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ABSTRACT 

Families of examples are presented of polynomials over a finite field or a residue 
class ring of the integers, which, on substitution, permute the n X n matrices over 
that field or residue class ring. 

INTRODUCTION 

Let R denote a finite commutative ring with identity, and let R,,, 
denote the ring of n x n matrices over R. A polynomial f E R[r] defines, 
via substitution, a function f: R, Xn + R, Xn. The polynomial f(x) is said to 
represent the function f, and any function f from R, Xn to R, Xn which can 
be represented by some polynomial f(x) over R is called a (scalar) poly- 
nomial function on R,,,. If such a polynomial function f is bijective, then f 

is called a permutation polynomial function, and any polynomial f(x) which 
represents f is called a permutation polynomial (abbreviated p.p.) of R,,,. 

In the case that R = IF,, the finite field of 9 elements, scalar polynomial 
functions and p.p. of R,,, have been studied by Brawley [l] and Brawley, 
Carlitz, and Levine [3]. If R is an arbitrary finite commutative ring with 
identity, Brawley [2] gives a criterion for f E R[x] to be a p.p. of R,,,. The 

special case n = 1 has been treated extensively in the literature; for R = IF, 
the book by Lidl and Niederreiter [lo] gives a summary of several results on 
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p.p. of F,. If R = Z, see e.g. Lausch, Miiller, Nijbauer [7] and Niibauer [16] 
for some examples. Brawley and Schnibben [4] give necessary and sufficient 
conditions for a polynomial over an arbitrary field F to be a permutation of 
the n X n matrices over F. They also consider the case of algebraic exten- 
sions of F, in this context. 

In this paper we give specific examples of classes of polynomials which 
are p.p. of Rnxnr first for R = IF, and then for R = Z,. We also settle a 
problem on p.p. posed by Carlitz [S]. We summarize some of the results in 
[3]. Let F denote the finite field IF, of order q, char F = p. If n > 1, not every 
function from F,,,, to F,,, can be represented by a polynomial f(x) E F [ x], 
but every scalar polynomial function from F,, x n to F,, x n can be represented 
by a unique polynomial f E F [ x] of degree less than 6 = qn + q”- ’ 
+ . . . + q. Let n > 0 be an integer, and let L,(x) = n;,,(xq’-- 1~). Then 
L, is the manic polynomial of least degree 6 such that L,(A) = 0 for all 

A E F”,“. The number of scalar polynomial functions of F, x n is 9 ‘. Brawley 
[l] determines the number of p.p. functions of F,,,, and in doing so gives a 
procedure for constructing every p.p. on F,,,,. The main result of [3] is 

THEOREM 1 (Brawley, Carlitz, Levine). The polynomial f E Eq[ x] is a 

P.P. of Km, if and only if 

(i) f(x) is a p.p. of F,,F,2 ,..., IF,” and 
(ii) f’(x) does not vanish on IF,,IF,2,. . . , lFq~n,~~, where [n/2] is the 

greatest integer in n/2. 

In [3] the following examples of p.p. of F,,,, are given: For n = 2, 4 = 2 
there are four p.p. of Fzxz, andtheyarex,x+1,r4+r2+r,x4+x2+x+1. 
For n > 1 and F = IF, the polynomials of the form 

f(x) =a++ a,xq+ *** +a,_$y a, E F, 

are p.p. of F,,, ifa,#O,m=lcm{1,2 ,..., n } , and the circulant determinant 

a,_, urn-2 *** a, a, 
urn-2 urn-3 **. a, a,_, 
. . . . . . . . . . . . . . . . . . . . . . * . 
a0 a,_, *** a2 a, 

is nonzero. 
We next give further examples of p.p. of Fnxn. Again let F = F,, 

char F = p. 
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EXAMPLE 2. We determine ah normalized p.p. of F,,,, of degree < 5: A 
p.p. f E F [ x] is normalized if it is manic, f(0) = 0, and when the degree m 
of f is not divisible by p, the coefficient of x”-’ is 0. Dickson determined a 
list of all normalized p.p. of F of degree < 5; see [lo, p. 3521. From this list 
we see by applying Theorem 1 that the following polynomials are p.p. of 
F n Xn, and these are the only normalized p.p. of F,,,, of degree Q 5 and 
n >, 2: 

f(x) =x for any q and n; 

f(x) =x4 + a,x2+ a,x, 

where the only root of f(x) in IF, is 0, n = 2, q E 0 (mod 59, ~2 f 0; 

f(x) =x5 + ax, 

where a # 0 is not a square in IF,, n < 3, and q = 0 (mod 5). 

