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Sharp constants

1. Introduction
Let ¥ be a domain in S"™"!, the unit sphere in R”, and let Cx; C R" be the cone associated with X:

Cy:={to|t>0, 0 eX}.

The Hardy inequality in Cx states that, for all u € C5°(Cx), there holds (cf. [11,10])

2
/\Vu(x)| dx > ( 2% (2)>fu|§:2 dx (11)
C

P

and the constant (@ + A1(X)) in (1.1) is sharp, where A1(X) is the Dirichlet principal eigenvalue of the spherical
Laplacian —Agr-1 on X. In some special cases, the exact value of A1(X) can be computed. We note the value of 1{(X) has
been full-filled in the case of n =2 (cf. [1]). To the best of our knowledge (cf. [2-4,9-11]), when n > 3, 11(X) is known

only in the case of X' = S’}r_l, the semi-sphere mapped in the upper half space R". = {(x1,...,Xy) | x, > 0}. In fact, it can be
computed via the following sharp Hardy inequality (cf. [6])
2
u(x
/|Vu(x)| dx > —/ ®)7 x. (1.2)
le2
Rn
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One of the aim of this note is to compute the explicit sharp constants of Hardy inequalities in the cone RL =
{(x1,....Xn) | Xp—k+1 > 0, ..., X5 > 0}, where 1 < k < n. To this end, we have:

Theorem 1.1. Let n > 3. There holds, for allu € COO(R” ),

— 2+ 2k)?
/qul dx + (n—-2+20° / Z_d (13)
|x]
l<+

¢ (n—2+42k)%
4

and the constan in (1.3) is sharp.

We note the proof of Theorem 1.1 above is similar to that of Theorem 1.2 and Corollary 1.3 in [7] and also to that of
Theorem 6.1 in [8]. Combing the inequality (1.1) and Theorem 1.1 yields

Corollary 1.2. 1, (S" ' n Ry ) =k +k—2)foralln>3.

Next, we consider the spherical harmonic decomposition of a function u € Cgo(RﬁJr). We show that for a function u €
gy (]R,’L), it has the expansion in spherical harmonics (for details, see Section 3)

o
u) =Y fingi(0),
1=k
where r = |x| and ¢;(o) (I > k) are the orthonormal eigenfunctions of the spherical Laplacian —Agn.-1 with responding
eigenvalues I(n 41— 2). Using this decomposition and following the idea of Tertikas and Zographopoulos [14], one can easily
obtain several improvements of inequality (1.3) when u is supported in a bounded domain 2 C R;L. For example, we have
the following Filippas-Tertikas improvement (cf. [5]):

Theorem 1.3. Let n > 3. There holds, for allu € C5°(Bg N RQ+),

(n — 2+ 2k)? f TR / u? [ Ixl 2 1l
Vupp>— " =7 - 4 — X3 =) X3 2,
/ IVl 4 |x|2+4.Z Ix27 TR "R
BROR], BRNRY, ='BROR],
where
X1 =10-In9™",  Xi(s) = X1 (Xi—1(0))
fori>2and Bg = {x € R": |x| < R}.
2. Proof of Theorem 1.1
Let | > 0. A simple calculation shows, for x,; > 0,
_ 1(1—1)) 192 2 9
1 )
X, —A+ X, 8(x)) = — — +——)8X). 21
(Xn) ( 2 (Xng @) ;ax? o W (1)
Notice that () = + x_W is nothing but the (2I 4+ 1)-dimensional Laplacian of a radial function if 2[ is a positive integer. So

following the proof of Theorem 1.2 in [7] or Theorem 6.1 in [8], we have:

Lemma 2.1. There holds, forl € {1/2,1,3/2,2,...,n/2,...} andu € Cg°(R"}),

2
f|w| dx—i—l(l—l)/—d W |X|2d (2.2)
Rn

(n+21—2)%
p)

and the constant in (2.2) is sharp.
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Proof. Recall the sharp Hardy inequality on RE~" x R2/+1:

(n+21—2)>2 v2
— / 5 > 5 (2.3)
X{+oxg g 1yl

IVv|? >
szl XRE,’JF] R271 XR?/IJA
where v € CSO(RQ‘1 X Rf,’“). The constant that appear in (2.3) is also sharp if one consider only the functions like
V(x. |y]) € CPRITT x RAFT), Set x, = |y| and @ (x;. ..., %) = V(x, |y|), we can deduce, by (2.3) and (2.1),

[ owee=— [ ) (Z > +2§ 2) (x,1y)

RZ—1XR§I+1 RQ—1XR§I+1 k=1
nooo2
0 2l 9
=— X — 4+ — X
/ ¢ ><le 2 axn>‘”( )
qunyﬂ J=

0 -1
=— f x’go(x)(Z—z ( ))(xlqo(x))

1°7] ”
Rg—l XR§I+]

a9
—|S21+]|/x190(x)<2—2 ))(XQD(X))
RN J

1 ﬂ

L+ 21 —2)2 / V2

- 4 XX+ YR
RZ_IXR?‘H

_ 228 1 o?x

4 X2
R

where |S%*1| is the volume of SZ*1. It remains to set u =x\¢. O

Remark 2.2. If we let I(l — 1) =0 in Lemma 2.1, then I =1 and we obtain the sharp Hardy inequality on the half space R
(see [6] for a different proof)

2 2
2 n u(x)
\Y dx > — d
/| u(x)|" dx y / P X
R R

Notice that this inequality is one of the objects in Theorem 1.1 and the dimension 2/ 4+ 1 =3 play an important role. So, in
order to prove Theorem 1.1, we can repeat the same argument of Corollary 1.3 in [7] by choosing such dimension 3.

Proof of Theorem 1.1. Notice that

n n n—k .2 n 2
_ 9°g(x) d 2 0

H IZ < 1_[ Xig(x)>=—za—2— Z 8_2+X_§ g(x). (24)

i=n—k+1 i \i=n—k+1 j=1 Xj j=n—k+1 Xj 75
We consider the sharp Hardy inequality on Ri~% x R3¥:
(n+ 2k —2)2 v2
[ warewr) s [
Z = X + ZJ 1 y]

n—k 3k n—k 3k
Ry " xRy Ry " xRy

where v € C§° (R x Rf,k). Set

k1 =y VAV YE X2 = VAR YR x= VA, H YR YR

and consider all the functions like

V(X1 ooy Xk V1o e es Y3k) = VX1, ..., Xp).
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The constant W is also sharp for such functions (see e.g. [12]). Following the proof of Lemma 2.1, we have, using (2.4),

n noo.2 n
V2= — 3"/ 0 L 0
[ wwe=-gl [ 1] ><v<><>j§:1 ae| 1 x7w

R-1 fo,k RE+ i=n—k+1 i=n—k+1

RS 2k — 2)? / 2
= —k 3k
4 DUINEE D D

RE xR
~2 1N 2
i+ 2k -2 S / V[ imnoks1 X
4 |x|2
n
k4

It remains to set u = T/']_[?:,Pk+1 x; and the desired result follows. O

3. Spherical harmonic decomposition

For a function u € Cg° (RZ+), we denote by U the odd extension of variables {x,_ k.1, ..., %} of u, i.e. U(x) satisfies
UX1, .., X)) =UX1, ..., Xn), Y(X1,...,Xn) GJRZ+
and
’zI(x1, ...,Xj_1, —Xj,Xj_H, ...,Xn) = —ﬂ(X], ...,Xj_1,Xj,Xj+1, ...,Xn)

foralln—k+1<j<n Theni e Cg°(R™) and moreover,

~2 2
/|vﬂ|2=z’</|w|2, /”—:2"/ v 3B1)
|x|2 |x|2
R R

n n n
k- R Rlur

Decomposing U into spherical harmonics we get (see e.g. [14])

=Y U:=)_ finh), (32)
1=0 =0

where ¢;(o) are the orthonormal eigenfunctions of the Laplace-Beltrami operator with responding eigenvalues
ag=Iln+1-2), 1>0.

