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Abstract-The terms “model,” “theory,” and “law” are being used with a variety of 
meanings in practice as well as in theory. Depending on the definition of the contents 
of these terms they have to satisfy different requirements. The author focuses his 
attention on mathematical models and their use in Operations Research and Manage- 
ment Science. After pointing out the difference between “theories,” “laws,” and 
“models,” criteria for the quality of models are defined and problems of model building 
discussed. It is considered particularly important that factual models-as opposed to 
formal models-are designed in such a way that they are testable. A factual model 
which is not testable can neither be confirmed nor falsified and can therefore never 
claim to be factually true. Problems and ways of building and testing models in the 
social sciences are then illustrated by considering approaches to model human decision 
making in fuzzy environments. 

1. THE MEANING OF MODELS 

Models, theories and scientific laws 

The terms “model,” “theory,” and “law” have been used with a variety of meanings, 
for a number of purposes, and in many different areas of our life. It is, therefore, necessary 
to define more accurately what we mean by models, theories and laws to describe their 
interrelationships and to indicate their use before we can specify the requirements they 
have to satisfy and the purposes for which they can be used. To facilitate our task we 
shall distinguish between definitions which are given and used in the scientific area and 
definitions and interpretations as they can be found in more application-oriented areas, 
which we will call “technologies” by contrast to “scientific disciplines.” By technologies 
we mean areas such as “Operations Research,” “Decision Analysis,” and “Information 
Processing,” even though these areas call themselves sometimes theories (i.e., decision 
theory) or science (i.e., computer science, management science, etc.). This is by no 
means a value statement. We only want to indicate that the main goals of these areas are 
different. While the main purpose of a scientific discipline is to generate knowledge and 
to come closer to truth without making any value statements, technologies normally try 
to generate tools for solving problems better and very often by either accepting or basing 
on given value schemes. Let us first turn to the area of scientific inquiry and consider the 
following quotation concerning the definition of the term “model”: “A possible realiza- 
tion in which all valid sentences of a theory T are satisfied is called a model of T” 111. 

Harre 12, p. 861 calls: “A model, a, of a thing, A, is in one of many possible ways a 
replica or an analogue of A,” and a few years later, “In certain formal sciences such as 
logic and mathematics a model for, or of a theory is a set of sentences, which can be 
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matched with the sentences in which the theory is expressed, according to some matching 
rule. . . . The other meaning of ‘model’ is that of some real or imagined thing or process, 
which behave similarly to some other thing or process, or in some other way than in its 
behavior is similar to it” [3, p. 1731. He sees two major purposes of models in science: 
(i) Logical: to enable certain inferences, which would not otherwise be possible to be 
made; and (ii) Epistomological: that is to express and enable us to extend our knowledge 
of the world. Models according to Harre are either used as a heuristic to simplify a 
phenomenon or to make it more readily handable and explanatorily where a model is a 
model of the real causal mechanism. 

Leo Apostel [4, p. 41 provides us with a very good example for various definitions of 
models as tuples of a number of components when defining: “Let then R(S, P, M, T) 
indicate the main variables of the modelling relationship. The subject S takes, in view of 
the purpose P, the entity M as a model of the prototype T .” For the four components 
of his definition he gives a number of examples which are quite informative concerning 
the use of models in science and which can be summarized as follows: 

Subjects (S) and purposes (P): 
1. “For a certain domain of facts let no theory be known. If we replace our study of this 

domain by the study of another set of facts for which a theory is well known, and that 
has certain important characteristics in common with the field under investigation then 
we use a model to develop our knowledge from a zero (or near zero) starting point. 

2. For a domain D of facts, we do have a full-fledged theory but one too difficult math- 
ematically to yield solutions, given our present techniques. We then interpret the 
fundamental notions of the theory in a model, in such a way that simplifying assump- 
tions can express this assignment. 

3. If two theories are without contact with each other we can try to use the one as model 
for the other or introduce a common model interpreting both and thus relating both 
languages to each other. 

4. If a theory is well confirmed but incomplete we can assign a model in the hope of 
achieving completeness through the study of this model. 

5. Conversely, if new information is obtained about a domain, to assure ourselves that 
the new and more general theory still concerns our earlier domain, we construct the 
earlier domain as a model of the later theory and show that all models of this theory 
are related to the initial domain, constructed as model, in a specific way. 

6. Even if we have a theory about a set of facts, this does not mean that we have 
explained those facts. Models can yield such explanations. 

