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Abstract

In the Spangler model, the vertical earth pressure is assumed to be uniformly distributed, but it is not. The aim of this study is to improve the
accuracy of the stress and deformation calculation for a positive buried pipe by using the new formulae derived from an improved Spangler
model. Based on the Spangler model, this study derives the general calculation formulae for the section moment of a buried pipe when the vertical
earth pressure is arbitrarily distributed. Furthermore, this study proposes a new model by improving the Spangler model, in which the vertical earth
pressure is assumed to be parabolically distributed. Then, the new deformation formulae are derived. At the end of this article, the results of the
new formulae are validated through a comparison with the simulated results obtained by FLAC3D software. It is concluded that the new model
can simulate the behavior of buried pipes better than the Spangler model.
& 2015 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Buried pipes are widely used for oil and gas transportation
and for city pipe networks. Generally, in many countries of the
world, the structural design of buried pipes is based on national
standards. Those standards differ from one country to another,
but most of them are based on the Marston�Spangler theory
(Tian, 1989).

Many closed-form solutions for rigid pipes and culverts are
subjected to earth load. Marston and Anderson (1913) first
proposed a theory, and developed formulae that are widely
used in practice, to estimate the vertical earth load on positive
buried rigid pipes and culverts. The Marston model is shown
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in Fig. 1. Based on Marston‘s work, later researchers (Das and
Seeley, 1975; Ladanyi and Hoyaux, 1969; Meyerhof and
Adams, 1968; Matyas and Davis, 1983a; Vesic, 1971) made
continuous improvements and developed formulae for the
vertical earth load on rigid pipes and culverts. Among those
formulae, the values for the soil lateral pressure coefficient (k)
are different. The influence of soil cohesion and the plane of
equal settlement are taken into consideration in some of the
above theories, but not in others, as demonstrated (Tian, 1989).
Furthermore, the shear plane is assumed to be the circular
surface in Vesic‘s theory (Vesic, 1971) relative to the vertical
shear plane in other theories. The above differences lead to
different values for Cc in those theories.
Spangler (1941) conducted extensive research on flexible pipes.

Analysis methods for stress and deformation were proposed and
calculation formulae were developed. It is assumed that the vertical
earth pressure and subgrade reaction are uniformly distributed on
Elsevier B.V. All rights reserved.
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the pipe along its diameter. The lateral bearing resistance of soil
was assumed to be parabolically distributed over a range of 1001.
The Spangler model is shown in Fig. 2.

In the Marston�Spangler theory, the vertical earth pressure is
assumed to be uniformly distributed. Actually, some experiments
(Li, 2009; Shmulevich et al., 1986) indicate that the vertical earth
pressure is not constant at different points on the pipe. Based on
the Spangler theory, the aim of this study is to derive general
calculation formulae for the section moment of a buried pipe
when the vertical earth pressure (q(x)) is arbitrarily distributed.
Then, the study assumes that the vertical earth pressure is
parabolically distributed and derives the moment and deforma-
tion formulae for the purpose of obtaining higher calculation
accuracy than with the Spangler formulae (Deng and Li, 1998;
Spangler, 1941) through a comparison with the numerical values
obtained by FLAC3D.
2. Vertical earth load

In Fig. 1, two imaginary vertical planes, known as shear
planes Marston and Anderson (1913), are drawn tangent to the
two sides of the pipe to define interior and exterior prisms. The
plane of equal settlement is a special plane where the relative
movement of the prisms is zero. He is the height of the plane.
Since the deformation of the rigid pipe is nearly zero, the
exterior prism moves downward, with respect to the interior
prism, and the relative movement induces shear stresses on the
shear planes. As a result, the earth load on the pipe is greater
than the weight of the interior prism. According to the Marston
theory Marston and Anderson (1913), the vertical earth load on
rigid pipes can be determined from

We ¼CcγD
2 ð1Þ

where We is the vertical earth load per unit length of pipe, kN;
γ is the unit weight of the backfill, kN/m3; D is the outside
diameter of the pipe, m; Cc is the load factor.
Marston and other researchers have given different solutions

to Cc in their theories (Matyas and Davis, 1983b). Based on
those theories, however, some simplified formulae are used in
many design standards for buried pipes. For instance, Eq. (2)
is adopted in “GB50332-2002, Structural design code for
pipelines of water supply and waste water engineering” in
China (Liu and Yang, 2001) and Eq. (3) is adopted in “USAS
A21.1, USA Standard for Thickness Design of Cast Iron Pipe,
Thickness Determination for Pipe on Piers or Piling Above
Ground or Underground” (Matyas and Davis, 1983b).

