
DISCRETE
APPLIED
MATHEMATICS

ELSEVIER Discrete Applied Mathematics 57 (1995) 229-241

Nearly on line scheduling of preemptive independent tasks

Eric Sanlavi l le 1

Universitb Paris VI, Laboratoire LITP, 4 pl. Jussieu, 75252 Paris Cedex 05, France

Received 24 August 1992; revised 27 October 1993

Abstract

We discuss the problem of scheduling preemptive independent tasks, subject to release dates
and due dates, on identical processors, so as to minimize the maximum lateness. This problem
was solved by a polynomial flow based algorithm, but the major drawback of this approach is
its off-line character. We study a priority algorithm, the equivalent of a list scheduling method
in the non-preemptive case, in which tasks are ordered according to their due dates. This
algorithm is nearly on-line and of low complexity. It builds an optimal schedule when the
release dates are equal. In the general case, it provides an absolute performance guarantee.
These results hold when the number of available machines is allowed to vary with time in
a zigzag way (the number of machines is either K, or K - 1).

Keywords: Parallel machines; Preemptive scheduling; Profile scheduling; Polynomial-time
algorithms; Performance guarantee

1. Introduction

Let us consider the following problem: a set of preemptive independent tasks,

subject to release dates and due dates, are to be scheduled on K parallel machines; the
objective is the minimizat ion of the maximum lateness. Several flow-based poly-

nomial-t ime algori thms have been developed to solve it (see [5, 6]). In this paper, we

consider an extension of this problem, for which the number of available processors
may vary with time due to, e.g., processor failures or maintenance. The not ion of
profile scheduling was earlier introduced by Ullman [16]. A study of profile schedul-
ing in the non-preemptive case may be found in the works of Dolev and W a r m u t h

[2, 3]. Schmidt [14, 15] proposed a polynomial algori thm to decide whether all due
dates can be achieved in the preemptive case, but no extension to solve the minimiza-

tion problem was provided, and besides, this algori thm is off-line. An algori thm is

1 The work of the author was partially supported by a post-doctorate grant from INRIA, France.

0166-218X/95/$09.50 © 1995--Elsevier Science B.V. All rights reserved
SSDI 0 1 6 6 - 2 1 8 X (9 4) 0 0 1 0 5 - 7

230 E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229 241

on-line if it only needs to know the enabled tasks and the available machines at a time
t to choose the assignment of the tasks at t. It is nearly on-line if it needs in addition the
time of the next release date (definition of [6]) and, in profile scheduling, the time of
the next profile change.

We consider a nearly on-line algorithm called SL (Smallest Laxity first) that at any
time schedules enabled tasks according to their laxities, that is, the difference between
their due date and their remaining processing time. It was named priority algorithm by
Lawler [7], who studied it when precedence relations are allowed and the profile is
constant.

In Section 2, the problem is more precisely defined and some notations are
provided. We present in Section 3, the priority algorithms, the preemptive counterpart
of list methods, and show how SL works in the special case of independent tasks. It is
shown in Section 4 that when the profile is constant, SL provides an absolute upper
bound on the optimal lateness. The result holds with a slight modification of the
bound if the profile is increasing zigzag, that is, the number of available machines can
decrease by at most one at a time and, between two decrements, there must be at least
one increasing. Such profiles were introduced by Dolev and Warmuth [2] in the case
of non-preemptive scheduling.

2. Preliminaries

An instance of I P P S (independent preemptive profile scheduling) is denoted by
(F, p, r, d, M), and specified as follows.

