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1. INTRODUCTION 

The fallowing boundary value problem arises in the study of nonlinear 
heat generation (in the steady-state): 

w = Jw, a x = (Xl ) x2 )..., Xm) E D, (1) 

B(u) FEE cx(x)tJ + p(x)(aup) = 0, XEDD, (2) 

where L is the uniformly elliptic, self-adjoint, second-order operator 

and D is the interior of a bounded region of R” with a smooth boundary 80. 
The coefficients ai = aji(x) are continuously differentiable, a,(x) > 0 is 
continuous, and for all unit vectors p = (p, , p, )..., pm), 

it, PM4 $3 > 0, x E D. 

In Eq. (2) alaY is the conormal derivative: 
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where n(x) = (n,(x), na(x),..., n,(x)) is the outer unit normal to aD at a point 
x on the surface. The functions CL(X) and /3( x are assumed to be nonnegative ) 
and piecewise continuous on aD. The boundary aD will be subdivided into 
two disjoint parts t3D, and aD, = aD - aD, , where CX(X) f 0, ,3(x) z 0 on 
aD, and p(x) # 0 on aD, . 

This paper will be concerned with estimates for the least upper bound A,, 
of the values of h for which the nonlinear eigenvalue problems (1) and (2) 
have real positive solutions. This parameter is the critical explosion parameter 
for the unsteady problem, that is, for X > A,, there does not exist a stable 
solution of the time-dependent equations (see Wake [l] and Keller and 
Cohen [2]). This p ro bl em has been widely discussed. Keller and Cohen [2] 
gave upper and lower bounds for h cI under various requirements on the 
monotonicity off(x, u), fU(x, U) with u. In particular they were able to show 
that if: 

H-O: f (x, u) is continuous and positive for x E D, u E R; 

H-l: f(~, 0) = f&) > 0, x E D; 

H-2: fu(x, u) > 0 and is continuous for x E D and u E R; 

and A,, exists; then problems (1) and (2) h ave (positive) solutions for all h in 
0 < A < A,, . If we denote by u(x) the minimal solution of (1) and (2) (that 
is, U(X) > u(x) on D for any solution of (1) and (2)), Keller and Cohen 
showed that, for each X E [0, A,,], 

where pl(h) is the principal eigenvalue of the linearized system 

L(4 = Pfd% Wh XED, 

B(v) = 0, XEaD. 

(6) 

(7) 

If, in addition, f were concave with u, that is 

H-3a: &(x, UJ <fJx, u2) on D if ur > u2 ; 

then they were able to show that the problem has no solution for A = A,, , but 
that 

(8) 

However, if f were convex with u, that is, 

H-36: fu(x, ul) > fu(x, UJ on D if zc, > ua ; 

they were unable to show in [2] that Eq. (8) held for this case. 
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There is some evidence that this result is true for convex f and indeed 
Keller and Cohen conjecture that this is so. Also Hudjaeov [3] has shown 
that Eq. (8) is valid in the special case when f is separable, i.e., when 

f (XI 4 = 44 44, (91 

where h’(u) is an increasing function of U, h(O) > 0 and U(X) > 0. Recently 
Keller and Keener [4] have been able to show that Eq. (8) does hold for 
convex f satisfying 

H-4: 

and that positive solutions exist for this case. 
The present paper will propose a variational method of determining & 

under the hypotheses H-O, 1,2,3b (convex f ), which will be a nonlinear 
analog of the well known procedures for linear eigenvalue problems. This 
method provides a useful device in practice as a “rough” approximation to 
the solution seems to lead to a “good” approximation to the critical parameter 
x cr . 

Variational methods have been used by other authors, notably Simpson and 
Cohen [5] and Levinson [6,7], for equations like (I) but not in order to ob- 
tain estimates for h,, . Levinson used the variational technique to establish the 
existence of solutions, whereas we shall simply find a necessary and sufficient 
condition for the existence of solutions, not proving the latter result. (la 
addition the results of [4] ensure the existence of solutions for some special 
cases.) 

The next section will give the main results of the paper and the last section 
will give a specific example to ihustrate the application of the method. 

2. MAIN RESULTS 

As each nonlinear eigenvalue problem (1) and (2) has a nondiscrete 
spectrum, we are led to introduce a parameter c, which ensures that for 
some value of that parameter each value of the spectrum is achieved. In a 
manner similar to that for a variational method for a linear eigenvalue 
problem, we define a functional 

where the domain of J is the space of functions 

M = (U(X): U(X) = 0 on XI,, U(X) E C(D) f~ Cl(D)>, 
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and we have defined k(x) by 

We will consider stationary values of the functional Jon the domain M subject 
to the constraint (a normalizing condition) 

where 

s 
F(x, u(x)) dx = c > 0, 

D 
(11) 

F(x, u) = 2 s”f(x, t) dt. 
0 

For convenience we will denote this subset of functions by MC , that is, 

MC = /u(x) : u(x) E M, j-, F(x, u(x)) dx = cl, 

then the domain of J is MC . 
Finding the stationary value of J( v on MC can be considered as an isoperi- ) 

metric problem; if u(x) gives J(v) a stationary value on M. then there exists 
a Lagrange multiplier X such that the functional, 

K(v) = J(v) - h //lx, 44) dx, (12) 

has a stationary value for v = ZJ E M. Conversely if h and u(x) are such that 
K(v) has a stationary value on M, then for some c, J(v) has a stationary value 
for u E M, since M. _C M, 

Before we proceed to the main result, we give a necessary preliminary 
result. 

