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Abstract 

We discuss the problem of scheduling preemptive independent tasks, subject to release dates 
and due dates, on identical processors, so as to minimize the maximum lateness. This problem 
was solved by a polynomial flow based algorithm, but the major drawback of this approach is 
its off-line character. We study a priority algorithm, the equivalent of a list scheduling method 
in the non-preemptive case, in which tasks are ordered according to their due dates. This 
algorithm is nearly on-line and of low complexity. It builds an optimal schedule when the 
release dates are equal. In the general case, it provides an absolute performance guarantee. 
These results hold when the number of available machines is allowed to vary with time in 
a zigzag way (the number of machines is either K, or K - 1). 

Keywords: Parallel machines; Preemptive scheduling; Profile scheduling; Polynomial-time 
algorithms; Performance guarantee 

1. Introduction 

Let us consider the following problem: a set of  preemptive independent tasks, 

subject to release dates and due dates, are to be scheduled on K parallel machines; the 
objective is the minimizat ion of  the maximum lateness. Several flow-based poly- 

nomial-t ime algori thms have been developed to solve it (see [5, 6]). In this paper, we 

consider an extension of this problem, for which the number  of  available processors 
may  vary with time due to, e.g., processor failures or  maintenance. The not ion of  
profile scheduling was earlier introduced by Ullman [16]. A study of  profile schedul- 
ing in the non-preemptive case may  be found in the works of  Dolev and W a r m u t h  

[2, 3]. Schmidt [14, 15] proposed a polynomial  algori thm to decide whether all due 
dates can be achieved in the preemptive case, but  no extension to solve the minimiza- 

tion problem was provided, and besides, this algori thm is off-line. An algori thm is 
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on-line if it only needs to know the enabled tasks and the available machines at a time 
t to choose the assignment of the tasks at t. It is nearly on-line if it needs in addition the 
time of the next release date (definition of [6]) and, in profile scheduling, the time of 
the next profile change. 

We consider a nearly on-line algorithm called SL (Smallest Laxity first) that at any 
time schedules enabled tasks according to their laxities, that is, the difference between 
their due date and their remaining processing time. It was named priority algorithm by 
Lawler [7], who studied it when precedence relations are allowed and the profile is 
constant. 

In Section 2, the problem is more precisely defined and some notations are 
provided. We present in Section 3, the priority algorithms, the preemptive counterpart 
of list methods, and show how SL works in the special case of independent tasks. It is 
shown in Section 4 that when the profile is constant, SL provides an absolute upper 
bound on the optimal lateness. The result holds with a slight modification of the 
bound if the profile is increasing zigzag, that is, the number of available machines can 
decrease by at most one at a time and, between two decrements, there must be at least 
one increasing. Such profiles were introduced by Dolev and Warmuth [2] in the case 
of non-preemptive scheduling. 

2. Preliminaries 

An instance of I P P S  (independent preemptive profile scheduling) is denoted by 
(F, p, r, d, M), and specified as follows. 

Let V = { 1,..., n} be the set of tasks to be scheduled. The processing time, release 
date and due date of task i are positive rational numbers, respectively, denoted by Pi, 
ri, and d~. ~ and ~ denote the sum and the maximum value of the processing times. 
There are K >~ 1 parallel and identical processors. The set of processors available to 
tasks varies in time, due to, e.g., failures of the processors, maintenance periods, or 
execution of higher-priority tasks. The availability of the processors is referred to as 
the profile, and is specified by the sequence M = { a , , m , } , ~ l ,  where rationals 
0 = al < az < --. < a, < ... are the time epochs when the profile is changed, and m,, n ~> 1, 
is the number of processors available during the time interval [a,, a,+ 1). The breadth of 
the profile is the maximum number of processors available, that is K. The additional 
notations re(t) and M(a, b) will be used to denote the number of available machines at 
time t and the total amount of processing resource available during time interval [a, b], 
respectively. Without loss of generality, we assume that m, >~ 1 for all n/> 1. 

In addition to constant profiles, the following two classes of profiles will be 
considered in the paper. 