7. Let a theory be needed about an object that is too big or too small, too far away or 
too dangerous to be observed or experimented upon. Systems are then constructed 
that can be used as practical models, experiments which can be taken as sufficiently 
representative of the first system to yield the desired information. 

8. Often we need to have a theory present to our mind as a whole for practical or 
theoretical purposes. A model realizes this globalization through either visualization 
or realization of a closed formal structure.” 

Thus, models can be used for theory formation, simplification, reduction, extension, 
adequation, explanation, concretization, globalization, action or experimentation. 

Entity (M) and model type (T): M and T are both images or both perceptions or both 
drawings or both formalisms (calculi) or both languages or both physical systems or vice 
versa. M can also be a calculus and T a theory or language. 

Apostel believes that all models which can be constructed by varying the contents of 
the four components form a systematic whole: “Models are used for system restructur- 
ation because of their relations with the system (partial discrepancy); because of their 
relationship among each other (partial inconsistency at least multiplicity); because of their 
relationship with themselves (local inconsistent or locally vague).” 
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By now two things should have become obvious: 
1. There is a very large variety of types of models, which can be classified according to 
a number of criteria. For our deliberations one classification seems to be particularly 
important: The interpretation of a model as a “formul model” and the interpretation as 
a “factual, descriptive model.” This corresponds to Rudolph Carnap’s distinction be- 
tween a logical and a descriptive interpretation of a calculus [5]. For him a logically true 
interpretation of a model exists, if whenever a sentence implies another in the calculus, 
in the interpretation whenever the first sentence is true, the second is equally true and 
whenever a sentence is refutable in the calculus, it is also false in the model. An inter- 
pretation is a factual interpretation if it is not a logical interpretation, which means that 
whether a model is true or false does not only depend on its logical consistency but also 
on the (empirical) relationship of the sentences (axioms of the model) to the properties 
of the factual system of which the model is supposed to be an image. The second inter- 
pretation of a model is the one that is quite common in the empirical sciences and it is 
the one, which we will primarily be referring to in the following. 
2. There is certainly a relationship between a model and a theory. This relationship, 
however, is seen differently by different scientists and by different scientific disciplines. 
We will now try to specify this relationship because theories, to our mind, are the focal 
point of all scientific activities. 

For Harre 13, p. 1741 “A theory is often nothing but the description and exploitation 
of some model,” or “Development of a theory on the other involves the superimposing 
of one model on another” 12, p. 991. 

Wartofsky [6, p. 2861 summarizes: “Theories are models which are taken either as 
imaginary constructions or as conjectures about the real nature of things.” Suppes [7, p. 
1663 sees the distinction between theory and model in “That a theory is a linguistic entity 
consisting of the set of sentences and models are non-linguistic entities in which the 
theory is satisfied.” Nagel [8] describes a theory as consisting of three distinguishable 
components: 
1. An abstract calculus. That is the logical skeleton of the explanatory system; 
2. A set of rules that in affect assign an empirical content to the abstract calculus by 

relating it to the concrete materials of observation and experiment; and 
3. An interpretation or model for the abstracicalculus, which supplies some flesh for the 

skeletal structure in terms of more or less familiar conceptual or visualisable materials. 
White [9], eventually, simply points out that “There is a need to logically separate a 

model and a theory and that they play supporting roles in decision analysis, viz., some 
theory is needed so that aspects of models can be tested and that some model is needed 
so that the affects of changes can be examined. In particular validation of a model needs 
a theory.” Thus, there seems to be a very intimate relationship between a model and a 
theory in scientific inquiry. Both, probably to varying degrees, base on hypotheses and 
these hypotheses can either be formal axioms or scientific laws. These scientific laws 
seem to me to fundamentally distinguish models and theories in scientific disciplines from 
the type of models (sometimes also called theories) in the more applied areas: “An 
experimental law, unlike a theoretical statement invariably possesses a determinate em- 
pirical content which in principal can always be controlled by observational evidence 
obtained by those procedures” 18, p, 831. These laws as scientific laws assert invariance 
with respect to time and space. The tests to which such hypotheses have to be put before 
they can assert to be a law depend on the philosophical direction of the scientist. Karl 
Popper, as probably the most prominent representative of the “critical rationalism,” 
believes that laws are only testable by the fact of their falsifiability. Popper holds further 
that a hypothesis is “corroborated” (rather than confirmed) to the degree of the severity 
of such tests. Such a corroborated hypothesis may be said to have stood up to the tests 
thus far without being eliminated. But the test does not confirm its truth. A good hy- 
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pothesis in science, therefore, is one which lends itself to the severest test, that is, one 
which generates the widest range of falsifiable consequences [6,101. 