Let V = { 1,..., n} be the set of tasks to be scheduled. The processing time, release
date and due date of task i are positive rational numbers, respectively, denoted by Pi,
ri, and d~. ~ and ~ denote the sum and the maximum value of the processing times.
There are K >~ 1 parallel and identical processors. The set of processors available to
tasks varies in time, due to, e.g., failures of the processors, maintenance periods, or
execution of higher-priority tasks. The availability of the processors is referred to as
the profile, and is specified by the sequence M = { a , , m , } , ~ l , where rationals
0 = al < az < --. < a, < ... are the time epochs when the profile is changed, and m,, n ~> 1,
is the number of processors available during the time interval [a,, a,+ 1). The breadth of
the profile is the maximum number of processors available, that is K. The additional
notations re(t) and M(a, b) will be used to denote the number of available machines at
time t and the total amount of processing resource available during time interval [a, b],
respectively. Without loss of generality, we assume that m, >~ 1 for all n/> 1.

In addition to constant profiles, the following two classes of profiles will be
considered in the paper.

Zigzag profiles: The number of available processors is either K or K - 1.
Increasing zigzag profiles: The number of available processors can decrease by at

most one at any time. Between successive decrements, there must be at least one
increase. That is, Vr ~ N and Vn ~ r, m, >1 mr - 1.

E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229 241 231

The performance of a schedule is measured by its maximum lateness. For the
special case when there are no release dates (respectively no due dates) the corres-
ponding symbol r (respectively d) is omitted. When the profile function is constant,
M is replaced by K.

Remark. The hypothesis that all quantities are rational, always verified in practice,
can be removed at the price of more complicated proofs (see [8] for technical details).

MacNaughton's algorithm produces a schedule that minimizes the makespan on
a constant profile, when there are no release dates and no due dates. It is based on the
lower bound IMN = max(~, 5¢/K), which is the makespan we get by successively
allocating the tasks to the first machine, the second machine up to time 1MN. This
result is used in the definition of priority algorithms in Section 3.

The flow based algorithm of [6], that solves the problem on a constant profile,
can be extended to variable profiles. It is still polynomial in n and ~ if the
number of profile changes during any time interval I is polynomial in the length of I.
The complexity is O(n3min(nZ , l o g n + l o g ~)) in the constant case, and
O(n3~ 3 .(logn + log~)) if the number of profile changes during I is linear in 1 (we
shall implicitly keep this hypothesis in further complexity computations). This algo-
rithm is of course completely off-line (see [12, 13]).

3. Priority schedules

Due to their easy implementation and low complexity, list scheduling algorithms
have been widely studied in the framework of non-preemptive scheduling. These
algorithms have their counterpart in the preemptive case. One of the most interesting
examples is the algorithm by Muntz and Coffman [10], which minimizes the makes-
pan for a set of tasks with precedence constraints in the form of an intree. A descrip-
tion of the way priority schedules are built can be found in [7, 8]. In this paper, we
only consider the case where independent tasks are ordered according to the smallest
laxity first rule: at any time, enabled tasks are ordered by non-decreasing laxity
bi(t) = di - p~(t), where p~(t) is the residual duration of task i at time t. Fig. 1 shows
a schedule built from such a priority list in the case of a zigzag profile with breadth 3.

A non-preemptive schedule is obtained from any priority list by choosing, each time
processors are available, an enabled task with highest priority. A preemptive priority
schedule executes, at each time, the enabled tasks with highest priority. Let us
illustrate the way this works by the example of Fig. 1. At time t = 0, three tasks are
enabled but 1 and 2 have smallest laxity and are processed by the two available
machines until time 1, which is the next time a change occurs among the task
priorities, since the three enabled tasks now have the same laxity of value 2. They
share the two available processors (we say they are executed at speed 2) until time
2 when a new machine is available. The next event occurs at time 2 + ½, when the

232 E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229-241

i ri Pi d.,

I 0 2 3

2 0 2 3

3 0 1 3

4 1 1 5

5 2 1 4

6 3 1 4

7 3 1 4

- - 2 - - - -

1 1 Ilt 4

2 3 41D 4 4/9 21/3 32/34

Fig. 1. Example of dynamic list schedulng.

M=3

three tasks are simultaneously completed. This process is continued until all tasks are
processed. The maximum lateness is L5 = L6 = L7 - ~.