Zigzag profiles: The number of available processors is either K or K - 1. 
Increasing zigzag profiles: The number of available processors can decrease by at 

most one at any time. Between successive decrements, there must be at least one 
increase. That is, Vr ~ N and Vn ~ r, m, >1 mr - 1. 
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The performance of a schedule is measured by its maximum lateness. For  the 
special case when there are no release dates (respectively no due dates) the corres- 
ponding symbol r (respectively d) is omitted. When the profile function is constant, 
M is replaced by K. 

Remark. The hypothesis that all quantities are rational, always verified in practice, 
can be removed at the price of more complicated proofs (see [8] for technical details). 

MacNaughton's algorithm produces a schedule that minimizes the makespan on 
a constant profile, when there are no release dates and no due dates. It is based on the 
lower bound IMN = max(~,  5¢/K),  which is the makespan we get by successively 
allocating the tasks to the first machine, the second machine .. . .  up to time 1MN. This 
result is used in the definition of priority algorithms in Section 3. 

The flow based algorithm of [6], that solves the problem on a constant profile, 
can be extended to variable profiles. It is still polynomial in n and ~ if the 
number of profile changes during any time interval I is polynomial in the length of I. 
The complexity is O(n3min(nZ ,  l o g n + l o g ~ ) )  in the constant case, and 
O(n3~ 3 .(logn + log~))  if the number of profile changes during I is linear in 1 (we 
shall implicitly keep this hypothesis in further complexity computations). This algo- 
rithm is of course completely off-line (see [12, 13]). 

3. Priority schedules 

Due to their easy implementation and low complexity, list scheduling algorithms 
have been widely studied in the framework of non-preemptive scheduling. These 
algorithms have their counterpart in the preemptive case. One of the most interesting 
examples is the algorithm by Muntz and Coffman [10], which minimizes the makes- 
pan for a set of tasks with precedence constraints in the form of an intree. A descrip- 
tion of the way priority schedules are built can be found in [7, 8]. In this paper, we 
only consider the case where independent tasks are ordered according to the smallest 
laxity first rule: at any time, enabled tasks are ordered by non-decreasing laxity 
bi(t) = di - p~(t), where p~(t) is the residual duration of task i at time t. Fig. 1 shows 
a schedule built from such a priority list in the case of a zigzag profile with breadth 3. 

A non-preemptive schedule is obtained from any priority list by choosing, each time 
processors are available, an enabled task with highest priority. A preemptive priority 
schedule executes, at each time, the enabled tasks with highest priority. Let us 
illustrate the way this works by the example of Fig. 1. At time t = 0, three tasks are 
enabled but 1 and 2 have smallest laxity and are processed by the two available 
machines until time 1, which is the next time a change occurs among the task 
priorities, since the three enabled tasks now have the same laxity of value 2. They 
share the two available processors (we say they are executed at speed 2) until time 
2 when a new machine is available. The next event occurs at time 2 + ½, when the 
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Fig. 1. Example of dynamic list schedulng. 

M=3 

three tasks are simultaneously completed. This process is continued until all tasks are 
processed. The maximum lateness is L5 = L6 = L7 - ~. 

Clearly, the assignment of the tasks may change each time one of the following 
events occurs: 
1. a task completes or a new one becomes enabled, 
2. the relative priority of two enabled tasks changes, 
3. a profile jump occurs. 
In the interval between two successive events, the set of enabled tasks is partitioned 
into classes according to the task priorities (smallest laxity here). Machines are 
assigned to the tasks of the first class. If the number of available machines is less than 
the number of tasks of this class, they are shared. Otherwise, each task is assigned 
a distinct machine, and the remaining machines, if any, are assigned in the same way 
to the tasks of the next class. 

It has been proved by Muntz and Coffman [10] that any processor sharing may be 
transformed using MacNaughton's algorithm into an equivalent feasible schedule 
whose makespan is not larger. This process is depicted in Fig. 2. Note that some task 
(here task 1) might finish earlier in the resulting schedule, but no task finishes later in 
the equivalent feasible schedule. The amount of task effectively processed during an 
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Fig. 2. Producing a feasible schedule on two machines. 

interval of length l is I times v, where v is the execution speed of the task in the 
processor sharing schedule. In the example all three tasks have speed 2. 