EXAMPLE 3. First let F = IF,, p an odd prime. We consider hk(x) = 1+ 
x+ *.. + xk and classify those h, which are p.p. of F2 x2. Matthews [12] 
showed that h, is a p.p. of IF,, q a prime or a square of a prime, if and only if 
k = 1 mod p(q - 1). Therefore for n = 2, h, satisfies part (i) of Theorem 1 if 
and only if 

k=lmodp(p-1) and k=1modp(P2-1). 

We show that such h, also satisfy part (ii). Note that for x # 1, hk(x) = 

(X k+ ’ - 1)/(x - 1). If h, is a p.p. of IF,, then h;(u) = 1 for ah a # 1 in IF,. 
For x = 1 we have h;(l) = ik(k + l), which is 1 if h, is a p.p. of IF,. In 
summary, hk(X) is a p.p. of F,,, if and only if k = 1 mod p( p2 - 1). 

Next we give examples of p.p. hk(x) of F,,x, for F = IF,, q an odd prime 
power, and n > 1. Matthews [12] proved that hk(x) is a p.p. of Fq if k = 1 
mod p(q - l), where p is char IF,. Therefore hk(X) satisfies part (i) of 
Theorem 1 if 

k-lmodpi~Zmn{qi-l}. 
. . (1) 

To verify part (ii) of Theorem 1 for the p.p. hk(x) we note that h;(x) = 
t&k+1 _ (k + 1)~~ +1)/(x - 1)2 f or x # 1. Then h;(u) # 0 for all k satisfy- 
ing (l), and a # 1 in IF,{. For x = 1 we have h;( 1) = ik( k + l), which also is 



184 N. S. JAMES AND R. LIDL 

nonzero over lF,i whenever k satisfies (1). Hence hk(r) is a p.p. of F,,,, if 
(1) is satisfied. In the case 9 = 2 one can verify directly that k has to satisfy 
the additional condition k = 1 (mod 4). 

THE CARLITZ POLYNOMIALS 

We next consider the interesting family of polynomials of the form 
r*+i + ax with m a divisor of 9 - 1. Carlitz [5] stated that, for 9 sufficiently 
large, permutation polynomials of IF, of the form x(‘J+~-‘)/~ + ax, 9 = 1 mod 
k, k >, 2, exist. Polynomials of the form x(9+1)/z + ax, 9 odd, have been 
studied in [5], [6], and more recently Niederreiter and Robinson [15] gave 
necessary and sufficient conditions for such binomials to be permutation 
polynomials of IF,. It can be verified that the family of polynomial functions 
of the form UX(~+‘)/~ + br is closed under composition; see [14], [15]. This 
property makes these polynomials particularly attractive for applications, 
since the inverse of a p.p. of IF, of this form is again of this form. 

There are few examples of families of p.p. which are closed under 
composition. In order to see if these polynomials can serve as examples of 

P-P. of F,,x,,’ we use Theorem 1 and have to verify first that the polynomials 
are p.p. of IF,,. For 9 = 1 mod 2 Carlitz [5, 61 showed that the polynomial 

f(x) = x t9+1V2 + ax, a = (c2 + 1)(c2 - 1)-l, c2 # f 1 or 0 in IF,, is a p.p. of 
IF, provided 9 2 7, but is not a permutation polynomial for any IF,,, r > 1. 
Therefore the polynomial f(x) cannot be a p.p. of F,,,, for n > 1. Carhtz [5] 
posed a similar question for 9 = 1 mod 3, and g(x) = X(Q+~)/~ + ax as an 
open problem. More generally, we can show 

THEOREM 4. The polym?nliul f(x) = X(q+k-l)‘k + ax, a E IF,, a # 0, is 
not a p.p. of any IF,,, r > 1, where 9 = 1 mod k, 9 = p”, k2 - 2k = up + v 
fmintegersuundvwithO~v~p-k. 