Clearly, the assignment of the tasks may change each time one of the following
events occurs:
1. a task completes or a new one becomes enabled,
2. the relative priority of two enabled tasks changes,
3. a profile jump occurs.
In the interval between two successive events, the set of enabled tasks is partitioned
into classes according to the task priorities (smallest laxity here). Machines are
assigned to the tasks of the first class. If the number of available machines is less than
the number of tasks of this class, they are shared. Otherwise, each task is assigned
a distinct machine, and the remaining machines, if any, are assigned in the same way
to the tasks of the next class.

It has been proved by Muntz and Coffman [10] that any processor sharing may be
transformed using MacNaughton's algorithm into an equivalent feasible schedule
whose makespan is not larger. This process is depicted in Fig. 2. Note that some task
(here task 1) might finish earlier in the resulting schedule, but no task finishes later in
the equivalent feasible schedule. The amount of task effectively processed during an

E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229-241 233

Processor Sharing Equivalent Schedule
speed 2/3

t 3

2

1

M2 2 3

M 1 1 2

Fig. 2. Producing a feasible schedule on two machines.

interval of length l is I times v, where v is the execution speed of the task in the
processor sharing schedule. In the example all three tasks have speed 2.

The construction process of Lawler [7] is slightly different but the interested reader
will be convinced the resulting schedules have equal performances. In what follows,
the generalized (admitting processor sharing) and equivalent feasible versions of
a priority schedule will be used indifferently for the needs of our proofs. Notice that SL
produces a unique generalized schedule; however, several feasible schedules of same
performance may exist.

Constructing the generalized schedule and applying McNaughton's algorithm
between two events is O(n). It is easily proved that the number of type 1 or 2 events is
bounded by 2n for a set of independent tasks. Hence the overall complexity of the
algorithm is O(n2~). It is worth noting that in the general case the resulting schedule
is not optimal. In the example of Fig. 1, there is a schedule that meets all due dates: it
schedules tasks 4 and 5 at speed 1 during [2, 3].

However, SL provides an optimal schedule for zigzag profiles and no release
dates. This can be proved (see [12, 13]) by showing that SL builds a schedule
respecting the conditions of Horn [5]. The use of a quite different argument entails
that the priority algorithm ordering tasks by their decreasing processing times
minimizes the makespan when there are no due dates and the profile is arbitrary (see
[12, 13]). This is a particular application of SL for which equal fictitious due dates are
added.

These optimality results are completed by the absolute guarantees we shall now
provide. The interest of such bounds is immediate after the remark by Sahni in [11]
that, for constant profile, release dates and due dates, no nearly on-line algorithm
always providing optimal schedules ever exists. The occurrence of tasks with very high
priority is, from a scheduling point of view, equivalent to a decreasing of the profile.
Roughly speaking, a sudden decreasing of the number of available machines favors
scheduling policies which try to reduce the width of the precedence graph but neglect
to minimize its height, whereas a sudden increase is the number of available machines
favors policies which try to reduce the height and keep a large number of enabled
tasks.

234 E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229-241

4. Absolute upper bounds for SL on constant profiles and increasing zigzag profiles

These upper bounds are analogous to the one found by Carlier [1] in the non-
preemptive case.

Denote by LSL the maximum lateness of SL schedule SSL, and let L* be the optimal
maximum lateness. Ci is the completion time of task i in SSL and Li its lateness. Let io
be a task such that Li o = LsL, and d~ o is minimum. This task plays a pivotal role in the
proof below. The notations C~o, rio, and dio are further simplified as Co, ro, and do.

4.1. Problem simplifications

The two lemmas below allow us to restrict our study to task systems such that any
task has a laxity no larger than do throughout the whole schedule. Their quite
fastidious proofs are contained in the appendix.

Lemma 4.1. Let V' be the task set obtained from V by removing all tasks whose initial
laxity is larger than do. For any SL schedule S'SL of V' on any profile M, we have
,LsL = L~L.

Lemma 4.2. Suppose V is such that any task i has initial laxity smaller than do. The
IPPS instance (V,p,r,d,M) defined by ~i = Pi - m a x (0 , d i - do) and dl = min(di,do),
satisfies

LSL -- L* ~< LSL -- L*.

