JOURNAL OF DIFFERENTIAL EQUATIONS 13, 247-256 (1973)

Variational Methods for Nonlinear Eigenvalue Problems Associated with Thermal Ignition

G. C. WAKE

Mathematics Department, Victoria University, Wellington, New Zealand

AND

M. E. RAYNER

St. Hilda's College, Oxford, England Received November 11, 1971

1. INTRODUCTION

The following boundary value problem arises in the study of nonlinear heat generation (in the steady-state):

$$L(u) = \lambda f(x, u), \qquad x = (x_1, x_2, ..., x_m) \in D,$$
(1)

$$B(u) \equiv \alpha(x)u + \beta(x)(\partial u/\partial \nu) = 0, \qquad x \in \partial D, \tag{2}$$

where L is the uniformly elliptic, self-adjoint, second-order operator

$$L(u) = -\sum_{i,j=1}^{m} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + a_0(x)u, \qquad (3)$$

and D is the interior of a bounded region of \mathbb{R}^m with a smooth boundary ∂D . The coefficients $a_{ij}(x) = a_{ji}(x)$ are continuously differentiable, $a_0(x) \ge 0$ is continuous, and for all unit vectors $p = (p_1, p_2, ..., p_m)$,

$$\sum_{i,j=1}^m p_i a_{ij}(x) p_j > 0, \qquad x \in D.$$

In Eq. (2) $\partial/\partial\nu$ is the conormal derivative:

$$\frac{\partial u}{\partial \nu} \equiv \sum_{i,j=1}^{m} n_i(x) a_{ij}(x) \frac{\partial u}{\partial x_j}, \qquad (4)$$

247

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. where $n(x) = (n_1(x), n_2(x), ..., n_m(x))$ is the outer unit normal to ∂D at a point x on the surface. The functions $\alpha(x)$ and $\beta(x)$ are assumed to be nonnegative and piecewise continuous on ∂D . The boundary ∂D will be subdivided into two disjoint parts ∂D_1 and $\partial D_2 = \partial D - \partial D_1$, where $\alpha(x) \neq 0$, $\beta(x) \equiv 0$ on ∂D_1 and $\beta(x) \neq 0$ on ∂D_2 .

This paper will be concerned with estimates for the least upper bound λ_{cr} of the values of λ for which the nonlinear eigenvalue problems (1) and (2) have real positive solutions. This parameter is the critical explosion parameter for the unsteady problem, that is, for $\lambda \ge \lambda_{cr}$ there does not exist a stable solution of the time-dependent equations (see Wake [1] and Keller and Cohen [2]). This problem has been widely discussed. Keller and Cohen [2] gave upper and lower bounds for λ_{cr} under various requirements on the monotonicity of f(x, u), $f_u(x, u)$ with u. In particular they were able to show that if:

H-0:
$$f(x, u)$$
 is continuous and positive for $x \in D$, $u \in R$;
H-1: $f(x, 0) \equiv f_0(x) > 0$, $x \in D$;
H-2: $f_u(x, u) > 0$ and is continuous for $x \in D$ and $u \in R$;

and λ_{cr} exists; then problems (1) and (2) have (positive) solutions for all λ in $0 < \lambda < \lambda_{cr}$. If we denote by $\mathbf{u}(x)$ the minimal solution of (1) and (2) (that is, $u(x) \ge \mathbf{u}(x)$ on D for any solution of (1) and (2)), Keller and Cohen showed that, for each $\lambda \in [0, \lambda_{cr}]$,

$$\lambda \leqslant \mu_1(\lambda), \tag{5}$$

where $\mu_1(\lambda)$ is the principal eigenvalue of the linearized system

$$L(v) = \mu f_u(x, \mathbf{u}(x))v, \qquad x \in D,$$
(6)

$$B(v) = 0, \qquad x \in \partial D. \tag{7}$$

If, in addition, f were concave with u, that is

H-3*a*: $f_u(x, u_1) < f_u(x, u_2)$ on *D* if $u_1 > u_2$;

then they were able to show that the problem has no solution for $\lambda=\lambda_{\rm cr}$, but that

$$\lim_{\lambda \neq \lambda_{\rm cr}} \mu_1(\lambda) = \lambda_{\rm cr} \,. \tag{8}$$

However, if f were convex with u, that is,

H-3b:
$$f_u(x, u_1) > f_u(x, u_2)$$
 on D if $u_1 > u_2$;

they were unable to show in [2] that Eq. (8) held for this case.