Cc ¼ 1:4
H

D
ð2Þ

Cc ¼ 1:961
H

D
�0:934 ð3Þ

Eq. (1) is suitable for rigid pipes and culverts, and the
pipe�soil stiffness ratio should be taken into consideration
when calculating the vertical earth load of flexible pipes (Tian,
1994). The formula can be given as

W ¼ ξWe ¼ ξCcγD
2 ð4Þ

where ξ denotes the relative stiffness coefficient of the pipe,
and the soil is expressed as follows:

ξ¼ E

Ed

δ

r

� �3

ð5Þ

where E is the elastic modulus of the pipe, MPa; Ed is the
deformation modulus of backfill, MPa; δ is the thickness of
pipe wall, m; r is the radius of the pipe, m.
3. General calculation formulae for section moment and
stress

In this section, if the inner pipe wall is subjected to tension,
the section moment is designated positive; if the outer pipe
wall is subjected to tension, the section moment is designated
negative.
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3.1. Section moment produced by vertical earth pressure

When the vertical earth pressure (q(x)) is arbitrarily distrib-
uted, due to the symmetry of the structure and the pressure
shown in Fig. 2, a simplified mechanical model can be applied,
as shown in Fig. 3, under the vertical earth pressure and
subgrade reaction. The length of the pipe ring is the unit length.

In Fig. 3(a), the resultant of q(x) and q0 is zero, and a relative
displacement of points A and B occurs. Point B is selected as the
reference point, whose displacement is zero, and the displace-
ment of point A is the relative displacement. Therefore, Fig. 3(a)
is equivalent to Fig. 3(b), which can be divided into two parts,
as shown in Fig. 3(c) and (d). Removing the support restraint on
point A in Fig. 3(c) and (d), a horizontal force and bending
moment act on the point. In order to simplify the calculation
formula for section moment, a rigid arm is introduced and the
bending moment and the horizontal force can be transferred to
the center of the circle (point O), that is, X1 and X2. During the
calculation of the section moment of the pipe, the effect of X1
and X2 is delivered to the pipe through the rigid arm.
M2ðθÞ ¼
RW
12π 3k1 αð Þ�2 sin 2α cos θ
� �

0rθrπ�α
RW
12π 3k1 αð Þ�2 sin 2α cos θ�3π sin α� sin θð Þ2= sin α
� �

π�αrθrπ

(
ð9Þ
In Fig. 3(c), through a calculation with the force method, the
values for X1 and X2 are expressed as follows:

X1 ¼ � 1
π

Z π

0
MqðθÞdθ ð6aÞ

X2 ¼ � 2
πR

Z π

0
MqðθÞ cos θdθ ð6bÞ
α

q(x)

q'=W⁄(2Rsinα)

o x

α

o

θθ

q'=W⁄(2Rsinα)

q(x)

B

A

B

A

Fig. 3. Simplified me
where Mq(θ) denotes the bending moment acting on the pipe ring,
produced only by q(x) and without X1 and X2; it is given by

MqðθÞ ¼
�R2

R θ
0 qðR sin tÞ sin tdð sin tÞ 0rθrπ=2

�R2
R π

2
0 qðR sin tÞ sin tdð sin tÞþ

R2 1� sin θð Þ R π
2
0 qðR sin tÞdð sin tÞ π=2rθrπ

8>><
>>: ð7Þ

The section moment produced by the vertical earth pressure is

M1ðθÞ ¼ X1þX2R cos θþMqðθÞ

¼ � 1
π

Z π

0
MqðθÞdθ�

2 cos θ

π

Z π

0
MqðθÞ cos θdθþMqðθÞ

ð8Þ

3.2. Section moment produced by subgrade reaction

The mechanical model is shown in Fig. 3(d). Using the
analysis and the calculation method in Section 3.1, the section
moment produced by the subgrade reaction is
where k1(α) is given by

