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ABSTRACT 

We define a function using permanents which generalizes the symmetric function 

means and show that it is monotonic. The function is conjectured to be superadditive. 
A special case of the conjecture is proved. 

We say that a vector is positive if each component is a positive number. 
The notation x > y for vectors x, y means that xi 2 yi for all i. The 
transpose of x is denoted by x ‘. 

Let x = (x1,. . , x,)’ be a positive vector. We denote by e,, “(x> the rth 
elementary symmetric function in x r, . . . , x,. Thus 

er,n( x) = C xi, -*- xi,. 
il< ‘.’ <i, 

We set e,,,(x) = 1. 
Several inequalities are available in the literature for ratios of elementary 

symmetric functions [4-6, lo]. Let 

M,,.(q = erAx) 
er-l,.(x) ’ 

r= 1,2 ,..., n. 

LINEAR ALGEBRA AND ITS APPLlCATIONS 182: 101-108 (1993) 101 

0 Elsevier Science Publishing Co., Inc., 1993 
655 Avenue of the Americas, New York, NY 10910 0024-3795/93/$6.00 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82024152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


102 

The expression 
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n 

T,,nw = ( 1 r; l W,.(x) 
( ) r 

is called a symmetric function mean or a Marcus-Lopes mean. For conve- 
nience we will work with M, ,(x) instead of its normalized version given 
above. 

A well-known result of Marcus and Lopes ([5]; see also [4, 101) asserts that 
for any two positive vectors x, y, 

K,.(x + Y> 2 W,.(x) + W,.(Y). (1) 

If A is an n X n matrix, then recall that the permanent of A is defined as 

where the summation is over all permutations of 1,2,. . . , n. We refer to 
[7-91 for a wealth of information on permanents. 

If a,, . . . , a, are vectors in R”, then we will denote the permanent of the 
n X n matrix (a,, . . , a,) by just [al,. . . , a,,]. 

Let e denote the vector of appropriate size of all ones. Observe that 

l e,,.(x) = 
r!(n - r)! 

[T ,.._., x_,e,.._.,e,]. 

r n-r 

This motivates the following definition. Let c, b,, b,, . . . be positive 
vectors in R” which will be held fLved throughout. For any positive vector x 
in R” and for 1 Q r < n, define 

1 x,..., x b,,.. 
d > bn-r] 

‘,,“(‘> = rx b 

Lx,..., 
d 1,“‘> b,,_,,c] ’ (2) 
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If c = bi = e for all i, then 

K-,.(x) = n _‘,+ ,%b). 

The definition (2) is not as artificial as it may appear at first sight. The 
idea of using permanents to construct generalizations of elementary symmet- 
ric functions has proved to be useful in other contexts. For examples we refer 
to the survey paper 131. 

The main result of this paper is that the function defined in (2) is 
nondecreasing in each component of x. We first prove the following. 

LEMMA. Let 1 < r < n, and let d be a positive vector in R”. Then 

I- x ,..., x,b,,.. 
1. c - .,b,-.,c][Ic,..J,x’b,,...,b,-~,d] 

r-1 r-1 

> (r - I)[:, . ._. , x, b,, . . , b,_,] [ x,. . . > x, b,, . . > b,-,, cd] 

7 r-2 

Proof. First let n = r. Then we must prove 

r x,...,x,c L . ,I[ T,..,, n-,d] > (r - l)[: ,..., *,I[:,.._., x;c,d]. 

r-1 r-1 

This is equivalent to 

r(r - l)!(r - 1 Y( C( 
i 

2 (r - l)r!(r - 2) 

The above inequality reduces to 

r r-2 

(3) 

which is obvious. 
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We now proceed by induction on n. Assume therefore that the result is 
true for n = m - 1, and consider the case n = m. 

Since both sides of (3) are linear in d, it is sufficient to prove (3) when d 
has only one nonzero coordinate. By symmetry, it is sufficient to consider 
d = (l,O, . . ..O)‘. 

We will use the following notation. If z is a vector, then z^ will denote the 
vector obtained by deleting the first coordinate of z. If (a,, . . , a,> is an 
n X n matrix, then [ai, . . , a,](i) will denote the permanent of the matrix 
obtained by deleting ai. Also, let bu denote the first component of bi, 

i = 1,2, . . . , n - r. 
Expanding the permanent along the first row, we get 

I- x, . . . , x, b,, . . - ’ 
.>b,,_.,c] 

+ ~~'b,i[_;,.._.,P,I;l,...,A,,,,E](r - 1 + i) 
i=l 

r- 1 

+q 3,. ._., i?,&,,. . .,&,_,,e (m). 
[ 1 (4) 

Similarly 
r- 1 

1 x . x b,, . . ., b,_, = r 2,. . . g b,, . . , I I 
,. 