The construction process of Lawler [7] is slightly different but the interested reader 
will be convinced the resulting schedules have equal performances. In what follows, 
the generalized (admitting processor sharing) and equivalent feasible versions of 
a priority schedule will be used indifferently for the needs of our proofs. Notice that SL 
produces a unique generalized schedule; however, several feasible schedules of same 
performance may exist. 

Constructing the generalized schedule and applying McNaughton's algorithm 
between two events is O(n). It is easily proved that the number of type 1 or 2 events is 
bounded by 2n for a set of independent tasks. Hence the overall complexity of the 
algorithm is O(n2~). It is worth noting that in the general case the resulting schedule 
is not optimal. In the example of Fig. 1, there is a schedule that meets all due dates: it 
schedules tasks 4 and 5 at speed 1 during [2, 3]. 

However, SL provides an optimal schedule for zigzag profiles and no release 
dates. This can be proved (see [12, 13]) by showing that SL builds a schedule 
respecting the conditions of Horn [5]. The use of a quite different argument entails 
that the priority algorithm ordering tasks by their decreasing processing times 
minimizes the makespan when there are no due dates and the profile is arbitrary (see 
[12, 13]). This is a particular application of SL for which equal fictitious due dates are 
added. 

These optimality results are completed by the absolute guarantees we shall now 
provide. The interest of such bounds is immediate after the remark by Sahni in [11] 
that, for constant profile, release dates and due dates, no nearly on-line algorithm 
always providing optimal schedules ever exists. The occurrence of tasks with very high 
priority is, from a scheduling point of view, equivalent to a decreasing of the profile. 
Roughly speaking, a sudden decreasing of the number of available machines favors 
scheduling policies which try to reduce the width of the precedence graph but neglect 
to minimize its height, whereas a sudden increase is the number of available machines 
favors policies which try to reduce the height and keep a large number of enabled 
tasks. 
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4. Absolute upper bounds for SL on constant profiles and increasing zigzag profiles 

These upper bounds are analogous to the one found by Carlier [1] in the non- 
preemptive case. 

Denote by LSL the maximum lateness of SL schedule SSL, and let L* be the optimal 
maximum lateness. Ci is the completion time of task i in SSL and Li its lateness. Let io 
be a task such that Li o = LsL, and d~ o is minimum. This task plays a pivotal role in the 
proof below. The notations C~o, rio, and dio are further simplified as Co, ro, and do. 

4.1. Problem simplifications 

The two lemmas below allow us to restrict our study to task systems such that any 
task has a laxity no larger than do throughout the whole schedule. Their quite 
fastidious proofs are contained in the appendix. 

Lemma 4.1. Let V' be the task set obtained from V by removing all tasks whose initial 
laxity is larger than do. For any SL schedule S'SL of V' on any profile M, we have 
,LsL = L~L. 

Lemma 4.2. Suppose V is such that any task i has initial laxity smaller than do. The 
IPPS instance (V,p,r,d,M) defined by ~i = Pi - m a x ( 0 , d i -  do) and dl = min(di,do), 
satisfies 

LSL -- L* ~< LSL -- L*. 

4.2. Absolute performance guarantees for SL 

The theorem below summarizes the results for two kinds of profiles, constant 
profiles and increasing zigzag profiles. The proof is given for constant profiles, with 
additions for increasing profiles when necessary. 

Theorem 1. Consider the maximum lateness LSL provided by any SL schedule for an 
instance (V, p, r, d, M). I f  M is a constant profile of breadth K, 

K - 1  
LSL ~< L* + - - .  ~.  

K 

I f  M is an increasing zigzag profile, 

LSL ~< L* + ~.  

Proof. From Lemma 4.2, we can restrict our study to the instances in which, for any 
task i, di <-% do. 

Let b be the smallest real number in interval [to, Co) such that iv is continuously 
executed at speed 1 during [b, Co) (by definition of iv, and because of the above 
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Fig. 3. Example for the first case. 

res t r ic t ion ,  Cma x ~--C O in S). The interval [e,f)  is the largest interval included in 
[ro, Co), that contains b and during which all machines are in use. If e = b, it means 
that some e ~ E* exists, such that one machine remains idle during [b - e, b), or b = 0. 

In both cases we get b = r0, and S is an optimal schedule. Hence in what follows it is 
assumed that e < b. 