There is some evidence that this result is true for convex f and indeed Keller and Cohen conjecture that this is so. Also Hudjaeov [3] has shown that Eq. (8) is valid in the special case when f is separable, i.e., when

$$f(x, u) = a(x) h(u), \tag{9}$$

where h'(u) is an increasing function of u, h(0) > 0 and a(x) > 0. Recently Keller and Keener [4] have been able to show that Eq. (8) does hold for convex f satisfying

H-4:
$$\lim_{u\to\infty} u^2 \frac{\partial}{\partial u} \left[u^{-1} f(x, u) \right] < 0, \qquad x \in D,$$

and that positive solutions exist for this case.

The present paper will propose a variational method of determining λ_{er} under the hypotheses *H*-0, 1, 2, 3*b* (convex *f*), which will be a nonlinear analog of the well known procedures for linear eigenvalue problems. This method provides a useful device in practice as a "rough" approximation to the solution seems to lead to a "good" approximation to the critical parameter λ_{er} .

Variational methods have been used by other authors, notably Simpson and Cohen [5] and Levinson [6, 7], for equations like (1) but not in order to obtain estimates for λ_{er} . Levinson used the variational technique to establish the existence of solutions, whereas we shall simply find a necessary and sufficient condition for the existence of solutions, not proving the latter result. (In addition the results of [4] ensure the existence of solutions for some special cases.)

The next section will give the main results of the paper and the last section will give a specific example to illustrate the application of the method.

2. MAIN RESULTS

As each nonlinear eigenvalue problem (1) and (2) has a nondiscrete spectrum, we are led to introduce a parameter c, which ensures that for some value of that parameter each value of the spectrum is achieved. In a manner similar to that for a variational method for a linear eigenvalue problem, we define a functional

$$J(u) = \int_{D} \sum_{i,j=1}^{m} \left(a_{ij}(x) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} + a_0(x) u^2 \right) dx + \int_{\partial D} k(x) u^2 ds(x), \quad (10)$$

where the domain of J is the space of functions

$$M = \{u(x): u(x) = 0 \text{ on } \partial D_1, u(x) \in C(\overline{D}) \cap C^1(D)\},$$

and we have defined k(x) by

$$k(x) \begin{cases} = 0, & x \in \partial D_1, \\ = \alpha(x)/\beta(x), & x \in \partial D_2. \end{cases}$$

We will consider stationary values of the functional J on the domain M subject to the constraint (a normalizing condition)

$$\int_{D} F(x, u(x)) \, dx = c \ge 0, \tag{11}$$

where

$$F(x, u) = 2 \int_0^u f(x, t) dt.$$

For convenience we will denote this subset of functions by M_c , that is,

$$M_c = \Big\{ u(x) : u(x) \in M, \int_D F(x, u(x)) \, dx = c \Big\},$$

then the domain of J is M_c .

Finding the stationary value of J(v) on M_c can be considered as an isoperimetric problem; if u(x) gives J(v) a stationary value on M_c then there exists a Lagrange multiplier λ such that the functional,

$$K(v) = J(v) - \lambda \int_D F(x, v(x)) \, dx, \qquad (12)$$

has a stationary value for $v = u \in M$. Conversely if λ and u(x) are such that K(v) has a stationary value on M, then for some c, J(v) has a stationary value for $u \in M_c$ since $M_c \subseteq M$.

Before we proceed to the main result, we give a necessary preliminary result.

LEMMA. If u_1 and u_2 are distinct positive solutions of Eqs. (1) and (2) when f is convex, and if $u_1 \ge u_2$ on D, then $J(u_1) > J(u_2)$, with equality only if $u_1 \equiv u_2$.

Proof. By a well known result and Eqs. (1) and (2)

$$J(u) = \int_D uL(u) \, dx = \lambda \int_D uf(x, u) \, dx,$$

and so we have

$$J(u_1) - J(u_2) = \lambda \int_D (u_1 f(x, u_1) - u_2 f(x, u_2)) \, dx.$$

250

Since, for distinct positive solutions we must have that $0 < \lambda < \lambda_{cr}$ and f is increasing with u on D, we conclude that the right side of the above equation is positive if $u_1 \neq u_2$ and zero otherwise.

