cell xt, x, fires at time t + 1 if M~, on 
the first subeell of an adjacent cell y of x, with do(y) < do(xt) moves to  F at time t. It 
requires one more time unit. 

Theorem 3.4. The automaton M3,+ : is a solution ]:or ~g and its synchroniza,;ion time /"or 
G in ~g is 3ro + 1 time units. 
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4. The (3r)-solution 

In this section, we improve the (3r + 1)-solution Ms,+I. The improved solution is 
called the (3r)-solution M3,. Its synchronization time for a graph structure G in q3~ 
and ~-~,  are respectively 3to and 3to + 1 time units, where q3~ is the subclass of 

defined below. 
In a graph structure G, a cell x with do(x) = ro is called a radial cell. A cell x for 

which there is no adjacent cell y with do(y) >I do(x), is called a solitary cell. Note that 
each solitary cell is terminal but a terminal cell is not necessarily solitary. Let qd~ be 
the class of all graph structures G such that all radial cells of G are solitary and the 
number of cells of G is more than or equal to 2. 

The fundamental behavior of Mar is identical to that of MS,+l. The (3r)-solution 
M3, reduces a given graph structure to e quasi-circuit structure simulating a slightly 
distinct automaton Ms from MR which was simulated by Mar+~, an~ simulates the 
modified semic~rcuit solutions M~. Moreover, it is so devised that when, all radial cells 
are solitary in a given graph structure, the general cel]t can know this fact and sends the 
sijznal informing it to all other cells by Ms. 

For every terminal cell xt of a given graph structure G, we ass,:tne that two Mh are 
~91aced on xt and one of them behaves as if it is on a designatedi cell of D2r,~ (hence, it 
plays the same role as Mh in M3,+~ on xt) and the other does as if it is not on a 
designated cell of D2,,~. By M~ (xt) and M~ (x't), we denote the former M~ and the 
latter M~ respectively. For a non-terminal cell x of G [the genera, cell xs], by 
M~ (x tl)) and M~ (x t2)) [M~ (xg)] we also denote M~ on the first subcell of x and M~ 
on the second subeell of x [M~ on x~] respectively Then ~he following facts are 
obtained. 

Fact 4.1. (1) For a radial cell xr, M~, (x'r) does not move to F at any time and M~ (Xr) 
moves to F ~t time 3to. 

(2) For a non-radial terminal cell xt, M], (x~) moves to F at time 3to and M~, (xt) 
moves to F at time 3d6(xt)< 3re;. 

(3) For a non-terminal cell x [Xg], M6 (x~l~)[M~ (x~)] rr, oves to F at time 3to 
(el. Section 3.3). 

Next, we explain the automaton Ms which reduces ~. graph structure to a 
quasi-circuit structure and makes all cells to recognize v.hether all radial cells ar~ 
solitary or not. M:  has d + 1 registers s, r l , . . . ,  r~. The register s holds a signal i~ 
Ss = o~ u {Gs, Is, -To, Js, Yo} where SR is given by MR (simulated by Mar+l), and each of 
&, • . . ,  rd holds an element of {0, 1, 2, 3}. The behavior of Ms is similar to that of Mp, 
that is, the registers & , . . .  r~ play the same role as those of MR do and ti~e new 
signals G~, I~ (I0), and Js(Jo) to be held in the register s essentially play the same role 
as (72, I, and J do in Ms  respectively. Hence we exp!ain only how Ms makes all cells 
of G recognize whether all radial cells are solitary ,or not. (See Fig. 9 and 10 where 
ro = 3.) The transition table of Ms is presented in Table 2, where s(x) and r~(x) mean 
~he same ones as in Table 1 and by Rk (k: = 0, 1) we denote the set of integers i sucb 
that r~(x)= k and x(i) exists. 
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Fig. 9. Behavior of Ms for a graph structure G, where Xo is the general cell and all radial cells x3 and x6 are 
solitary. 
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Table 2 

Before the step After the step 

s(x) the condition for s(x) r~ (x) (the content of ri 
the transition after the step) 