4.2. Absolute performance guarantees for SL

The theorem below summarizes the results for two kinds of profiles, constant
profiles and increasing zigzag profiles. The proof is given for constant profiles, with
additions for increasing profiles when necessary.

Theorem 1. Consider the maximum lateness LSL provided by any SL schedule for an
instance (V, p, r, d, M). I f M is a constant profile of breadth K,

K - 1
LSL ~< L* + - - . ~.

K

I f M is an increasing zigzag profile,

LSL ~< L* + ~.

Proof. From Lemma 4.2, we can restrict our study to the instances in which, for any
task i, di <-% do.

Let b be the smallest real number in interval [to, Co) such that iv is continuously
executed at speed 1 during [b, Co) (by definition of iv, and because of the above

E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229-241 2 3 5

 iiiiliili'o',i.,
. ! :ii ! 0
i : : i : i i l l

, I o
, . . , , , , ,

; i :] t

e - • e a b

io

¢

D a l

[] a2

[] idle
machines

Fig. 3. Example for the first case.

res t r ic t ion , Cma x ~--C O in S). The interval [e,f) is the largest interval included in
[ro, Co), that contains b and during which all machines are in use. If e = b, it means
that some e ~ E* exists, such that one machine remains idle during [b - e, b), or b = 0.

In both cases we get b = r0, and S is an optimal schedule. Hence in what follows it is
assumed that e < b.

Two cases might occur, depending on whether or not a task of smaller priority than

io is executed during [e, b).
Case 1: Each task partially executed during [e, b) has a laxity less than or equal to

do - (Co - b).
Task io satisfies this condition, because do - (Co - b) is an upper bound on the

laxity of io during [e, b), as io is continuously executed at speed 1 during [b, Co).
Let us consider the set of partially executed tasks during [e,b). Some are not

completed at time b. For the sake of simplicity, we apply the following transformation

to these tasks, including io. Consider the task system obtained by replacing each
task i by a fictitious task whose duration is equal to the amount of processing of
task i executed during [e, b) in S, and whose due date is equal to the laxity of i in
S at b. The optimal value L* cannot increase for the new task system, and LSL
keeps the same value. By a harmless abuse of notation, we identify S with the schedule
of this new task system that behaves exactly like S during [0,b). Let O denote
the set of modified tasks. The subset O1 contains the tasks having a release
date strictly smaller than e, and symmetrically ~ '~2 = ~ r ~ \ ~ r ~ l contains the tasks
having a release date larger than or equal to e. Fig. 3 illustrates these definitions.
Note that io may belong to g21 if ro < e, and to ~r~ 2 otherwise. In Fig. 3, it is assumed
that ro < e.

I f the profile is constant, the two following properties are true:

~, p~ >~ K . (b - e), (1)
t o E O

I n ~ l ~ < K - - 1. (2)

236 E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229 241

Indeed, tasks of f2 use all available machines during [e, b). Fur thermore , tasks of f21
are available in [e - e, e) for e small enough, and by the assumpt ion that b > e, K - 1
machines at most are in use, each executing one task. F r o m (1) and (2), we get

p~/> K . (b - e) - (K - 1). ~ . (3)
to~O2

On the other hand, a lower bound on the value of L* m a y be found by comput ing
the earliest possible comple t ion t ime of all tasks of 02, minus the m a x i m u m value of
their due dates. This extends Carlier 's reduct ion of [1] in the non-preempt ive case. So
we get

L* >~ e + ~ p o l K - [d o - (C o - b)] . (4)
o) EC2 2

F r o m (3) and (4) the following inequali ty is proved:

K - - 1
L* /> e + (b - e) - - - . ¢ + (C o - b) - do,

K

hence,

K - 1
L* ~> LSL -- - - . ~i~,

K

because L S L = C O - - d o .