k1 αð Þ ¼ α sin αþ 3
2

cos αþ α

2 sin α
�2 ð10Þ

3.3. Section moment produced by horizontal pressure

The buried pipe will produce the horizontal elliptical defor-
mation subjected to the vertical earth load. The pipe0s side wall
α
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protrudes outward, and passive earth pressure occurs because
the backfill is squeezed. The deformation of each point on the
side wall is different, and the maximum deformation occurs at
the end points of the horizontal diameter (M and N, Fig. 4).
Therefore, it is difficult to calculate the passive earth pressure at
each point accurately. In the Spangler model, the parabolic
distribution is assumed to approximately express the passive
earth pressure on the pipe‘s side wall. In the new mechanical
model, shown in Fig. 4, the parabolic distribution‘s assumption
of the horizontal pressure is maintained.

The section moment produced by the horizontal pressure
with an arbitrary range of 2β (Fig. 4) is

for 0rθrπ/2�β:

M3ðθÞ ¼ qhR
2 3 sin βþ sin 3β�6 sin β cos 2βð Þ

U k2 βð Þ� cos θ½ �= 12 sin 2β
� �þM0 ð11aÞ

for π/2�βrθrπ/2þβ:

M3ðθÞ ¼ qhR
2 48 cos 2θ cos 2βþ8 cos θ cos 3θ
�

�12 cos 2βð1þ cos 2θÞ�24 cos 2θ

þ3 1� cos 4θð Þ�= 96 sin 2β
� �þM0 ð11bÞ

for π/2þβrθrπ:

M3ðθÞ ¼ qhR
2 3 sin βþ sin 3β�6 sin β cos 2βð Þ

: k2 βð Þþ cos θð Þ= 12 sin 2β
� �þM0 ð11cÞ

In the above equations, M0, k2(β) and qh are expressed as
follows:

M0 ¼ qhR
2 11

32
sin 4βþ 3β

8
ð3�4 cos 2βÞ� 1

2
sin 2β

�

þ 3 sin βþ sin 3β�6 sin β cos 2βð Þ
U cos β�k2 βð Þ π=2�β

� �� �	
= 6π sin 2β
� � ð12Þ
k2 βð Þ ¼ 3 1� cos 4βþ4 cos 2βU cos 2β�1ð Þ½ �
8 3 sin βþ sin 3β�6 sin β cos 2βð Þ ð13Þ

qh ¼ e
Δx
2

ð14Þ

In Eq. (14), Δx denotes the relative displacement of points
M and N, which can be determined by Eq. (22). e denotes the
coefficient of passive earth pressure, N/m3. Generally, in the
analysis of buried pipes, the product of e and R is known as

E' ¼ eR ð15Þ
where E0 denotes the reaction modulus, MPa.

3.4. Maximum stress of arbitrary section

For an arbitrary section, the maximum stress can be given as
follows:

σmax θð Þ ¼ 6M θð Þ
δ2

ð16Þ

where M(θ)¼ the total bending moment¼M1(θ)þM2(θ)þ
M3(θ).
4. Parabolically distributed vertical earth pressure

Shmulevich et al. (1986) performed experiments for buried
steel pipes with different diameters and thicknesses in a relatively
wide trench condition, which can be seen as a positive burial
type. The clay and sand were selected with different degrees of
compactness to use as the soil around the pipe. It is indicated
that the normal and tangential soil stresses are parabolically
distributed approximately above the crown of the pipe, and
that the maximum values of the stresses are both in the middle.
The experiment results also indicate that the tangential soil
stresses are close to zero at the end points of the pipe‘s
horizontal diameter. This finding indicates that the resultant
normal and tangential stress, that is, the vertical earth pressure,
is similar to the parabolic distribution, the value of which is
near zero at the end points of the pipe‘s horizontal diameter.
Based on the above analysis, this study assumes that the

vertical earth pressure is parabolically distributed and proposes
a new mechanical model, as shown in Fig. 4, based on the
Spangler model. The vertical earth pressure on points M and N
is zero. On top of the pipe, the vertical earth pressure is set to
be γH approximately, because the effect of the difference in
settlement is the smallest at that point and the vertical earth
pressure is the closest to the self-weight of the soil column.
As shown in Fig. 4, letting q xð Þ ¼ ax2þbxþc, the values

for the parameters (a, b, c) can be determined from the three
known conditions for any x ranging from 0 to R:

qð0Þ ¼ γH; qðRÞ ¼ 0R R
0 q xð Þdx¼ R R

0 ax2þbxþc
� �

dx¼ 1
2W

(
ð17Þ

The results are a¼ �ð3W�3γHRÞ=R3, b¼ ð3W�4γHRÞ=R2,
c¼ γH.
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Substituting the results into Eqs. (7) and (8) gives the following
for 0rθrπ/2:

M1ðθÞ ¼ 3
4
RW� 3

4
γHR2

� �
sin 4θ� RW� 4

3
γHR2

� �

sin 3θ� 1
2
γHR2 sin 2θþ 1

5π
RWþ 2

15π
γHR2

� �
cos θ

þ 7
6π

� 17
64

� �
RWþ 43

192
� 8

9π

� �
γHR2 ð18aÞ

for π/2rθrπ:

M1ðθÞ ¼ � 1
2
RW sin θþ 1

5π
RWþ 2

15π
γHR2

� �
cos θ

þ 7
6π

� 1
64

� �
RWþ 59

192
� 8

9π

� �
γHR2 ð18bÞ

M2(θ) and M3(θ) are still the same as in Eqs. (9) and (11),
respectively.
5. Deformation formulae with vertical earth pressure
parabolically distributed

In this section, the positive direction of the relative displace-
ment is designated to be inward for the top and bottom of a pipe,
and outward for the end points of the pipe’ s horizontal diameter.
5.1. Relative displacement of end points of pipe‘s horizontal
diameter

With the principle of virtual displacement, the relative
displacement produced by the vertical pressure (q(x) and q0)
is given by

Δxv ¼ kxv
R3W

EI
ð19Þ

where I is the sectional moment of inertia of the unit length
of the pipe, δ3/12, and kxv is the coefficient of deformation
given by

kxv ¼ 0:1115þ k1 αð Þ
2π

� 1
12

sin 2α� 0:0090
ξCc

H

D
ð20Þ

The relative displacement produced by the horizontal pressure
is given by

Δxh ¼ �kxh
2qhR

4

EI
ð21Þ

where kxh can be determined from Table 1.
Calculated by Eqs. (14), (15), (19) and (21), the relative

displacement of the end points of the pipe‘s horizontal diameter is

Δx ¼ kxvR3W

EIþkxhE'R3 ð22Þ
5.2. Relative displacement of top and bottom of pipe

The relative displacement produced by the vertical pressure
(q(x) and q0) is given by

Δyv ¼ kyv
R3W

EI
ð23Þ

where kyv is given by

kyv ¼ 0:1203� k1 αð Þ
2π

þ 1
4

sin α�αð Þ� 1
12

sin α cos α

þ 1
6 sin α

ð1� cos αÞ� 0:0087
ξCc

U
H

D
ð24Þ

The relative displacement produced by the horizontal pressure
is given by

Δyh ¼ �kyh
2qhR

4

EI
ð25Þ

where kyh can be determined from Table 2 as
Calculated by Eqs. (14), (15), (22), (23) and (25), the

relative displacement of the top and bottom of a pipe is

Δy ¼ R3W

EI
kyv�

kxvkyh
EI

E'R3 þkxh

 !
ð26Þ

Eqs. (22) and (26) are the same as the Spangler formulae
in form, and the values for kxh and kyh are kept the same as
those in the Spangler formulae, as shown in Tables 1 and 2,
respectively, and as demonstrated by Deng and Li (1998).
The difference is that the values for kxv and kyv are changed.
In the Spangler formulae, kxv and kyv are given by (Deng and
Li, 1998), namely,

kxv ¼ 0:1100þ k1 αð Þ
2π

� 1
12

sin 2α ð27Þ

kyv ¼ 0:1161� k1 αð Þ
2π

þ 1
4

sin α�αð Þ

� 1
12

sin α cos αþ 1
6 sin α

ð1� cos αÞ ð28Þ

Comparing Eqs. (20) and (24) with Eqs. (27) and (28), it is
indicated that the new formula (Eqs. (20) and (24)) captures
the effects of more parameters on Δx and Δy, including H, D,
Cc, and ξ.