Go G1 13 i fxt i)  does not exist r~(x) 10 else 

Qo Vi~Ros(x(i~)=Ho, Go Io ,(x)._. 11 i f s ( x ( i ) ) -Ho ,  Go 
• r~ /3 else 

~t ~ Ro s(xgi)) -- Ho, Go Ho (' if s(xti)) = lto, Go 
and r~(x) = ~  if x(i) does not exist 
~1 ~ Ro s(x(i)) = Oo else 
otherwise 0o unchanged 

I-Io Vi c_ Ro s(x(i)) = Ho I rl (x) = 13 if i ~ Ro 
/ ri(x) else 

otherwise H1 , {3 if s(x(i)) = Ho 
ri (x) = _ri(x) else 

H1 Vi~Ros(x( i ))=Jo,  Io Yo r[(x)= !2 if i~Ro 
(Crt) (Crs) |ri(x) else 

V i ~ R o s ( x ( i ) ) = J , l  Y , {2 if i~Po  
(G2) ri (x) = _ri(x) else 

otherwise Ha , {3 if s(x(i)) :-.To, Io, J. I 
(Gl) ri (x) = _ri(x) else 

Io ::li~ RI s(x(i)) = J~, G~ Ix unchanged 
(I) (t~) 

otherwise Io unchanged 
(1) 

Jo 3i ~ RI s(x(i)) = Y~, G~ Ys unchanged 
(y) (J~) 

otherwise Jo unchanged 
(J) 

Gz G2 unchanged 

Gs G~ unchanged 

~ unchanged 

~ unchanged 

(1) The general cell sends the signal Ho to all cells in the same way as it does by 
MR. Each cell x recognizes at time de(x ) -  1 whether it is solitary or not. Note that x 
is solitary if and only if for every adjacent cell y, s(y) is Ho or Go and s(x) is Qo. 

(2) A non-solitary cell x recognizes at time d~(x) whether it is terminal or not in 
the same way as it does by Mw 

(3) Each terminal cell x, sends the reflexive signa! toward the general cell in the 
same way as it does by MR. Here if xt is solitary, the signal J'o is sent at time d6 (xt), and 
if x, is non-solitary, the signal jr is sent at time d~(xO + 1. 
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(4) If all radial cells are solitary, the general cell Xg recognize, s this fact at time 
2 r a -  1, that is, for all Xg(i) with r:(xg)= 0, s(xg(i))= Jo, Io at that: time,. At the ~e.xt 
time, xg sets s(xg) = Us from G~ and then sends a signal J~ informing this fact l!o all 
cells. Each cell x receives this signal at time 2r~ - 1 + d6(x) .  Note that if there is a 
non-soli~.ary radial cell, there is a cell Xg(i) with r:(~g)= 0 and s(xg(i)) = H~ at time 
2 t o -  1. 

Thus the following fact is obtained. 

Fact 4.2, If all radial cells are solitary~ then every cell x recognizes this fact at time 
2rG + dc  { x ) - l . 

From Fact 4.1 and 4.2, we define the firing of ~V/s, by the following rules. 
(1) For a terminal cell xt, 

{i) xt fires when Mh (xt) moves to F if xt recognizes that all radial cells are 
solitary before Mrh (xt) moving to F, 
(ii) xt fires when M~ (x~) moves to F if xt recognizes that fill radial cells are 

solitary after M~ (xt) moving to F, and 
(iii~) otherwise, xt fires at the next time when Mh (xt(i)t~)) , with da(x , ( i ) )<  
~l!c:;(xt)(ri(xt)-" 1) nloves  to F. 

(2) l:'er a non-terminvl cell x [the general cell Xg], 
(i) x [xg] fires when M~ (x'l)) [Mh (Xg)] moves to F if x [Xg] recognizes ~hat 

all radial cells are solitary, and 
(iif: otherwise, x [xg] fires at the next time when M~ (x ¢1)) [/~d~ (xg)] moves to 
F. 