The following theorem gives the main result of this section. This result equates the existence of a minimizing function with the existence of the minimal solution to Eqs. (1) and (2). Since the latter result is known in some cases (Ref. [4]), this theorem establishes that a minimizing function exists under the additional hypothesis H-4. As a consequence to this theorem we obtain a formula for the critical parameter $\lambda_{\rm cr}$, when it exists.

THEOREM. Suppose that f satisfies the hypotheses H-0, 1, 2, 3b. A function u(x, c) minimizes J(u) on the subset M_c for c > 0 if and only if it is the minimal positive solution of the problem

$$L(u) = \lambda(c) f(x, u), \qquad x \in D,$$

 $B(u) = 0, \qquad x \in \partial D,$

where

$$g(c) = \min_{u \in M_c} J(u),$$

and

$$\lambda(c) = g(c) \Big/ \int_D u(x, c) f(x, u(x, c)) \, dx.$$

Proof. We shall consider the proof in two stages.

(1). Suppose that the function u(x, c) minimizes J(u). Then the function $u(x, c) \in M_o$ gives a stationary value of the functional J (and hence of K) on the set M_o . We consider the varied functions $u + \epsilon v$, ϵ real and $v \in M$. In general $u + \epsilon v \notin M_o$. To ensure that the varied functions are admissible, that is in M_o , we would introduce, as in Gelfand and Fomin [8, pp. 42-45], an extra term so that the varied functions are of the form $u + \epsilon v + \epsilon_1 v_1$, where ϵ_1 is real and $v_1 \in M$. We then determine ϵ_1 in terms of ϵ so that this function is admissible in a neighborhood of $\epsilon = \epsilon_1 = 0$. This enables us to simply consider by redefining v, the varied functions $u + \epsilon v$, for all $v \in M$. We find that

$$K(u + \epsilon v) = K(u) + 2\epsilon K_1(u, v) + O(\epsilon^2),$$

where, since $\epsilon = 0$ gives a stationary value of K,

$$K_1(u,v) \equiv \int_D v(L(u) - \lambda f(x,u)) \, dx + \int_{\partial D_2} \frac{vB(u)}{\beta(x)} \, ds(x) = 0. \quad (13)$$

This is true for all $v \in M$ and so u satisfies Eq. (1) with Eq. (2) as the natural boundary condition on ∂D_2 . The restriction of the space M to include only functions which vanish on ∂D_1 ensures that Eq. (2) is satisfied everywhere on ∂D .

For the minimizing function u = u(x, c) we can write, from Eq. (1)

$$g(c) = J(u) = \int_D uL(u) \, dx = \lambda \int_D uf(x, u) \, dx. \tag{14}$$

Equation (14) determines λ as a function of c in accordance with the statement in the theorem.

The minimizing function will be nonnegative in D. We prove this by contradiction. Suppose that the minimizing function u has some negative values in D. Then there exists at least one negative g.l.b. for u. If such a value occurs at an internal point P of D, we can clearly surround P by a region $G \subseteq D$ for which u is negative and constant on the boundary ∂G of G, and the value of u within the region G is no greater than its value on ∂G . On ∂G ,

$$\frac{\partial u}{\partial \nu} = \sum_{i,j=1}^m n_i(x) a_{ij}(x) \frac{\partial u}{\partial x_j} = |\operatorname{grad} u| \sum_{i,j=1}^m n_i(x) a_{ij}(x) n_j(x) \ge 0.$$

However,

$$\int_G (L(u) - a_0 u) \, dx = - \int_{\partial G} \frac{\partial u}{\partial \nu} \, ds(x),$$

S0

$$\lambda \int_G f(x, u) \, dx = \int_G a_0 u \, dx - \int_{\partial G} \frac{\partial u}{\partial \nu} \, ds(x).$$

Since

$$\int_G f(x, u) \, dx > 0, \qquad \int_G a_0 u \, dx \leqslant 0, \qquad \text{and} \qquad \int_{\partial G} \frac{\partial u}{\partial \nu} \, ds(x) \ge 0,$$

 λ cannot be positive. A similar argument will show that if u has a negative g.l.b. on ∂D_2 , λ must also be negative (or zero). But if λ is negative, corresponding arguments show that u has no positive l.u.b. in D or on ∂D_2 , therefore u has no positive values. If this is the case,

$$F(x, u) = 2 \int_0^u f(x, t) dt \leq 0$$
, and $\int_D F(x, u) dx \leq 0$.

Hence, $u \notin M_c$ for c > 0. Therefore, with the possible exception of c = 0, u is not an admissible function. When c = 0, the only solution is $u \equiv 0$. Thus, any minimizing functions are never negative.