6. Example and discussion

For a field case of a buried pipe, a circular shallow trench is
excavated on a foundation in order to place the pipe. The arc
angle (2α, Fig. 4) of the trench is 901. The backfill and the
foundation are silty sand. The compactness of the backfill is
90%. Ed is 10 MPa according to “GB50332-2002, Structural
design code for pipelines of water supply and waste water
engineering”. E0 is 3.5 MPa according to “GB50253-2003,
Code for design of oil transportation pipeline engineering”.
Through static uniaxial tests and engineering experience,
the elastic modulus and Poisson‘s ratio of the backfill are
determined to be 25.72 MPa and 0.286, respectively, while
those of the foundation are 81.82 MPa and 0.364, respectively.



Table 1
Value of kxh for different β.

β (deg.) 40 45 50 55 60 65 70 75 80 85 90
kxh 0.0544 0.0581 0.0610 0.0634 0.0653 0.0668 0.0679 0.0686 0.0692 0.0695 0.0696

Table 2
Value of kyh for different β.

β (deg.) 40 45 50 55 60 65 70 75 80 85 90
kyh 0.0525 0.0564 0.0596 0.0622 0.0643 0.0659 0.0671 0.0680 0.0686 0.0690 0.0691

Table 3
Parameters input into FLAC3D software.

Material
(Silty
sand)

Bulk
modulus
(MPa)

Shear
modulus
(MPa)

Density
(kg/m3)

Internal
friction
angle
(deg.)

Cohesion
(MPa)

Tensile
strength
(MPa)

Backfill 20.0 10.0 1810 29.8 0.1 0.1
Foundation 100.3 30.0 1860 34.7 0.1 0.1

Fig. 5. Models of foundation and trench.

Fig. 6. Overall model of the buried pipe.
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The density and the internal friction angle of the backfill and
the foundation are provided in Table 3. Through tensile tests,
the elastic modulus (E) and Poisson‘s ratio (μ) of the buried
steel pipe are found to be 2.0� 1011 Pa and 0.3, respectively.
The density of the steel (ρ) is 7800 kg/m3.

Generally, to prevent the premature destruction of the soil
and to obtain convergent simulation results, the two strength
parameters, namely, cohesion and tensile strength, should be
determined reasonably. It is found that, when the simulation is
convergent, the difference in the simulation results is very
small. In this article, because the two parameters for the silty
sand are very small, they are selected to be the smallest values,
provided in Table 3, among the many values that could ensure
the convergent results.

In this section, the study selects two kinds of different
outside diameter steel pipes as samples: D¼0.5 m with δ¼6
mm and D¼1 m with δ¼10 mm. For each kind of pipe,
kxv and kyv are calculated for different H/D when α is 451 using
the new formulae in this article, and their change curves with
H/D are shown in Figs. 7–10 (New formula). In the Spangler
formulae (Eqs. (27) and (28)), kxv and kyv are only related to α,
and they are constant for different H/D. When α is 451, the
values for kxv and kyv are 0.09561 and 0.09662, respectively, as
shown in Figs. 7–10 (Spangler formula).

In engineering, buried pipes can be simulated well using the
finite difference software FLAC3D (Zhang and Zhang, 2013).
In order to verify the feasibility of the new model and formulae
in this article, numerical calculations using FLAC3D were
conducted. The models of the foundation and the trench are
shown in Fig. 5, and the overall model of the buried pipe is
shown in Fig. 6. Due to the weak preprocess function of
FLAC3D, the models are built and meshed with ANSYS
software, and then information on the nodes and the elements
are extracted and imported into FLAC3D. A foundation, large
enough in size, is adopted in the model. The height of the
foundation is 4 m and it extends outward 3 m (D¼0.5 m) and
4 m (D¼1 m) from the left and right sides of the pipe,
respectively, as shown in Fig. 5. The length of the model,
that is, the length of the pipe, is selected to be 5 m.



Fig. 8. kyv data (Cc adopts Eq. (2)).