Models in operations research and management science 

The area of Operations Research will be considered as an example of a more appli- 
cation-oriented discipline, which I called technology, in which modelling plays a pre- 
dominant role. Even though one might dispute, whether Operations Research is a science 
or a technology, J will follow Symonds, who, as the President of the Institute of Man- 
agement Sciences, stated: “Operations Research represents the problem solving objec- 
tive; management science is the development of general scientific knowledge” 
[ll, p. 3851. 

What, now, is a model in Operations Research? Most authors using the term model 
take it for granted that the reader knows what a model is and what it means. Arrow, for 
instance, uses the term model as a specific part of a theory, when he says, “Thus the 
model of rational choice as built up from pair wise comparisons does not seem to suit 
well the case of rational behavior in the described game situation” [12, p. 211. He pre- 
sumably refers to the model of rational choice, because the theory he has in mind does 
not give a very adequate description of the phenomena with which it is concerned, but 
only provides a highly simplified schema. In the social and behavioral sciences as well 
as in the technologies it is very common that a certain theory is stated in rather broad 
and general terms while models, which are sometimes required to perform experiments 
in order to test the theory, have to be more specific than the theories themselves. “In 
the language of logicians it would b e more appropriate to say that rather than constructing 
a model they are interested in constructing a quantitative theory to match the intuitive 
ideas of the original theory” 17, p. 1691. Rivett in his book Principles of Model Building 

[ 131 offers three different kinds of classifications of models; when enumerating the models 
which he suggests to put into the different classes, he no longer uses the term “model” 
but talks of “problems in this area” and “the theory of this area” as a not-to-well-defined 
entity of knowledge. Ackoff suggests as a model of decision making a six-phases-process 
which is supposed to be a good picture (model) of the real decision making process 1141. 
This is only one example of quite a number of very similar models of decision making. 

From the point of view of purposes or functions of theories or models, respectively, 
there seems to be hardly any recognizable difference between these two terms. Mehlberg 
1151, for instance, suggests that there are four major functions of a theory: 1. The sum- 
marizing function, whereby a number of consequences can be deduced from a theory; 2. 
The predictive function; 3. The controlling and explanatory function; and 4. the infor- 
mation function relating to observable variables and their role in model validation. With- 
out any problems we could accept the same functions as those of models. 

If we consider the size of some of the models used in Operations Research, containing 
more than 10,000 variables and thousands of constraints we can easily see what does not 
distinguish a theory from a model: It is not the complexity, it is not the size, it is not the 
language and it is not even the purpose. In fact there seems to be only a gradual distinction 
between theory and model. While a theory normally denotes an entire area or type of 
problem, it is more comprehensive but less specific than a model (for instance: Decision 
Theory, Inventory Theory, Queueing Theory, etc.), a model most often refers to a spe- 
cific context or situation and is meant to be a mapping of a problem, a system or a 
process. By contrast to a scientific theory, containing scientific laws as hypotheses, a 
model normally does not assert invariance with respect to time and space but requires 
modifications whenever the specific context, for which a model was constructed, changes. 

In the following I will concentrate on models rather than on theories. Realizing that 
there is quite a variety of types of models, I do not think that it is important and 
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necessary for our purposes to distinguish models by their language (mathematics or logic 
is considered to be a modelling language), by area, by problem type, by size, etc. One 
classification, however, seems to be important: the distinction of models by their char- 
acter. Scientific theories were already divided into formal theories and factual theories. 
For models, particularly in the area of the technology in which values and preferences 
enter our considerations, we will have to distinguish among the following: 

Formul Models: These are models, which are purely axiomatic systems from which 
we can derive if-then-statements and the hypothesis of which are purely fictitious. 
These models can only be checked for consistency but they can neither be verified 
nor falsified by empirical arguments. 
Factual Models: These models include in their basic hypotheses falsifiable assump- 
tions about the object system, i.e., conclusions drawn from these models have a bear- 
ing on reality and they, or their basic hypothesis, have to be verified or can be falsified 
by empirical evidence. 
Prescriptive Models: These are models which postulate rules according to which pro- 
cesses have to be performed or people have to behave. This type of model will not be 
found in science but it is a common type of model in practice. 
The distinction between these three different kinds of models is particularly important 

when using models: All three kinds of models can look exactly the same but the “value” 
of their outputs is quite different. It is therefore rather dangerous not to realize which 
type of model is being used because we might take a formal model to be a factual model 
or a prescriptive model to be a factual model and that can have quite severe consequences 
for the resulting decisions. 