_) A L](1) 
r 

+mf’b,i[G . . . c, P,L,,. ..J,,-,](r + i). _, 
i=l 

r 

(5) 

By the induction assumption, 

[ 

,. A 

r 2 x^ b,,. ., b,_,, - Z](r- 1 +i)[<,.._., 2 &,,...;b,_,] : 

r-1 a (r- l)[i,..,i,6,,...,~*_,j(:+i) 

I 
: 

x j, . ._. ) 2 b,,..., ~ 

r-2 

(6) 

The inequality (3) for d = (1, 0, . . , 0)’ follows by combining (41, (51, (6). n 
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We now have the following. 

THEOREM. Let 1 < r < n. Zf x, y are positive vectors such that x > y, 

then S, n 2 S,,.(y). 

Proof. The result will be proved if we show that the derivative of 
S,, ,(z> with respect to zi at .z > 0 is nonnegative, i = 1,2, . . , n. The 
derivative of S, .(z> with respect to z1 is 

1. _ A 1 

-2 
z,..., z, b, ,..., b,_,,c 

r-l 

times 

r z ,..., z,b,,.. 
I\ - J 

.,b,_.,c][_s,.._,z,b,,...,b,-.,e,] 

r-1 r-l 

-(r-l)[_z,.._.,z,b, ,..., b,_,][~,..~,z,bl,...,b,_.,c,el], 

7 r-2 
(7) 

where e, = (l,O, . . . ,O)‘. 

The expression in (7) is nonnegative for z > 0 by the lemma. Similarly, 
the derivative of S,,,(z) with respect to zi, i = 2,. , n, can be shown to be 
nonnegative at z >, 0, and the proof is complete. n 

In view of cl), we conjecture that for positive vectors x, y, 

Sr,n(X + Y> a sr,.w + LAY>~ (8) 

For r = 1, (8) is trivial. We now prove (8) for r = 2. Thus we must show 

ix + y> x + y, b,, . . , b,_,] 
[x + y,b,,...,b,_,,c] 

[x> x, b,, . . . > k-,1 [y, y> 4,. . . > k-21 

’ [x,b,,...,b,_,,c] + [y>bl,...>b,-,761. 
(9) 
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We first state the following results. 

6) Alexandroff’s inequality: For positive vectors x, y, 

[x,yJ, ,..., ~J22[~,~,~l >..., b,-2l[y,y~bl,...,b,-21. 

(ii) Let ui,...,~, be linearly independent vectors in R”, and let 
T = ((tij>> be the n x n matrix defined by 

and tji = 0. Then T is a symmetric, nonsingular matrix with exactly one 
positive eigenvalue. 

We refer to [I21 for a proof of(i). The proof of (ii> can be given as follows. 
Let ei,, . , e, be the standard basis for R”, and let Q = ((qij)) be the n X n 

matrix defined by 

qij = [et, ej, b,, . . . , b,_,], i Zj, 

and qii = 0. It can be deduced using Alexandroffs inequality (see [12]) that 
Q is nonsingular and has exactly one positive eigenvalue. Now 

Thus T is nonsingular, and it follows by Sylvester’s law of inertia that T has 
exactly one positive eigenvalue. 

For vectors U. u let us introduce the notation 

(u, u> = [u, u, b,, . . . , b,_,]. 

After some simplification, (9) reduces to 

2(x, yxx, cx y, c> 2 lx, xx y, cj2 + (y, yxx, d2. (10) 
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First suppose that x, y, c are linearly independent. By (ii) the matrix 

1 (x,x> (x, y> (3t,c) 
T= (y,d (y,y> (y,d 

cc, x> (6, y> (c,c> I 
has one positive and two negative eigenvalues. It follows by the interlacing 
principle that any 2 X 2 principal submatrix of T has at most one positive 
eigenvalue. However, the diagonal entries of T are positive. Hence every 
2 X 2 principal submatrix of T must have one positive and one negative 
eigenvalue and therefore has negative determinant. Thus 

2 
t11t22 < t12 (11) 

Also, the determinant of T must be positive, and hence 

2t12t23t13 - t22c3 - h&3 + c3&11~22 - C2) > 0. (12) 

Since t, > 0, it follows from (ll), (12) that 

2t12t23t1, ’ t22G + t11& 

which is the same as (10) with strict inequality. If the assumption of linear 
independence of x, y, c is removed, then (IO) holds by a continuity argu- 
ment. This completes the proof of (8) for T = 2. 

We note that (9) implies Alexandroffs inequality. To see this, just set 
r = c in (10). 

A referee has pointed out that the conjecture (8) is easily verified for 
r = n. To see this observe that 

and 

[ 
. , . .J,  *~b] = (fl - l)! k binXj. x 

i=l j#i 
n-1 
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Thus 

which is the harmonic mean of the numbers xi/b*, i = 1,. . . , n, and is 

superadditive by (1). 
The conjecture (8) remains open for 2 < r < n. Observe that the conjec- 

ture is basically a permanental inequality. Certain inequalities for the perma- 

nent, such as those 

Aleksandrov-Fenchel-Shephard inequalities, Soviet Math. 
Dokl. 20:268:271 (19791. 
J. H. van Lint, Notes on Egoritsjev’s proof of the van der Waerden conjecture, 

Linear Algebra Ap-pl. 39:1-B (19811. 
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