Two cases might occur, depending on whether or not a task of smaller priority than 

io is executed during [e, b). 
Case 1: Each task partially executed during [e, b) has a laxity less than or equal to 

do - (Co - b). 
Task io satisfies this condition, because do - (Co - b) is an upper bound on the 

laxity of io during [e, b), as io is continuously executed at speed 1 during [b, Co). 
Let us consider the set of partially executed tasks during [e,b). Some are not 

completed at time b. For the sake of simplicity, we apply the following transformation 

to these tasks, including io. Consider the task system obtained by replacing each 
task i by a fictitious task whose duration is equal to the amount  of processing of 
task i executed during [e, b) in S, and whose due date is equal to the laxity of i in 
S at b. The optimal value L* cannot increase for the new task system, and LSL 
keeps the same value. By a harmless abuse of notation, we identify S with the schedule 
of this new task system that behaves exactly like S during [0,b). Let O denote 
the set of modified tasks. The subset O1 contains the tasks having a release 
date strictly smaller than e, and symmetrically ~ '~2  = ~ r ~ \ ~ r ~ l  contains the tasks 
having a release date larger than or equal to e. Fig. 3 illustrates these definitions. 
Note that io may belong to g21 if ro < e, and to ~r~ 2 otherwise. In Fig. 3, it is assumed 
that ro < e. 

I f  the profile is constant, the two following properties are true: 

~, p~ >~ K .  (b - e), (1) 
t o E O  

I n ~ l ~  < K - -  1. (2) 
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Indeed, tasks of f2 use all available machines  during [e, b). Fur thermore ,  tasks of f21 
are available in [e - e, e) for e small enough, and by the assumpt ion  that  b > e, K - 1 
machines at most  are in use, each executing one task. F r o m  (1) and (2), we get 

p~/> K .  (b - e) - (K - 1). ~ .  (3) 
to~O2 

On the other  hand,  a lower bound  on the value of L* m a y  be found by comput ing  
the earliest possible comple t ion  t ime of all tasks of 02, minus the m a x i m u m  value of 
their due dates. This extends Carlier 's  reduct ion of [1] in the non-preempt ive  case. So 
we get 

L* >~ e + ~ p o l K - [ d o - ( C o - b ) ] .  (4) 
o) EC2 2 

F r o m  (3) and (4) the following inequali ty is proved: 

K - - 1  
L* />  e + ( b -  e ) - - - . ¢  + ( C o -  b ) -  do, 

K 

hence, 

K - 1  
L* ~> LSL -- - - .  ~i~, 

K 

because L S L  = C O - -  d o .  

I f  the profile is increasing zigzag, an analogous  reasoning will prove  the result. We 
have the following two properties:  

p~ >1 K .  M(e, b), (5) 
a~eQ 

[~21[ ~< m(e - ~)<~ min re(t), (6) 
te[e,b) 

where (6) comes f rom the fact that  M is increasing zigzag ( remember  M(e, b) denotes 
the total a m o u n t  of processing resource available during time interval [e, b)). Hence 
we get 

p,, >~ M(e, b) - ~ .  min re(t). (7) 
co,Q2 t e[e,b) 

Let b' be the time such that  M(e,b')= Y, oea2P~,. Comput ing  the same minimiz- 

at ion o n  ~'~2 as in the constant  case, we get L* >/e  + (b' - e) + (Co - b) - do from (7), 
b' ~> b -  ~ ,  hence L* >~ LSL-- ~ .  

Case 2: Let ~" be a task part ial ly executed during some interval I-u, v) ~ [e,b) and 
whose laxity is larger than  do - (Co - b) in that  interval (see Fig. 4). 

I f  the profile is constant, let a be the earliest t ime such that  io is always executed at 
speed less than 1 during [a, b). Note  that  v is less than or equal to a because some task 
of lower priori ty than io cannot  be executed if io is executed at a fractional or null 
speed. We shall further assume that  fu, v) is the last such interval for / 'before  a. At most  
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Fig. 4. Second case: example of task 7. 