For any other solution (that is, other than the minimal solution) u_1 of Eqs. (1) and (2) we have $u_1 \ge u$ on D and so by the lemma $J(u_1) > J(u)$. Hence the global minimum of J on the set M_c gives the minimal solution of Eqs. (1) and (2).

(2). Conversely, for the second part of the theorem, the parameter c has to be introduced in a more artificial way. Suppose that there exists $u \in M$ which is the minimal positive solution of Eqs. (1) and (2). The parameter c is *defined* by the condition

$$c = c(\lambda) = \int_D F(x, u) dx.$$

Since u is a strictly increasing function of λ (as in [2]) and F is a strictly increasing function of u, we may then consider the inverse function $\lambda = \lambda(c)$ to be determined. For the minimal solution u to exist we must have $0 \leq \lambda(c) \leq \lambda_{cr}$.

By considering the varied function $u + \epsilon v$, where $v \in M$ and ϵ is real (where, as before, we have introduced another term $\epsilon_1 v_1$, determined ϵ_1 so that the varied function is admissible, and then rewritten it as $u + \epsilon v$), we obtain an expansion for $K(u + \epsilon v)$ similar to that in Eq. (13), and the coefficient of ϵ^2 in the expansion is

$$K_2(u, v) \equiv J(v) - \lambda(c) \int_D f_u(x, u) v^2 dx.$$

As before, the coefficient of ϵ is zero by the assumption on u (see Eq. (13)) and the coefficient of ϵ^2 is nonnegative, since, by the result of Keller and Cohen [2],

$$\lambda(c) \leqslant \lambda_{\mathrm{cr}} \leqslant \mu_1(\lambda) \leqslant \Big[J(v) \Big/ \int_D f_u(x, u) v^2 dx \Big],$$

for all $v \in M$, and equality is achieved only if v is an eigenfunction of the linearized equation. Hence the minimal solution is a minimizing function of K on M (and hence of J on M_c).

For this function,

$$J(u) = \int_D uL(u) \, dx = \lambda(c) \int_D uf(x, u) \, dx,$$

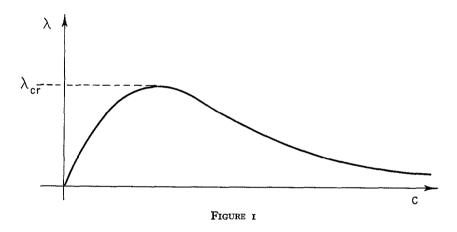
and the last expression is the quantity we have defined as g(c).

COROLLARY.

$$\lambda_{\mathrm{cr}} = \max_{c \ge 0} \lambda(c).$$

Proof. For each $\lambda \in [0, \lambda_{cr}]$ there exists a value of $c \ge 0$ such that, for this $\lambda, \lambda = \lambda(c)$. In particular, since $0 \le \lambda(c) \le \lambda_{cr}$, for all $c \ge 0$ we have the above formula for the critical parameter λ_{cr} .

Laetsch [9] has shown that the graph of λ against any norm || u || is parabolic near $\lambda_{\rm er}$, and so we know that the graph of $\lambda(c)$ against c is smooth near $\lambda_{\rm er}$. In Fig. 1 we have illustrated the expected type of behavior of $\lambda(c)$ against c. The part of the curve where $\lambda(c)$ is increasing with c corresponding to the minimal solution.



3. Illustrative Example

The procedure described in the previous section is very useful for obtaining estimates for λ_{cr} . As a first guess we choose a trial function

$$u(x) = ru_1(x) + su_2(x),$$
 (15)

where u_1 , $u_2 \in M$ and r, s are arbitrary real numbers. Then we minimize J(u) with respect to the parameters r and s subject to the constraint that $u \in M_c$. For these values of r and s we calculate the maximum value of the quotient $J(u)/\int_D uf(x, u) dx$ as c varies over the positive reals. This will give an approximate value for λ_{cr} .