Fig. 9. kxv data (Cc adopts Eq. (3)).
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The buried pipe can be simulated using the “shell” element
provided in FLAC3D, and four parameters (E, μ, δ, ρ) should
be assigned to the shell elements through command strings
input into the software. For the backfill and the foundation,
the adopted constitutive model in the simulation is the
Mohr�Coulomb model, a kind of elastic-plastic model widely
used for the simulation of soil. In FLAC3D software, the
parameters shown in Table 3 are needed to simulate the soil
using the Mohr�Coulomb model. The bulk modulus and the
shear modulus are derived from the elastic modulus and
Poisson‘s ratio, and the transform formulae are expressed as
follows:

K ¼ Es

3ð1�2μsÞ
ð29Þ

G¼ Es

2ð1þμsÞ
ð30Þ

where K is the bulk modulus, MPa; G is the shear modulus,
MPa; Es is the elastic modulus of soil, MPa; μs is Poisson‘s
ratio of the soil.

As for the boundary conditions, the normal displacement of
the four side faces and the bottom of the model are set to zero.
The model is large enough in size, so that the boundary
conditions basically coincide with the actual situation. The
simulation is performed in two parts. Firstly, the initial stress
state of the foundation is simulated with the model shown in
Fig. 5. Secondly, the trench is excavated (the red part in
Fig. 5), the shell elements and the backfill are created (Fig. 6),
the parameters are assigned, and the calculation is conducted.

Through numerical calculation, the values for Δx and Δy
can be obtained. Then, kxv and kyv can be calculated by Eqs. (23)
and (28) with the known values for kxh and kyh, as shown in
Tables 1 and 2, when β is selected to be 501, namely, the same
as for the Spangler formulae. The simulated data for kxv and kyv
are shown in Figs. 7–10 (FLAC3D).

Figs. 7 and 8 show the data for when Cc adopts Eq. (2), while
Figs. 9 and 10 show the data for when Cc adopts the American
standard (Eq. (3)). It is indicated that the new formulae data agree
better with the FLAC3D data, for pipes with different H/D, than
Fig. 7. kxv data (Cc adopts Eq. (2)).

Fig. 10. kyv data (Cc adopts Eq. (3)).
the Spangler formulae data. Therefore, it is concluded that
assuming a parabolic distribution results in higher accuracy than
assuming the uniform distribution of the vertical earth pressure,
and that the new model proposed in this article can simulate the
behavior of buried pipes better than the Spangler model.
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For the pipe D¼1 m with δ¼10 mm, when Cc adopts
Eq. (2), the new formulae data and the FLAC3D data are very
close, and the accuracy is improved greatly compared with the
Spangler formulae. When Cc adopts Eq. (3), the degree of
improvement in accuracy decreases. Overall, for the two kinds
of pipes, the degree of improvement for the pipe with a large
diameter is greater than that for the pipe with a small diameter.

It is necessary to note that, for the pipe D¼0.5 m with
δ¼6 mm, the difference between the new formulae data and
the FLAC3D data is relatively large, even though the accuracy
of the new formulae is higher than that of the Spangler
formulae. For the theoretical calculation of the new formulae
or the Spangler formulae, it is difficult to consider some
factors, for example, the self-weight of the pipe, the three-
dimensional effects and the real pipe�soil interaction. Many
assumptions and simplifications must be made which will
inevitably lead to errors. When the diameter of a pipe is small,
the deformation is small, and errors become relatively large.
7. Conclusions
(1)
 In the Spangler formulae, kxv and kyv are a function of single
parameter α. However, through the work of this article, it is
concluded that kxv and kyv are related to parameters H, D, ξ and
Cc, but not to α.
(2)
 Compared with the Spangler formulae, the new formulae
have higher accuracy. Assuming that the vertical earth pressure
on a pipe is parabolically distributed results in higher accuracy
than assuming uniform distribution. The new model proposed
in this article can simulate the behavior of buried pipes better
than the Spangler model.
(3)
 For the new formulae, when Cc adopts Eq. (2), the degree
of improvement in accuracy is higher than that when Cc

adopts Eq. (3). For the large-diameter pipe, the degree of
improvement is larger than for the small-diameter pipe
using the new formulae in this article.
(4)
 Although the new model and formulae proposed in this
article can improve the accuracy of the calculation results,
there is a difference between the results of the new formula
and the results of the numerical simulation especially for
the small-diameter pipe. Further research is needed on
buried pipe behavior.
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