I f the profile is increasing zigzag, an analogous reasoning will prove the result. We
have the following two properties:

p~ >1 K . M(e, b), (5)
a~eQ

[~21[~< m(e - ~)<~ min re(t), (6)
te[e,b)

where (6) comes f rom the fact that M is increasing zigzag (remember M(e, b) denotes
the total a m o u n t of processing resource available during time interval [e, b)). Hence
we get

p,, >~ M(e, b) - ~ . min re(t). (7)
co,Q2 t e[e,b)

Let b' be the time such that M(e,b')= Y, oea2P~,. Comput ing the same minimiz-

at ion o n ~'~2 as in the constant case, we get L* >/e + (b' - e) + (Co - b) - do from (7),
b' ~> b - ~ , hence L* >~ LSL-- ~ .

Case 2: Let ~" be a task part ial ly executed during some interval I-u, v) ~ [e,b) and
whose laxity is larger than do - (Co - b) in that interval (see Fig. 4).

I f the profile is constant, let a be the earliest t ime such that io is always executed at
speed less than 1 during [a, b). Note that v is less than or equal to a because some task
of lower priori ty than io cannot be executed if io is executed at a fractional or null
speed. We shall further assume that fu, v) is the last such interval for / 'before a. At most

E. Sanlaville / Discrete Applied Mathematics 57 (1995) 22~241 237

0 e

i0

u v a b

i0

c o

Fig. 4. Second case: example of task 7.

(K - 1) enabled tasks have strictly higher priori ty than i 'during [u, v), and so, there are

at most (K - 1) tasks with laxity less than or equal to do - (Co - b); otherwise ~'could
not be executed during [v - e, v), ~ E ~ * . The same reasoning as for the first case still

works. The same t rans format ion is per formed for tasks part ial ly executed during t ime
interval [v, b). The set of modified tasks is still denoted O. Subset O1 contains the tasks
of O enabled before v, whereas ~r~ 2 contains the other tasks. The following equat ions
still hold:

p~ > / K . (b - v), (8)
coEQ

I O, I ~ < K - 1 (9)

and applying the same reduct ion to the tasks of Oz entails:

L* >~ v + X w e a 2 p w / K + Co - b - do

>~ v + (b - v) - (K - 1) / K . ~ + (C o - b) - do,

L* >~ LSL -- (K -- 1) / K . ~ .

I f the profile is z igzag increasing, let r~ be the min imum number of machines
available during time interval [u, v). At most ~ - 1 enabled tasks have higher priori ty
than L Studying again the sets 0, O1, 02, defined on t ime interval [v, b), and consider-
ing t ime b' such that M (v , b ') = M(v ,b) - ~ . (r ~ - 1), we obtain L* ~> e + (b' - e) +

(C o - b) - do as again, b'~> b - ~ , we get L*>~ L S L - ~ and the theorem is
proved. []

4.3. The bounds are asympto t ica l ly reached

We now present a family of instances for which the bounds are tight when the
number of tasks grows towards infinity. The task set V k is defined as
Ao w Bo w A1 w B1 w ... w Ak, where:

238 E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229-241

machine
idle

,~l rl t (' [2 . .

rl I - - - - ~ 2 -

, t i t , , ¢ "~2 / -

11

i

111 ,[~ 112

~ 1 rl 2

x ~ _._~3 ,~ 3

,i;3 x 3
z 3

i

t2 t 3 =
2

7 + 2 / 3 + 1 1 / 8 1
I

Fig. 5. Example of SL schedule, with k = 3 and K = 3.