As an example, let us look at the above mentioned Ackoff model of decision making. 
Is that a formal, a factual, or a prescriptive model? If it is a formal model, we can not 
derive from it any conclusion for real decision making. If it is a factual model then it 
would have to be verified or falsified before we can take it as a description of real decision 
making. The assertment, however, that decision making proceeds in phases was already 
empirically falsified in 1966 1161. Still a number of authors stick to this type of model. Do 
they want to interpret their model as a prescriptive model? This would only be justified, 
if they could show that, for instance, decision making can be performed more efficiently 
when done in phases. This, however, has never been shown empirically. Therefore, we 
can only conclude that authors suggesting a multiphase scheme as a model for decision 
making take their suggestion as a formal model and do not want to make any statement 
about reality, or that they are using a falsified, i.e., invalid and false, factual model. 

2. BUILDING, TESTING AND 

The model-building process 

USING MODELS 

Talking, thinking or writing about model building can mean two different things: Either 
one focusses on the product, i.e., the model, and investigates which properties it should 
have; or one concentrates on the model building process with the aim to find efficient 
procedures to build models. By far most publications do the former. Only very few 
authors probe the model building process at all. Even if they do, their conclusions are 
not too helpful. Figure 1, which is taken from Rivett 1131 is a model of the model building 
process. 

Looking at the figure it becomes very quickly obvious that the suggested model building 
process assumes a certain type of model, which we would call “factual model.” For 
formal models or prescriptive models other model building activities would have to be 
performed. 

We would assume that a model-building process is not much different from a problem 
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Fig. 1. The model-building process. 

solving process or a decision making process and would therefore have to be primarily 
considered as an information processing process. It has already been mentioned that so 
far many authors still advocate the “phase-concept” as a model of decision making. Even 
though it has been shown empirically that decision making processes are very complex, 
creative, multioperational, multitemporal, and multipersonal information processing 
processes. This, however, can at best be a starting point: The not yet existing theory of 
model building would certainly not (only) try to find out empirically how models are being 
built but it should and would be a prescriptive theory developing or indicating ways to 
construct models properly and efficiently. First developments in this direction may be 
found in the area of experimental design and of EDP-program development. 

Quality of models 

The quality of a model depends on the properties of the model and the functions which 
the model is designed for. In general, models will have to have at least the following three 
major properties: formal consistency, usefulness, and efficiency. 

By logical consistency I mean that all operations and transformation have been per- 
formed properly and that all conclusions follow from the hypothesis. This consistency 
has to be demanded of all types of models, whether they are formal, factural, or pre- 
scriptive. 
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By usefulness I mean that the model has to be helpful for the function it has been 
designed for, and by efficiency I mean that the model as the tool to achieve an end, has 
to fulfill the desired function at a minimum of effort, time, and cost. 

Functions of models 

We have already considered functions of models in the area of scientific activities. 
Here models are primarily used to develop, improve, and test theories. One should, 
however, point to a distinction which is made in the philosophy of science, between the 
discovery phase and the confirmation phase of a theory. While in the discovery phase 

almost all methods and models which could possibly initiate a quasitheory or pseudo- 
theory are permitted; models and methods have to meet rather high scientific standards 
if they are to be used in the confirmation phase of a theory. In the area of technology 
and practise the situation is not much different. While the initiation of a model design 
might heavily rest on heuristic methods and on intuition, the later stages of model de- 
velopment might require similar methods as are used in the confirmation phase of a 
scientific theory. 

As mentioned above, scientists see as the major functions of a theory the summarizing 
function, the predictive function, the controlling and explanatory function and the infor- 
mation function. All of these functions could also be considered to be proper functions 
of models in the not scientific area. To be able to be somewhat more specific I will turn 
again to the area of Operations Research and decision making. 