LEMMA. If u, and u2 are distinct positive so&ions of Eqs. (1) and (2) when 
f is convex, and if u, > u2 on D, then J(ul) > J(u& with equality onZy if 
24, = 24.2 . 

Proof. By a well known result and Eqs. (1) and (2) 

J(u) = j-, W.4 dx = X j-, #lx, 4 dx, 

and so we have 

JO4 - Jbz> = X 1, hf (x, 4 - uzf lx, 4) dx. 
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Since, for distinct positive solutions we must have that 0 < h < A, and f is 
increasing with u on D, we conclude that the right side of the above equation 
is positive if u1 + u2 and zero otherwise. 

The following theorem gives the main result of this section. This result 
equates the existence of a minimizing function with the existence of the 
minimal solution to Eqs. (1) and (2). Since the latter result is known in some 
cases (Ref. [4]), this theorem establishes that a miniiizing function exists 
under the additional hypothesis H-4. As a consequence to this theorem we 
obtain a formula for the critical parameter A,, , when it exists. 

THEOREM. Suppose that f sati@es the hypotheses H-O, 1,2, 3b. A fumtion 

u(x, c) minimizes J(u) on the subset MC for c > 0 if and ody if it is the minimal 
positive solution of the problem 

w = x4 f (x, u), XED, 

B(u) = 0, XE3D, 

where 

and 

Proof. We shall consider the proof in two stages. 

(1). Suppose that the function U(X, c) minimizes J(U). Then the function 
U(X, c) e Xl, gives a stationary value of the functional J (and hence of K) on 
the set M, . We consider the varied functions u + EV, E real and v EM. 
In general u + EV # il& . To ensure that the varied functions are admissible, 
that is in MC, we would introduce, as in Gelfand and Fomin 18, pp. 42-&Q 
an extra term so that the varied functions are of the form u + EV + E,U, , 
where e1 is real and vi s &I. We then determine or in terms of E so that this 
function is admissible in a neighborhood of E = E% = 0. This enables us to 
simply consider by redefining v, the varied functions u + EV, for all v EM. 
We find that 

where, since E = 0 gives a stationary value of K, 

IQ, v) = j, V(L(U) - Af (x, u>) dx + jaD2 $$$ W4 = 0. (13) 



252 WAKEi AND RAYNER 

This is true for all v  E M and so u satisfies Eq. (1) with Eq. (2) as the natural 
boundary condition on aD, . The restriction of the space M to include only 
functions which vanish on aD, ensures that Eq. (2) is satisfied everywhere 
on 80. 

For the minimizing function u = U(X, c) we can write, from Eq. (1) 

g(c) = J(u) = jD d(u) dx = X 1, u.(x, u) dx. (14) 

Equation (14) determines h as a function of c in accordance with the statement 
in the theorem. 

The minimizing function will be nonnegative in D. We prove this by 
contradiction. Suppose that the minimizing function u has some negative 
values in D. Then there exists at least one negative g.1.b. for U. If  such a 
value occurs at an internal point P of D, we can clearly surround P by a 

region G _C D for which u is negative and constant on the boundary aG of G, 
and the value of u within the region G is no greater than its value on aG. 
On aG, 

However, 

so 

j-,(W - ~04 dx = - J‘i, t Wx), 

Since 

X /,f(x, u) dx = 1 
G 

a,u dx - I,, E ds(x). 

s 
Gf(~, u) dx > 0, s a,u dx < 0, and 

I’ 
!f! ds(x) > 0, 

G aG av 

X cannot be positive. A similar argument will show that if u has a negative 
g.1.b. on aD, , h must also be negative (or zero). But if ,X is negative, cor- 
responding arguments show that u has no positive 1.u.b. in D or on aD, , 
therefore u has no positive values. If  this is the case, 

F(x, u) = 2 lUf(x, t) dt < 0, and j. F(x, u) dx < 0. 
0 D 
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Hence, u 4 IV, for c > 0. Therefore, with the possible exception of c = 0, 
u is not an admissible function. When c = 0, the only solution is u = 0. 
Thus, any minimizing functions are never negative. 