(K - 1) enabled tasks have strictly higher priori ty than  i 'during [u, v), and so, there are 

at most  (K - 1) tasks with laxity less than  or equal  to do - (Co - b); otherwise ~'could 
not  be executed during [v - e, v), ~ E ~ * .  The  same reasoning as for the first case still 

works. The same t rans format ion  is per formed for tasks part ial ly executed during t ime 
interval [v, b). The  set of  modified tasks is still denoted O. Subset O1 contains the tasks 
of O enabled before v, whereas  ~r~ 2 contains the other  tasks. The  following equat ions 
still hold: 

p~ > / K .  (b - v), (8) 
coEQ 

I O, I ~ < K -  1 (9) 

and applying the same reduct ion to the tasks of Oz entails: 

L* >~ v + X w e a 2 p w / K  + Co - b -  do 

>~ v + (b - v) - ( K  - 1 ) / K . ~  + ( C o -  b) - do, 

L* >~ LSL -- ( K  -- 1 ) / K .  ~ .  

I f  the profile is z igzag increasing, let r~ be the min imum number  of machines  
available during time interval [u, v). At most  ~ - 1 enabled tasks have higher priori ty 
than L Studying again the sets 0,  O1, 02, defined on t ime interval [v, b), and consider- 
ing t ime b' such that  M ( v , b ' )  = M(v ,b )  - ~ . ( r ~  - 1), we obtain  L* ~> e + (b' - e) + 

( C o -  b ) -  do as again, b'~> b -  ~ ,  we get L*>~ L S L -  ~ and the theorem is 
proved.  [] 

4.3. The bounds are asympto t ica l ly  reached 

We now present a family of instances for which the bounds  are tight when the 
number  of tasks grows towards  infinity. The task set V k is defined as 
Ao w Bo w A1 w B1 w ... w Ak,  where: 



238 E. Sanlaville / Discrete Applied Mathematics 57 (1995) 229-241 

machine 
idle 

,~l rl t (  ' [ 2 .  . 

rl I - - - - ~  2 -  

, t i t , ,  ¢ "~2 / -  

11 

i 

111 ,[~ 112  

~ 1 rl 2 

x ~  _._~3 ,~ 3 

,i;3 x 3 
z 3  

i 

t2 t 3 = 
2 

7 + 2 / 3 + 1 1 / 8 1  
I 

Fig. 5. Example  of SL schedule,  with k = 3 and  K = 3. 

• As,j  ~ {0, ..., k}, contains (K + 1) tasks with release date 2j, due date (k + j + 1) and 

dura t ion  1. 
• Bj , j  ~ {0 . . . . .  k - 1}, contains (K - 1) tasks with release date 2j, due date (k + j + 2) 

and dura t ion  1. 
Consider  first the constant  profile of  b read th  K. By processing the tasks in A s u B s, 
j ~  {0 . . . . .  k -  1}, in [2j, 2j + 2) by M c N a u g h t o n ' s  a lgori thm, and tasks in Ak in 

[2k, 2k + (K + 1)/K), we get an opt imal  schedule S satisfying LSL = 1/K = L*. 
N o w  consider the schedule obta ined by SL. It satisfies for j < k: 

• any task of A s is comple ted  before a task of B s is processed, 
• any task of A s is comple ted  before a task of A~+ 1 is processed. 
So one machine remains idle in some intervals. The  m a x i m u m  lateness is reached by 

some tasks in A s, j ~ k. A simple compu ta t ion  yields 

Vj<~k, V i e A j ,  C i - d i =  2 j + 2 -  - ( k + j -  1) 

for the processor  sharing version of SsL. As it is true for at least one task of A s in the 
feasible schedule obta ined f rom the t ransformat ion  of Section 3, and as it is m a x i m u m  

for j = k, we finally get 

LSL : 1 - -  - -  

So when k tends toward  infinity, we get, 

K - 1  
LSL - -  L* - - -  

K 

The SL schedule is depicted in Fig. 5, where task z j, j ~< k, has due date (k + j + 1) and 
task r/j, j < k, has due date (k + j + 2). 
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Now consider, for each task set V k, the profile M k for which K machines are 
available during time interval [0, Tk), and only K - 1 machines are available after- 
wards. The value T k is computed as 2k  + 2 - ( K  - 1 ) / K  tk+ l) - ( K  --  1) /K.  The same 
kind of computation as above permits to conclude that the maximum laxity for any 
SL schedule tends toward 1 + 1 /K ,  whereas L* still tends toward 1/K.  