In order to prevent misunderstandings I shall exclude from my considerations 

“algorithms,” which have the very well defined objective of finding specific solutions 
(i.e., optimal solutions, satisfactory solutions, feasible solutions) in existing models. This 

means that they do not “model” in any way, even though they are part of information 

processing and they cause information processing. 
By contrast to the major goal in science, to generate true and additional knowledge, 

the objectives in the nonscientific area, i.e., the practice of management, engineering, 
teaching, etc., depend very much on the specific area. In management, for instance, 
models will primarily be used to facilitate decision making, problem solving, communi- 
cation, and control. Three kinds of models will be necessary for these purposes: factual 
models, formal models, and prescriptive models. Because of the limited information stor- 
age and processing capacity of people, their need for models will be higher the more 
complex the problems, decisions, or systems under consideration. 

In decision making and problem solving factual models will be needed to describe, to 
explain and to predict phenomena and consequences. For “conditional predictions” for- 
mal models will also be useful in order to obtain “if-then-statements,” for instance, in 
the framework of simulations. Formal models will also be useful and necessary for the 
area of communication within the decision making process and for relaying the resolutions 
or conclusions of the decision or problem solving process to the “actors,” One should 
assume that prescriptive models are the most common in decision making. This, however, 
is only true if one calls all “decision models,” i.e., models which contain an objective 
function, by which an optimal solution can be determined, prescriptive models. To my 
mind this is not quite appropriate because these kinds of models only prepare suggestions 
for possible decisions and the normative or prescriptive character is acquired only after 
the “solution” has been declared a decision by the authorized decision maker. A much 
more important feature of these models seems to me, that they have to describe or define 
properly the conditions which limit the action space (such as capacities, financial re- 
sources, legal restrictions, etc.). 

The area in which prescriptive models are primarily used is, to my mind, the area of 
control and delegation. A plan, a budget, a projection, or any other kind of instruction 
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and any kind of model, which is used in such a function, is a genuinely prescriptive 
model. 

I can now restate the notion of the quality of a model more precisely; I already 
mentioned that consistency is one of the necessary conditions for quality. Usefulness of 
a model will have to be defined for each of the three different types of models differently: 
1. While a factual model can be called useful, if it is “factually true” (by contrast to 
logically true), i.e., if it maps the object system with an appropriate precision (which can 
only be tested empirically), the model also has to generate knowledge, i.e., the user of 
a model should gain knowledge which he would not have gained without using the model 
or which he did not have available before using the model. 2. Formal models can neither 
by verified nor falsified empirically. Such a model will be considered useful, if activities, 
such as teaching, explaining, communicating, become more efficient by using the model 
than without it. 3. Prescriptive models can also not be verified or falsified. They are the 
more useful, the more effectively they help to enforce the desired behavior, to control 
predefined performance measures, and to define ranges within which decision makers 
have freedom to decide. 

The modelling language 

I do not want to discuss the problem of the lack of communication between scientists 
and practitioners because of language difficulties. This is certainly a serious problem but 
it is not a part of model building, but belongs in the area of diffusion of theories and 
concepts. 

What I want to discuss is the appropriateness of the language used for a specific 
model or a specific theory. The language is, roughly speaking, the link between the 
thinking of human beings, the object system, which is to be modelled, and the model 
itself. Statements in a model are formulated by means of linguistic expressions. That 
means that the model language semantically and syntactically has to be well suited to 
grasp those aspects of reality which are included in the model; the perspective of a 
scientific theory is already contained in its linguistic terms. 

Let us look at the appearance of scientific theories and of practical problems which 
we want to model: “Most scientific systems do not have a clear distinction between 
logicalanddescriptiveconstants. Infact,ascienceseemstobewritteninamixtureofeveryday 
language describing experiments, mathematical equations describing calculations, and semi- 
formulized deduction ifthe science is sufficiently advanced to contain atheoretical part” 14, p. 
291. 

“The problems of management exist only in the minds of managers and in the minds 
of their advisers. There is, therefore, a completely subjective personal basis to our sci- 
ence. It is not the case that the company has an inventory problem in the sense that if 
you visit it you can see it there in concrete form. . . . Even within our own minds as we 
approach a practical problem, we will be unsure how to show which form of model is 
likely to be optimal . . . Since the problems as seen in each of our minds will be different 
and mutual comparison will be impossible, it follows that we have a significant, even 
dangerous, freedom in the way in which we select the models which will represent de- 
cision making situations” 113, p. 1291. 

On the other hand a mathematical model is defined to be a collection of statements 
about a set of variables from which the truth or falsity of other statements can be de- 
duced [93. 