For any other solution (that is, other than the minimal solution) ur of 
Eqs. (1) and (2) we have uI >, u on D and so by the lemma J(uJ > J(U), 
Hence the global minimum of J on the set RI, gives the minimal solution 
of Eqs. (1) and (2). 

(2). Conversely, for the second part of the theorem, the parameter c 
has to be introduced in a more artificial way. Suppose that there exists u G ,%I 
which is the minimal positive solution of Eqs. (1) and (2). The parameter c 
is defined by the condition 

c = c(X) = 
s 

F(x, u) dx. 
D 

Since u is a strictly increasing function of X (as in [2]) and F is a strictly 
increasing function of,u, we may then consider the inverse function h = X(c) 
to be determined. For the minimal solution u to exist we must have 
0 < X(c) G &I- * 

By considering the varied function u + EV, where v f M and E is real 
(where, as before. we have introduced another term cIv, , determined or so 
that the varied function is admissible, and then rewritten it as u + EV), we 
obtain an expansion for K(u + EV) similar to that in Eq. (13), and the 
coefficient of ~2 in the expansion is 

As before, the coefficient of E is zero by the assumption on u (see Eq. (13)) 
and the coefficient of e2 is nonnegative, since, by the result of Keller and 
Cohen [2], 

for all v EM, and equality is achieved only if v is an eigenfunction of the 
linearized equation. Hence the minimal solution is a minimizing function of 
K on M (and hence of J on M,). 

For this function, 

and the last expression is the quantity we have defined as g(c). 
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Proof. For each h E [0, A,,] there exists a value of c > 0 such that, for 
this A, X = X(c). In particular, since 0 < h(c) < A,, , for all c 2 0 we have the 
above formula for the critical parameter A,, . 

Laetsch [9] has shown that the graph of h against any norm ]I u I] is parabolic 
near A,, , and so we know that the graph of X(c) against c is smooth near A, . 
In Fig. 1 we have illustrated the expected type of behavior of h(c) against c. 
The part of the curve where h(c) is increasing with c corresponding to the 
minimal solution. 

x 

A,,-- 

C 
FIGURE I 

3. ILLUSTRATIVEEXAMPLE 

The procedure described in the previous section is very useful for obtaining 
estimates for A,, . As a first guess we choose a trial function 

u(x) = T(4 + %2(4, (15) 

where ur , u2 E M and I, s are arbitrary real numbers. Then we minimize 
J(U) with respect to the parameters Y and s subject to the constraint that 
z1 E MC . For these values of Y and s we calculate the maximum value of the 
quotient J(z4)/JD uf (x, 24) d x as c varies over the positive reals. This will give 
an approximate value for A, . 

To illustrate the procedure we take a simple example in one-dimension. 
Here we take the equations 

u”(x) + A(1 + 3U(X)2) = 0, O<x<l, (16) 



subject to the conditions Al’ = 0, ~(1) = 0, U(S) 2 0. Deuce, we have 
f(x, u) Es f(u) = 1 + 3u2, J(u) == J; zJ(X)s dx, 

fn accordance with Eqs. (IS) and (161 we take 

Then, for this as, J($ = (r + s)a + (l/3)@ = (4/3)&s f (3/4)r3a + $14. Ef we 
regard one of these parameters fixed by the condition that z E .Z$& , then we 
have one of four possibilities for a minimum with respect to the remaining 
parameter: 

p;l E $ s = 0, J(@ = 9, u(x) == rfl - x>, where r is damped au that 
* 

j, ~~~i~~~~~~~t~(~~~~ (?4K f44 =+W41- x-i-- (3~4~~~~ wh-e p 
C' 

Which of the four expressions gives the lowest value for J(B) depends on the 
value of c at a maximum of the quotient h(c) = J(u)/Js (u + 3~8): dx. Car- 
responding to the four cases above we obtain: 

(i) h(c) = 4$2 + 3~7, where r + (l/3}+ = c; 

(ii> A(c) = 140~~(70 -+ 9s2>, where (fj3)s + (~~70~~3 = c; 

(iii) X(e) = ~~~~(70 -+ 14&s). where (413)s + (32~3~ = c; 

(iv) X(c) = -(5/26)+, where -(13~30~~3 = C. 

We can easily find the maximum value of the&e expressions for A(C) as c 
varies over the positive reals. The best estimate for Xcr will be given by the 
maximum value of the expressions @(iv) above which gives rise ta the 
smallest value for g(c) = J(S). This happen to be (iii) above, which suggests 
A, GV 0.697. We obtain exactly the same estimate if we treat u(x) ==: 
$1 - x2) + s( 1 - x”;> in a simikr way- 

By considering the exact solution of Eq. (161, we see that h can be deter- 
mined in terms of u(O) = U by 
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The maximum value of the right hand side for positive U has been determined 
numerically as 1.172, which gives the maximum value of h for a real solution 
as A, = 0.687 to three significant figures. This is in good agreement with 
the result obtained by the method proposed in this paper, that is 0.697. 
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