Proof. For f(x) to be a p.p. of IF,,, Hermite’s criterion (see [lo, p. 3491) 
requires that for each integer t with 1~ t < 9’ - 2 and t f 0 mod p, the 
reduction of f(~)~ mod x9’- x have degree < 9’ - 2. We note that 

If t = k( qr- ’ - l), then after reduction the only term with exponent 9’ - 1 
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of x is the one where 

i = k (4 + k - l&-‘-l) - (4-l) 
q-1 

Let n = no + nip + nap2 + . . . and s = sa + s,p + s2p2 + . . . for 0 < nj < 
p, 0 < si < p. Then by Lucas’s theorem 

We have 

fOrnod p if andonlyif nj> sj. 

Now 

=(k-1)~““-“+(p-1)~““-“-‘+ . . . +(P-l)p+(p-k). 

Also 

i=k(k-1)q’-2+k(k-l)q’-3+ ... +k(k-l)q+k(k-1)-k. 

Since t > i, the leading digit of t must be greater than or equal to the 
corresponding digit of i. All other digits of t, with the exception of the p” 
digit, are p - 1 and hence greater than or equal to the corresponding digit of 
i. The p” digit of t is p - k, which is greater than or equal to the p” digit of 
i = tv, where k2 - 2k = up + v. Therefore 

0 t fOmodp 
i 

and hence deg f( x)~ = qr - 1. So f(x) cannot be a p.p. of IF,,. This always 
holds in the case that p >, k2 - k, since v < k2 - 2k. n 

As a special case we consider k = 3, r = 2. 
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COROLLARY 5*. The polynomial f(x) = x (4+2)‘3+ ax, a ZO, over IF,, 
9 = p” = 1 mod 3, p > 5, is not a permutation polynomial of F,z. 

Proof. According to the proof of Theorem 2 we evaluate 

(f) = ( 3(9;1)) = (39-3)(3;;24)(39-5) fOrnod p 

for p = char IF,. n 

One can also verify that for 9 = pe = 1 (mod 4), p = 7 or p > 11, the 
polynomial f ( x ) = x (q+3V4 + ax, a # 0, over lF, is not a permutation poly- 
nomial of F,z. This is the special case k = 4 of Theorem 4. 

We note that Niibauer [16] proved that the polynomials of the form 

f(x) = x (P+ ‘)I2 + ax are p.p. of h/( p”) for all integers e > 1 and primes 
p > 7 if a = (c + l)( c - 1) - ‘, c a quadratic residue mod p and c incongruent 
to 1, - 1, - 3, - 3-l mod p. If p = 1 mod 3 is sufficiently large, then one 
can always choose an a such that x(P+~)‘~ + ax is a p.p. of H/(pe), e >, 1. 

The following result of Niederreiter and Robinson is relevant to Theorem 
4. We use the notation of Theorem 4 and let m = (9 + k - 1)/k and 9 3 

1 mod k. 

THEOREM 6 (Niederreiter and Robinson [15, Theorem 91). If m 2 2 is 
not a power of the characteristic of IF, and 9 > (m2 - 4m + 6)2, then 
xm + ax E F,[x] i.s not a p.p. of F, for any a # 0. 

We see from this result that xm+axEF,[x] with a#0 is not a p.p. of 
the extension field IF,, of F, if 9’ >, (m2 - 4m + 6)2. 

THE DICKSON POLYNOMIALS g,(x, a) 

The Dickson polynomial g,(x, a) of degree k over IF, is defined by 

[k/21 k 

gk(x,a> = C ~ 
i=O k-i 

where a is an element in F,. If u is an element of an extension of Fq and 

*This has been shown independently by Daqing Wan for arbitrary prime p. 
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u+a/u=r,thenwehave 