The utter importance of the modelling language is recognized by Apostel, when he 
says: “The relationship between formal languages and domains in which they have 
models must in the empirical sciences necessarily be guided by two considerations that 
are by no means as important in the formal sciences: 
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(a) The relationship between the language and the domain must be closer because they 
are in a sense produced through and for each other; 

(b) extensions offormalisms and models must necessarily be considered because everything 
introduced is introduced to make progress in the description of the objects studied. 
Thereforeweshouldsaythattheformalizationoftheconceptofapproximateconstructive 
necessary satisfaction is the main task of semantic study of models in the empirical 
sciences” [4, p. 261. 

Because we request that a modelling language is unequivocal and nonredundant on 

one hand and, at the same time, catches semantically in its terms all that is important 
and relevant for the model we seem to have the following problem. Human thinking and 
feeling, in which ideas, pictures, images, and value systems are formed, first of all has 
certainly more concepts or comprehensions than our daily language has words. If one 
considers, in addition, that for a number of notions we use several words (synonyms) 
then it becomes quite obvious that the power (in a set theoretic sense) of our thinking 
and feeling is much higher than the power of a living language. If in turn we compare the 
power of a living language with the logical language, then we will find that logic is even 
poorer. Therefore it seems to be impossible to guarantee a one to one mapping of prob- 
lems and systems in our imagination and a model using a mathematical or logical language. 
One might object, that logical symbols can arbitrarily be filled with semantic contents and 
that by doing so the logical language becomes much richer. I will show that it is very 
often extremely difficult to appropriately assign semantic contents to logical symbols. 

The usefulness of the mathematical language for modelling purposes is undisputed. 
However, there are limits of the usefulness and of the possibility of using the classical 
mathematical language, based on the dichotomous character of set theory, to models in 
particular systems and phenomena in the social sciences: “There is no idea or proposition 
in the field, which can not be put into mathematical language, although the utility of doing 
so can very well be doubted” 1171. Schwartz [181 brings up another argument against the 
unreflected use of mathematics, if he states: “An argument, which is only convincing if 
it is precise loses all its force if the assumptions on which it is based are slightly changed, 
while an argument, which is convincing but imprecise may well be stable under small 
perturbations of its underlying axioms.” I will return to this argument later in this 
paper. 

Data quality and measurement 

The saying “garbage in-garbage out” is well known and speaks for itself. The fol- 
lowing quotation from Josiah Stamp [19, p. 2361 points in the same direction: 
“Governments are very keen in amassing statistics. They collect them, add them, raise 
them to the nth power, take the cube root and make wonderful diagrams. But what you 
must never forget is that every one of these figures comes in the first instance from the 
village watchman who just puts down what he damn pleases.” 

It must, however, be born in mind that the effort put into deriving and obtaining 
numerical values or relations must be geared to the value of the model and that when 
data is scarce it may still be useful to draw conclusions from not fully satisfactory input 
data. In this case a tentative look at the dependence of the solution from the quality of 
the input data may be very advisable. 

The quality of the input data is closely related to the question of operational definitions 
for the relevant variables. The processes of defining variables and their operational in- 
dicators and measurement are intertwined. To quote White [9, p. 1021 “We take 
‘measurement’ to be a special aspect of a ‘definition’. One might take the view that 
measurement is the actual procedure for assigning the real numbers which constitute the 
measure. However, as pointed out in a previous section, this is the quantification process 
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Table 1. Hierarchy of scale levels 

Permissible transformation 

Type of scale Verbal Formal Invariance Example 

Nominal scale One-to-one function X, # Xj => X, = x; Uniqueness of values License plates 
Ordinal scale Monotonic increas. f. x 5 .rj => x: 5 xj Rankorder of values Marks 
Interval scale Affine function .G=o.x+h Ratio of differences Temperature (C”, F”) 
Ratio scale Similarity function .x’ = 0 . x Ratio of values Length (cm, inch) 
Absolute Identity X’ = X Values Frequency 

and in itself does not constitute a measure unless it is a homomorphism. The homo- 
morphism then defines the measure.” Very often when modelling in the area of social 
sciences one will find that relations, data or values are stated in very vague ways. Goals, 
for instance, may be stated as “trying to achieve satisfactory profits,” data such as “the 
South of the country is much poorer than the North” and relations such as “his invest- 
ment strategies were much more risky than those of his competitors.” Very often these 
variables are measured subjectively and point scales are used to transform the 
“measurements” into numerical values. Even though it is necessary to include variables 
in the model which are considered important but very hard to operationalize and to 
measure, the quality of the input data might have very limiting effects on their transfor- 
mation which can be permitted in the model. Rather than neglecting these kinds of data 
one should consciously determine which scale quality these data have and then make 
sure that only admissible transformations are being used when processing these data in 
the model. Table 1 sketches the hierarchy of scale levels including the permissible 
transformations for each of the levels. 