~'irst, we consider the case where all radial cells are solitary. For a radial cell 
x~, M'~ (Xr) has n~t yet moved to F at time 2ra + dG(Xr)-  1 := 3ra - 1 when rr 
recognizes that al~ radial cells are solitary. Hence x~ fires at time 3r.G by the rule 
(i) of (1) and Fac~ 4.1 (1). For a non-radial terminal cell xt, Mh (xt) moves to F 
at time 3dG(xt) and then recognizes that all radial cells are solitary at time 
2ra + dG(xt) - 1 : 3do(xt). Hence xt fires at time 3ra by the rule (ii) of (1) and 
Fact 4.1 (2). All other cells fire at time 3ra by the rule (i) of (2), Fact 4.2, and 
Fact 4.1 (3). From the above discussion, if all radial cells are'. solitary, then all 
cells fire at time 3r,,~. 

In the case where all radial cells are not solitary, it is clear by the rules (iii) of 
(1) and (ii) of (2) that all cells fire at time 3ra + I. 

Theorem 4.3. Th., automaton Mar "~S a solution jCor ~, and its synchro~:ization time is 
3r~ time units for G ;n ~g~ and is" 3rcj + 1 time units for G in f g -  ~g~. 

Finally, we point out that M3r gives the minimum synchronization time for ,.,oj~e 
subclass of ~. 

For a graph structare (~, ]let tmin(G) be the minimum value of the; synchronization 
time t(G, M)  over all soht ions  for ~. Kobayashi [6, 7] gave an algorithm to calculate 
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tmin(~(J) for each graph structure G. Intuitively train(G) is about max{do(x)+ 
do(x, y)[x and y are cells of G}. For any cells x and y, do(x)+do(x,  y) means the 
time required for x to leave the quiescent state and then for y to receive a signal 

from x. 
Let ~3,,,~ be the class of all graph structures G in ~3~ having two radial cells x and y 

such that da(x, y)=  2to. Let (g,,z be the class of all graph structures G in ~ - ~  
having three radial cells x, y, and z such that x and y are adjacent ~nd do(x, z)= 
d.~ (y, z) = 2to. 

By Kobayashi's algorithm, we obtain that for G in '~¢,,, ~, tm~,(G) = 3ra, and that for 
G in ~,,,z, train(F) = 3ra + 1. On the other hand, Theorem 4.3 shows that for G in 
~g,,,~( c_ ~) ,  t(G, M3,) = 3to, and that for G in ~me ( - ~ -  ~ ) ,  t(G, M3,) = 3ro + 1. 
Then we obtain the following result. 

Theorem 4.4. Let ~gm = ~g,, 1 u ~g.~2 w {G ~ ~l the number of cells of G is equal tc~ 1 }. 
For any graph structure G in ~ ,  t(G, M3~) = tmi,(G). 

S. Summary 

We have given new solutions of the firing squad synchronization problem for the 
class of graph structures. The ~ynchronization times ot' our solutions are proportional 
to the radius of a graph struct~_~re. Considering that the synchronization times of the 
solutions previously known are proportional to ~he number of ncdes of a graph 
structure except special cases, our results are remarkable improvement for the 
problem. First, we have pointed out that the synchronization of a quasi-circuit 
structure is reduced to that of circuit structures. Using this fact, we have given two 
preliminary solutions whose synchronization times for a graph structure G are 
respectively 4ra and 3to + 1 time units. Finally, we have g!ven our final solutions 
whose synchronization time for ~ graph structure G is 3rc~ or 3to + 1 time units 
depending upon a property of radial cells of G. Moreover, we have shown that this 
solution gives the minimum synchronization time for an infinite number of graph 
structures. 

Appendix. The state transition tables of the circuit solution Mc and the semidrcuit 
solutio. Mh. 

Tables give the state of a cell at time t + 1 corresponding to its own and its 
predecessor's state at time t. In the tables, the symbol • means any state other than 
being specified. Table 3 gives the state transition table of Mc. Table 4 gives the state 
transition table of Mh other than the ones given in Table 3. 
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