(2) 

by using Waring’s formula; see [lo]. It can be shown that the polynomials 
gk( x, a) are closed under composition if and only if a = 1, - 1, or 0. If a = 0 
then g,(x, a) = xk. If a = 1, then the Dickson polynomials g,(x, 1) are 
closely related to the classical Chebyshev polynomials of the first kind, Tk( x), 
since gk( x, 1) = 2Tk( x/2). In recent years considerable attention has been 
given to the theory and applications of Dickson polynomials gk( r, a); for 
example, see [7], [8], [lo], [ll], [13], [17]. B rawley and Schnibben [4] studied 
Dickson polynomials in the wider context of establishing which Dickson 
polynomials give permutations on n x n matrices over arbitrary algebraic 
extensions of F, (finite or infinite). We specialize their more general result for 
our purposes and state 

THEOREM 7 (Brawley and Schnibben). Let a be a rwnzmo element of 
IF,; let n > 1 be an integer and F = IF,. Then the Dickson polynomial g,(x, a) 
is a p.p. of F,,, if and only if 

Brawley [2] extended the investigations of permutations of the n x n 
matrices over IF, to permutations of the n x n matrices over a finite 
commutative ring R with identity. Each such R is a direct sum R = L, 
+ * . . + L, of local rings Li. A local ring L is a finite commutative ring with 
identity which has a unique ideal M. Let the nilpotency be at least 2, and let 
IF, be the residue field. A polynomial f(x) E R[ x] is a permutation of R,,, 
if and only if each A( X) is a permutation of ( Li) n Xn where A( X) E L, [ x] and 

f(x) = f1(x)+ *. . + A(x). The main result of [2] says that f(r) E L[x] is a 
P-P* of Lnxn if and only if 

j(r) is a p.p. of IF,,, i = 1,2 ,...,n; (4.i) 

F(X) = 0 has no roots in IF,, , i=1,2 12. ,.**> (4.ii) 

Here f(x) E L[r] maps to f(x) under the natural homomorphism L + IF,. In 
the special case R = Z m we can show that some Dickson polynomials over R 
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are p.p. of R,,,. We note that if m = ~7’ . * * p,“l is the prime factor 
decomposition of m, then 

If e > 1, then the maximal ideal m of Z pe is (p) and Z Pa /( p) = IF,. From 
Theorem 7 we know that g,(x, a), considered as a polynomial over F,, 
satisfies the conditions (4) if and only if the condition (3) holds with q a 
prime. Thus we have a set of new examples of p.p. on matrices over Z,. 

THEOREM 8. The LX&m polynomial g,(x, a) E Z,[x], a # 0, is a 

P.P. of&x. for R = h, if and only if (3) holds for each prime q which 
divides m. 

THE DICKSON POLYNOMIALS fk( x, a) 

The polynomials g,(x, a) of the previous section are also referred to as 
Dickson polynomials of the first kind. In this final section we give some 
examples of permutations of F,,x, induced by Dickson polynomials of the 
second kind. We also state an open problem for those polynomials. 

The Dickson polynomials of the second kind over F, are denoted by 
fk(x, a) and defined as 

fk(~,a)='~(k~i)(-a)'~k-2'. 
i=O 

For u # + 1 and x = u + a/u we can define fk(x, a) by the functional 
equation 

h(x,a) = 
uk+l - (a/u)“+’ 

u-a/u 

and 

fk(2G,a) = (k +1)(h)“, fk(-2&,a)=(-l)k(k+I)(6)k. 

The polynomials fk(x, 1) are closely related with the classical Chebyshev 
polynomials of the second kind. We note that fk( ;1c, a) satisfies the recurrence 
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relation 

fk(x,a) =xf,-,(x,u) -~f~_~(x,a) with &(~,a) =1 ad =x. 

Matthews [ 121 showed that the polynomial fk(x, 1) is a p.p. of IF,, 9 odd, 
if k satisfies the system of congruences 

k+1=_+2mod p, 

k+1=+2modi(q-l), (5) 

k+1-=+2mod+(q+l). 

See also Lidl [9]. 
In extensive computer experiments we established the existence of several 

examples of polynomials fk which give permutations of n x n matrices over 
IF, for n = 2 and n = 3. We list a few numerical values. First we note that 
f,(x, a) = x, so for k = 1 we obtain the identity map of F,,x,. Let a = 1, and 
let fk( r, 1) be abbreviated by fk. 

EXAMPLE 9 (Dickson permutations fk). 