To illustrate the procedure we take a simple example in one-dimension. Here we take the equations

$$u''(x) + \lambda(1 + 3u(x)^2) = 0, \qquad 0 < x < 1, \tag{16}$$

254

subject to the conditions u'(0) = 0, u(1) = 0, $u(x) \ge 0$. Hence, we have $f(x, u) \equiv f(u) = 1 + 3u^2$, $J(u) = \int_0^1 u'(x)^2 dx$,

$$M_{c} = \Big\{ u(x) : u(x) \in C[0, 1] \cap C^{1}(0, 1), u(1) = 0; 2 \int_{0}^{1} (u + u^{3}) dx = c \Big\}.$$

In accordance with Eqs. (15) and (16) we take

$$u(x) = r(1-x) + s(1-x^2).$$

Then, for this u, $J(u) = (r + s)^2 + (1/3)s^2 = (4/3)[s + (3/4)r]^2 + r^2/4$. If we regard one of these parameters fixed by the condition that $u \in M_o$, then we have one of four possibilities for a minimum with respect to the remaining parameter:

(i) s = 0, $J(u) = r^2$, u(x) = r(1 - x), where r is determined so that $u \in M_c$;

(ii) r = -s, $J(u) = (1/3)s^2$, $u(x) = s(x - x^2)$, where s is determined so that $u \in M_c$;

(iii) r = 0, $J(u) = (4/3)s^2$, $u(x) = s(1 - x^2)$, where s is determined so that $u \in M_c$;

(iv) s = (-3/4)r, $J(u) = (1/4)r^2$, $u(x) = r[(1/4) - x + (3/4)x^2]$ where r is determined so that $u \in M_o$.

Which of the four expressions gives the lowest value for J(u) depends on the value of c at a maximum of the quotient $\lambda(c) = J(u)/\int_0^1 (u + 3u^3) dx$. Corresponding to the four cases above we obtain:

(i) $\lambda(c) = 4r/(2+3r^2)$, where $r + (1/3)r^3 = c$;

(ii) $\lambda(c) = 140s/(70 + 9s^2)$, where $(1/3)s + (1/70)s^3 = c$;

(iii) $\lambda(c) = \frac{140s}{70 + 144s^2}$, where $\frac{4}{3}s + \frac{32}{35}s^3 = c$;

(iv)
$$\lambda(c) = -(5/26)r^{-1}$$
, where $-(13/30)r^3 = c$.

We can easily find the maximum value of these expressions for $\lambda(c)$ as c varies over the positive reals. The best estimate for λ_{er} will be given by the maximum value of the expressions (i)-(iv) above which gives rise to the smallest value for g(c) = J(u). This happen to be (iii) above, which suggests $\lambda_{er} \approx 0.697$. We obtain exactly the same estimate if we treat $u(x) = r(1 - x^2) + s(1 - x^4)$ in a similar way.

By considering the exact solution of Eq. (16), we see that λ can be determined in terms of u(0) = U by

$$(2\lambda)^{1/2} = \int_0^U \frac{dw}{(U+U^3-w-w^3)^{1/2}}.$$

WAKE AND RAYNER

The maximum value of the right hand side for positive U has been determined numerically as 1.172, which gives the maximum value of λ for a real solution as $\lambda_{cr} = 0.687$ to three significant figures. This is in good agreement with the result obtained by the method proposed in this paper, that is 0.697.

ACKNOWLEDGMENT

The support by Brasenose College, University of Oxford of one of the authors (G.C.W.) during the course of this work is gratefully acknowledged.

References

- 1. G. C. WAKE, An improved bound for the critical explosion condition for an exothermic reaction in an arbitrary shape, *Combustion and Flame* 17 (1971), 171-174.
- H. B. KELLER AND D. S. COHEN, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361-1376.
- S. I. HUDJAEOV, Boundary problems for certain quasilinear elliptic equations, Dokl. Akad. Nauk. SSSR, 154 (1964), 787-790; English translation, Soviet Math. Dokl. 5 (1964), 188-192.
- 4. H. B. KELLER AND J. P. KEENER, private communication.
- R. B. SIMPSON AND D. S. COHEN, Positive solutions of nonlinear elliptic eigenvalue problems, J. Math. Mech. 19 (1970), 895–910.
- 6. N. LEVINSON, Positive eigenfunctions for $\Delta u + \lambda f(u) = 0$, Arch. Rational Mech. Anal. 11 (1962), 258–272.
- 7. N. LEVINSON, Dirichlet problem for $\Delta u = f(P, u)$, J. Math. Mech. 12 (1963), 567-575.
- I. M. GELFAND AND S. V. FOMIN, "Calculus of Variations," Prentice-Hall, Englewood Cliffs, 1963.
- 9. T. W. LAETSCH, Eigenvalue problems for positive monotonic nonlinear operators, Ph. D. Thesis, California Institute of Technology, 1968.