Appendix A: Proof of  Lemmas 4.1 and 4.2 

Let V' be the task set obtained by removing all tasks whose initial laxity is larger 
than do. Consider the schedule SsL of V' on an arbitrary profile K. Let i be any task of 
V'. Its laxity b~(t) increases from di - p~ <~ do to d~. We call the critical date of task i in 
SSL the time zi for which b(zi) = do (if di < do, zl is set to Ci). 

Proof of Lemma 4.1. Let us consider the schedule SSL. Assume the number of intervals 
[ t j , t j+~) ,  j >1 0, defined by the events of type 1, 2 or 3, is k. We suppose Co = tk,, 

k' <~ k. We claim that any task i is identically executed in [0, z~) in SSL and in S~L. It 
suffices to prove the following property: 

Vi E V', Vu e { 1 . . . . .  k'}, i is identically executed in [ri, min(zi, t,)) by both schedules. 
The property is proved by induction on u. 

u = l: the enabled tasks of V' have higher priority than the enabled tasks of V\ V' 
at time to. By construction of SsL, this remains true until t = tl. Hence the tasks of V' 

are identically processed during [to = 0, tl) by both schedules. 
Assume the property is true for a given u < k': at time tu the enabled tasks of V' have 

the same residual duration in the two schedules, and the same arguments as for u = 1 
can be followed. The assignment of tasks of V' at time tu is identical. A task i e V', with 
z~ > t~, is executed at the same speed by both schedules until time min(z~,t,+~), 
because it has higher priority than any task whose laxity is larger than do. 

As the property is true for i = io and u = k', and as zio = Co,  the result follows. [] 

We are looking for an upper bound of LSL -- L*. Hence, the study can be restricted 
to task systems respecting the conditions of the above lemma. 

Now we consider the following transformation of SSL: SSL is a schedule of the IPPS 
instance (V, p, r, d, K) obtained by executing a task i within [ri, zl) identically as i is 
executed in SSL. Hence, by definition of the problem, instance zl is the completion time 
of i in SSL. Its maximum lateness is LsL. 

Lemma A.1. 

LSL ~ LSL" 

Proofi ]-~SL ~ LSL: Consider one task i with di > do. As bi(zi) = do, 
di - do = pi(zl) <~ Ci - zl,  and zi - do <~ Ci - di <~ LSL. The result follows. 
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LSL ~> LSL: It suffices to consider task io. It is executed identically in both 
schedules. [] 

The proof of the following lemma is identical to the first part of the proof above. 

Lemma A.2. Let £* denote the optimal maximum lateness for (V, p, r, d, K). Then 

£* <~ L*. 

Now consider the schedule obtained by direct applying of SL policy for 
(V,/~, r, d, K), denoted by S" SL- 

Lemma A.3. S" SL and SSL are identical. 

Proof. The proof is by induction as for Lemma 4.1. 
Both schedules are identical during [0, tx): at t = 0, the task assignment is identical 

in both schedules. Let z be the first time one taskj  finishes. It means that in SSL, j has 
laxity do, so z = zj. At z j, the only tasks assigned in SsL are the tasks scheduled by 
SSL with higher priority thanj  at t = 0. This implies they are executed at speed 1 in SSL, 
and hence in both SSL and S~'L. Consider S~'L: the completions ofj  and of other tasks of 
same priority leave some machines idle. But no task i is enabled, or it would have been 
scheduled before by SSL, because the laxity of i for SSL would have been less than do, 
and zj < tl. Hence, the task assignment at zj remains identical. The same argument is 
used when another task completes, until time tl. 

Assume SSL and S~'L are identical during [to, tu), Vu < k. The proof is the same as for 
the first interval. By induction hypothesis, enabled tasks at tu are the same and have 
same priority for both schedules. Hence we are done. [] 

Corollary A.4 (Lemma 4.2). Denote by £SL the SL schedule of(V, ~, r, d, m). Then 

LSL --  L* ~< LSL -- L*. 

Proof. The result is immediate from Lemmas A.1-A.3. [] 
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