(i) Let p = 3 and n = 2. Then f2i is a p.p. of F,,, for F = IF,. k = 21 is 
the smallest possible k > 1 for which fk is a p.p. of F,,,. This can be verified 
by using Theorem 1 in conjunction with (5). 

(ii) Let p = 5 and n = 2. Then f4i7 is a p.p. of F,,, for F = IF,. Here 
k = 417 is not the smallest possible k > 1 for which fk is a p.p. of F,,,. We 
can use (5) and Theorem 1 to verify that f&, is a p.p. Computer experiments 
showed that fs7 is a p.p. of Fzxz, but k = 57 does not satisfy the conditions 

(5). 
(iii) Let p = 3 and n = 3. Then f3s1 is a p.p. of Fsx3, as can be verified 

by applying Theorem 1 and (5). Here k = 361 is not the smallest possible 
k > 1 with this property. We found experimentally that fiT7 is a p.p. of Fsx3, 
but k = 177 does not satisfy (5). 

From these examples it is clear that some fk are p.p. of F,,,,. It is an 
open problem to classify all of them. In the first instance one would need 
necessary and sufficient conditions for fk(x, a) to be a p.p. of ff,. In the case 
of prime fields computer experiments suggest the following. 

CONJECTURE. The conditions (5) are necessary and sufficient for fk to 
be a p.p. of [F,, p an odd prime. 



190 N. S. JAMES AND R. LIDL 

REFERENCES 

1 

2 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

J. V. Brawley, The number of polynomial functions which permute the matrices 
over a finite field, J. Combin. Theory 21:147-154 (1976). 
J. Brawley, Polynomials over a ring which permute the matrices over that ring, J. 
Algebra 38:93-99 (1976). 

J. V. Brawley, L. Carhtz, and J. Levine, Scalar polynomial functions on the n X n 
matrices over a finite field, Linear Algebra Appl. 10:199-217 (1975). 
J. Brawley and G. E. Schnibben, Polynomials which permute the matrices over a 
field, Linear Algebra Appl., 86:145-X9 (1987). 
L. Carlitz, Some theorems on permutation polynomials, BUZZ. Amer. Math. Sot. 
68:120-122 (1962). 
L. Carlitz, Permutations in finite fields, Actu Sci. Math. (Szeged) 24:196-203 
(1963). 
H. Lausch, W. B. MiiIler, and W. Nijbauer, ijber die Struktur einer durch 
Dicksonpolynome dargestehten Permutationsgnrppe des Restklassenringes 
modulo n, J. Reine Angew. Math. 261:88-99 (1973). 
H. Lausch and W. Nobauer, Algebra of Polynomials, North Holland, Amster- 
dam, 1973. 
R. Lidl, On cryptosystems based on polynomials and finite fields, in Aduunces in 
Cryptology (T. Beth, N. Cot, and I. Ingemarsson, Eds.), Lecture Notes in 
Comput. Sci., vol. 209, Springer, Berlin, 1985, pp. 10-15. 
R. LidI and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its 
Applications, Vol. 20. Addison-Wesley, Reading, Mass., 1983. 
R. LidI and W. B. MiiIler, Permutation polynomials in RSA-cryptosystems, in 
Advances in Cryptology, Plenum, New York, 1984, pp. 293-301. 
R. W. Matthews, Permutation Polynomials in One and Several Variables, Ph.D. 
Thesis, Univ. of Tasmania, Hobart, 1982. 
W. B. MiiIIer and W. Nobauer, Some remarks on public key cryptosystems, 
Studiu Sci. Math. Hungur. 16:71-76 (1981). 
G. L. Mullen and H. Niederreiter, The structure of a group of permutation 
polynomials, J. Austrul. Math. Sot. Ser. A 38:164-170 (1985). 
H. Niederreiter and K. H. Robinson, Complete mappings of finite fields, J. 
Austml. Math. Sot. Ser. A 33:197-212 (1982). 
W. Nobauer, ijber Permutationspolynome und Permutationsfunktionen fiir 
Primzahlpotenzen, Monutsh. Math. 69X30-238 (1965). 
R. Niibauer, iiber die Fixpunkte von durch Dicksonpolynome dargestehten 
Permutationen, Actu Arith. 45:91-99 (1985). 

Received 9 December 1986; revised 22 December 1986 