• As,j ~ {0, ..., k}, contains (K + 1) tasks with release date 2j, due date (k + j + 1) and

dura t ion 1.
• Bj , j ~ {0 k - 1}, contains (K - 1) tasks with release date 2j, due date (k + j + 2)

and dura t ion 1.
Consider first the constant profile of b read th K. By processing the tasks in A s u B s,
j ~ {0 k - 1}, in [2j, 2j + 2) by M c N a u g h t o n ' s a lgori thm, and tasks in Ak in

[2k, 2k + (K + 1)/K), we get an opt imal schedule S satisfying LSL = 1/K = L*.
N o w consider the schedule obta ined by SL. It satisfies for j < k:

• any task of A s is comple ted before a task of B s is processed,
• any task of A s is comple ted before a task of A~+ 1 is processed.
So one machine remains idle in some intervals. The m a x i m u m lateness is reached by

some tasks in A s, j ~ k. A simple compu ta t ion yields

Vj<~k, V i e A j , C i - d i = 2 j + 2 - - (k + j - 1)

for the processor sharing version of SsL. As it is true for at least one task of A s in the
feasible schedule obta ined f rom the t ransformat ion of Section 3, and as it is m a x i m u m

for j = k, we finally get

LSL : 1 - - - -

So when k tends toward infinity, we get,

K - 1
LSL - - L* - - -

K

The SL schedule is depicted in Fig. 5, where task z j, j ~< k, has due date (k + j + 1) and
task r/j, j < k, has due date (k + j + 2).

E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229-241 239

Now consider, for each task set V k, the profile M k for which K machines are
available during time interval [0, Tk), and only K - 1 machines are available after-
wards. The value T k is computed as 2k + 2 - (K - 1) / K tk+ l) - (K -- 1) /K. The same
kind of computation as above permits to conclude that the maximum laxity for any
SL schedule tends toward 1 + 1 /K , whereas L* still tends toward 1/K.

Appendix A: Proof of Lemmas 4.1 and 4.2

Let V' be the task set obtained by removing all tasks whose initial laxity is larger
than do. Consider the schedule SsL of V' on an arbitrary profile K. Let i be any task of
V'. Its laxity b~(t) increases from di - p~ <~ do to d~. We call the critical date of task i in
SSL the time zi for which b(zi) = do (if di < do, zl is set to Ci).

Proof of Lemma 4.1. Let us consider the schedule SSL. Assume the number of intervals
[t j , t j+~) , j >1 0, defined by the events of type 1, 2 or 3, is k. We suppose Co = tk,,

k' <~ k. We claim that any task i is identically executed in [0, z~) in SSL and in S~L. It
suffices to prove the following property:

Vi E V', Vu e { 1 k'}, i is identically executed in [ri, min(zi, t,)) by both schedules.
The property is proved by induction on u.

u = l: the enabled tasks of V' have higher priority than the enabled tasks of V\ V'
at time to. By construction of SsL, this remains true until t = tl. Hence the tasks of V'

are identically processed during [to = 0, tl) by both schedules.
Assume the property is true for a given u < k': at time tu the enabled tasks of V' have

the same residual duration in the two schedules, and the same arguments as for u = 1
can be followed. The assignment of tasks of V' at time tu is identical. A task i e V', with
z~ > t~, is executed at the same speed by both schedules until time min(z~,t,+~),
because it has higher priority than any task whose laxity is larger than do.

As the property is true for i = io and u = k', and as zio = Co, the result follows. []

We are looking for an upper bound of LSL -- L*. Hence, the study can be restricted
to task systems respecting the conditions of the above lemma.

Now we consider the following transformation of SSL: SSL is a schedule of the IPPS
instance (V, p, r, d, K) obtained by executing a task i within [ri, zl) identically as i is
executed in SSL. Hence, by definition of the problem, instance zl is the completion time
of i in SSL. Its maximum lateness is LsL.

Lemma A.1.

LSL ~ LSL"

Proofi]-~SL ~ LSL: Consider one task i with di > do. As bi(zi) = do,
di - do = pi(zl) <~ Ci - zl, and zi - do <~ Ci - di <~ LSL. The result follows.

240 E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229-241

LSL ~> LSL: It suffices to consider task io. It is executed identically in both
schedules. []

The proof of the following lemma is identical to the first part of the proof above.

Lemma A.2. Let £* denote the optimal maximum lateness for (V, p, r, d, K). Then

£* <~ L*.