Testability of models 

I already mentioned that part of the usefulness of models is their formal and factual 
truth. Formal truth can in most instances and to a certain degree be guaranteed by 
applying appropriate logical and mathematical methods. This formal truth might even be 
provable (it has to be born in mind however, that some models, for instance large EDP- 
programs, can never be guaranteed to be absolutely faultless). Factual truth is not estab- 
lished that easily. Factual truth means that the model contains only factually true relations 
and hypotheses, that it contains all relevant relations and variables and that there is no 
factual inconsistency of hypothesis. One prerequisite for testing a model is that it’s hy- 
pothesis, parameters, and relations are testable, a requirement which is known as 
“principle of ontological relativism.” 

White distinguishes three different sorts of testing 19, p. 1311: 1. Testing while the 
model is being build-a priori testing; 2. Testing on the basis of the outputs of the 
analysis; and 3. Testing by implementation. 

In the case of a priori testing the model is synthesized from its components which 
might already contain either validated variables and relationships or testable hypotheses 
which can be tested on the basis of existing data or by setting up experiments before 
proceeding further in the modelling process. Two observations seem to be appropriate. 

A. There is a difference, whether testing is being done for scientific purposes or for 
practical purposes; and if it is done for scientific purposes one will have to distinguish 
the initiating phase from the confirmation phase. The following statement by White holds 
true for scientific testing in the confirmation phase but not necessarily for scientific testing 
in the initiation phase or for testing models which do not assert invariance in the scientific 
sense. “In testing relationships there are certain barriers, which we can not transgress, 
viz.: 
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(i) we can never prove general infinite deterministic empirical relations; 
(ii) we can only disprove general infinite deterministic empirical relations; 

(iii) we can never prove nor disprove probabilistic relations. 
As a result of this we recognize the Principle of Epistemologjcal Relativism which denies 
the existence of apodictic truth in empirical investigations and the Principle Perspective 
Relativism which states that all empirical theories are relative to input hypotheses. These 
hypotheses themselves are not absolute. We can continue to regress in an attempt to 
explain hypotheses at one level by others at a higher level. But we always remain in a 
relative position although we may gain more confidence by doing so.” 

B. The testability of the components of a model-in the scientific and in the practical 
context-depends largely on the operational definition of the hypotheses. In this sense, 
observation and formal analysis prior to model building can very often improve the test- 
ability of hypothesis. Let us illustrate this with the following example. In decision analysis 
one normally distinguishes between decision making under certainty, decision making 
under risk and decision making under uncertainty; one assumes that in decision making 
under risk the decision maker is able to store and process probability distribution func- 
tions. Here probabilities ought to be interpreted as Koopman-type probabilities, i.e., 
probabilities as expressions of belief and not in the frequentistic sense. This hypothesis 
is hardly testable because a situation of decision making under risk is not homogeneous 
with respect to the available information at all. An improvement in the testability of 
hypotheses could be achieved if one would distinguish, for instance, among: 

a. Decision making when quantitative probabilities are known (interval-scale); 
b. Decisions when interval probabilities are known (hyper-ordinal scale); 
c. Decisions when qualitative probabilities are known (ordinal scale); 
d. Decisions when partially ordered nominal probabilities are known (preordinal 

scale); 
e. Decisions when nominal probabilities are known (states are known but not truth 

ratable); 
f. Decisions when only some of the nominal probabilities are known. 

It is obvious that the information storage and processing requirements which a human 
being would need in order to decide “rationally” are quite different in the above cases 
and that the permissible operations in the model will also be different depending on the 
type of probability which can be assumed to exist. 

If the testing is done on the basis of the outputs of the analysis the decision maker 
might already be able to indicate that the output of the analysis is not satisfactory, prob- 
ably because important relations or variables have been omitted. If the decision maker 
or expert rates the output of the model satisfactory, it gains the status of face-validity, 
sometimes in practice the most we can hope for. 