The functions fi(r) belong to Cg°(R"), satisfying f;(r) = 0@ and fln = 01y as r — 0. Without loss of generality, we
assume

/[¢,(g)y2da:1, Vi>0.
Sn—l
By (3.2),

fitn) = / U(x)¢y(0)do

sn—1
and

oo oo
[ romittar= [ [ awnoaerm o dr= [ fi()ae ax (33)
0 0 sn-1 Rn
Lemma3.l. fij=0forall0<I<k-—1.
Before the proof of Lemma 3.1, we need some multi-index notation. We denote by Ny the set of nonnegative integer.

A multi-index is denoted by o = (a1, ..., an) € Njj. For a € Nj and x € R" a monomial in variables x1, ..., X, of index « is
defined by

o (03] (0%
XT =X X"
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The number || =1 + - -+ + oy is called the total degree of x*. Notice that ¢;(o) is nothing but the spherical harmonic of
degree [ (see e.g. [13], Chapter V), it has the expansion

(o) = i Z CoX” (34)

|lo|=l

for some constants Cy € R.

Proof of Lemma 3.1. By (3.3) and (3.4),

/ ot ar = [0 o dx= Y Ca [ T00 (1) dx.
Rn loe|= [ Rn
So to finish the proof, it is enough to show

/ﬁ(x)fl(|x|)x°‘ dx=0
]RH
for all x| =1with0<I<k-1.
For |a| =aq + -+ ay =1< k-1, there must exist j, n —k+ 1< j<n, such that o; =0 (we note if aj > 0 for all
n—k+1<j<n, then On_k+1 + -+ oy =k and this is a contradiction to |o| < k — 1). Therefore,

/ﬁ(x)f1(|x|)x°‘dx:/u(x)f1(|x|) . (;j]l x(;fll X dx

Rn Rn
_ o1 o1 ~ )Y+ o . .
= / X </u(x)f,(|x|)dx])xj+1 cooxpmdxy - dXjq dXjyq - dXp.
Rn—1 R

Since 7i(x) is an odd function of variable x;, so does % (x) fi(|x|). Therefore,

/ﬁ(x)fl(lxl)dxj =0
R

and hence

/ﬁ(x)fl(|x|)x"‘ dx=0
]RH
The proof of Lemma 3.1 is now completed. O

Remark 3.2. By Lemma 3.1, the function u, the odd extension of variables {x,_xy1,...,%n} of u, has the expansion in

spherical harmonics

u) =Y _ fingi(0),

1=k

so does the function u itself in RL.
Proof of Theorem 1.3. If we extend u as zero in RL \ Bg, we may consider u € C8°(RL). By (3.1), it is enough to show

that
2+2k)2 12 |x| 2 ( |X]
/'V' W Z/mz <R> """ X"(?>
B

R

holds for all U € C5°(BR). Since U has the expansion in spherical harmonics

u) =Y _ fitgi(o),

1=k
where fi(r) € C5°(Bg), satisfying fi(r)=0() and f/(r)=0(@'"1) as r — 0, we have,
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—242k2 [T & (r) . o
/|v s —z=Z /Ifl(r)l dx+l(n+1—2)/f' (¢ ) f2 ! X}
4 [x] —~| 7 x
Br = e
[ 2(r —2)2 r
=> /\f,’(r)yzder(l—k)(n+1+k_2)/fz()dx_(n ) f,()
|X|2 4 |x|2
- B Bg Br
=T 2
2 (n—2) fEm
> | [lniof o= 2 [ 1D w)
I=k “g, A
To get the last inequality above, we use the fact (Il —k)(n +1+4k —2) > 0 since | > k > 1. Recalling the Filippas-Tertikas

improvement of Hardy inequality (cf. [5,14])

2)2 IRuy 240 (1]
/'fl(r)| FE Z e %(R>

Br

we have

(%)
R
o

(m—2+42k% [ 2)2 fEm
/'V — 2w /Z[/U’(m X2 dx]

BR BR

Sy [ (R) 4 (%)

I=kp

=y ”2(’)xg<ﬂ> ..... (%)
4 |x|2 R "\'R
B

R

The desired result follows. O
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