Now consider the schedule obtained by direct applying of SL policy for
(V,/~, r, d, K), denoted by S" SL-

Lemma A.3. S" SL and SSL are identical.

Proof. The proof is by induction as for Lemma 4.1.
Both schedules are identical during [0, tx): at t = 0, the task assignment is identical

in both schedules. Let z be the first time one taskj finishes. It means that in SSL, j has
laxity do, so z = zj. At z j, the only tasks assigned in SsL are the tasks scheduled by
SSL with higher priority thanj at t = 0. This implies they are executed at speed 1 in SSL,
and hence in both SSL and S~'L. Consider S~'L: the completions ofj and of other tasks of
same priority leave some machines idle. But no task i is enabled, or it would have been
scheduled before by SSL, because the laxity of i for SSL would have been less than do,
and zj < tl. Hence, the task assignment at zj remains identical. The same argument is
used when another task completes, until time tl.

Assume SSL and S~'L are identical during [to, tu), Vu < k. The proof is the same as for
the first interval. By induction hypothesis, enabled tasks at tu are the same and have
same priority for both schedules. Hence we are done. []

Corollary A.4 (Lemma 4.2). Denote by £SL the SL schedule of(V, ~, r, d, m). Then

LSL -- L* ~< LSL -- L*.

Proof. The result is immediate from Lemmas A.1-A.3. []

Acknowledgements

I am very grateful to the two referees for their very careful reading and their
pertinent comments, specially on the presentation of the main result of the paper.

References

[1] J. Carlier, Scheduling jobs with release dates and tails on identical machines to minimize makespan,
European J. Oper. Res. 29 (1987) 298-306.

E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229-241 241

[2] D. Dolev and M.K. Warmuth, Scheduling flat graphs, SIAM J. Comput. 14 (1985) 638 657.
I-3] D. Dolev and M.K. Warmuth, Profile scheduling of opposing forests and level orders, SIAM J.

Algebraic Discrete Methods 6 (1985) 665 687.
1-4] T.F. Gonzales and D.B. Johnson, A new algorithm for preemptive scheduling of trees, J. ACM 27

(1980) 287-312.
I-5] W.A. Horn, Some simple scheduling algorithms, Naval Res. Logist. Quart. 21 (1974) 177-185.
[6] J. Labetoulle, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Preemptive scheduling of uniform

machines subject to release dates, Technical Paper BW 99/79, Mathematisch Centrum Amsterdam
(1979).

[-7] E.L. Lawler, Preemptive scheduling of precedence-constrained jobs on parallel machines, in: M.A.H.
Dempster, ed., Deterministic and Stochastic Scheduling (Reidel, Dordrecht, 1982) 101-123.

[8] Z. Liu and E. Sanlaville, Preemptive scheduling with variable profile, precedence constraints and due
dates, Technical Paper IBP/MASI No 92.5, Universit6 Paris VI (1992); Discrete Appl. Math., to
appear.

[-9] R. McNaughton, Scheduling with deadlines and loss functions, Management Sci. 6 (1959) 1-12.
[10] R.R. Muntz and E.G. Coffman, Preemptive scheduling of real-time tasks on multiprocessor systems, J.

ACM 17 (1970) 325-338.
[11] S. Sahni, Preemptive scheduling with due dates, Technical Report 77-4, Department of Computer

Science, University of Minnesota, Minneapolis, MN (1977).
1-12] E. Sanlaville, Conception et analyse d'algoritfimes de liste en ordonnancement pr6emptif, Ph.D.

Dissertation, Universit6 Paris VI (1992).
[13] E. Sanlaville, Scheduling preemptive independent tasks on a variable profile, Technical Paper

IBP/MASI No 92.4, Universit6 Paris VI (1992).
[14] G. Schmidt, Scheduling on semi-identical processors, Z. Oper. Res. A28 (1984) 153-162.
[15] G. Schmidt, Scheduling independent tasks with deadlines on semi-identical processors, J. Oper. Res.

Soc. 39 (1988) 271 277.
[16] J.D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10 (1975) 384 393.