Ideally a model should now be tested by implementation, i.e., by comparing actual 
with predicted results. This, however, in many instances is impossible for several reasons: 
a. Changes oj’environments: Factors such as sales, price levels, etc. might have changed 

while the model was built and implemented and therefore the observed results after 
implementation of the model can no longer be compared with the predicted results. 

b. Chunges in performance: If, for instance, the model is tested after implementation by 
running the old procedure parallel to the model and if the old procedure included 
human activities, the performance of these activities might be improved by the persons 
because they know that the “new” model is being compared with their performance, 
which would probably drop again, if and when the operation of the new procedures 
would be terminated. 

c. Risk und uncertainty: It is obvious that if procedures have been designed to optimally 
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decide in situations of risk or uncertainty, the “real” result can not meaningfully be 
compared with the probabilistic prediction. 

d. Optimality: If only one solution is actually implemented there is, of course, no way 
to compare this with other alternatives. In many cases the optimal solution with which 
the model solution could be compared is not known at all because it is not computable 
or because optimality was defined subjectively in a way which is not reproducable 
objectively. 

3. AXlOMATIC JUSTIFICATION VS. EMPIRICAL TESTlNGS 

Consistency and degree of confirmation 

It has already been pointed out that all kinds of theories and models can be and ought 
to be tested for consistency. In formal analysis it might even be possible to prove con- 
sistency which does not mean that models and theories, the consistency for which has 
not been proven yet, are not formally correct. For “factual” or “substantial” theories 
and models empirical testing of basic hypotheses, relations, and resulting outputs is 
absolutely necessary in order to achieve a certain degree of confirmation of the theory 
or the model. This fact is often neglected when working with theories and models. If, for 
instance, the hypothesis of “rationality” in decision making models is “justified” by 
defining rationality by more basic axioms such as transitivity, reflexibility, existence of 
an ordering, etc., which seem quite plausible and natural, then the model or the theory 
might become more testable but certainly not better confirmed. To confirm the model 
would require empirically testing either the main hypothesis or the presumably more 
operational basic axioms. This, of course, still does not determine uniquely the methods 
which can be used for testing hypotheses. These methods will depend on the area in 
which the model is being used (physics, engineering, management) and the purposes for 
which the model has been built. Thus, in scientific inquiry probabilistic tests might not 
be acceptable because scientific laws assert deterministic invariance. These methods, 
however, might be the only available ones for testing models in areas such as manage- 
ment, sociology, and political decision making. 

Cost and bene$ts of testing 

Let us first consider scientific research. In.the phase of generating theories we can 
certainly talk of different benefits being derived from different kinds of testing. In the 
confirmation phase of the theory the testing of hypotheses is no longer desirable but an 
absolute necessity. Since the social sciences are considered to be still in the pre-scientific 
state of an empirical science, the major problem is still to formulate quasi-theories in a 
testable way which in many instances will mean that they have to use mathematical 
models extensively. In building these models it should always be borne in mind that their 
hypotheses will have to be operational and testable, if the standing of scientific theories 
and scientific laws is ever intended. 

Cost of empirical research can be looked at from two different points of view. Either 
one compares the total effort which has been put into empirical research in this area with 
the corresponding effort in natural sciences and engineering, or one compares typical 
(specific) research efforts in theoretical research with that of empirical research. The first 
type of comparison will certainly lead to the conclusion that research efforts are by 
magnitudes larger in the natural sciences and in engineering than they are in social sci- 
ences. The second type of comparison will certainly show that the typical research effort 
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is much higher, particularly in the social sciences, for empirical research than for formal 
research. This might partly explain the rather small scope of empirical research in the 
social sciences compared to the formal theoretical research, which has been going on for 
the last 50 years. I will illustrate this point later in more detail. 

In the area of practical decision making the effort for empirical research and testing 
of decision models should be determined by the predicted benefits of such research and 
testing. Here, however, we have to face a very serious problem. Benefits of empirical 

research and testing can be quite substantial but it is very often either extremely difficult 
or impossible to prove in advance the benefits of such activities. Very often the benefits 
are hard to quantify because they might be derived from a higher transparency of the 
system under consideration, an improvement of interpersonal relationships, more flexi- 
bility, etc. 

Compared to scientific research and testing the efforts of empirical testing in practice 
will be rather low. The reason for this is primarily that the scientific demand for invariance 
or invariant validity of theories and laws does not exist in practice: Models have to be 
valid under certain circumstances and for certain times (i.e., they are context- and time- 
dependent) and they will have to be modified whenever the context or the time changes. 
In addition, the accuracy and dependability of the conclusions derived from such models, 
and with it the necessary effort, can be determined autonomously by the decision maker. 
Since the practitioner by contrast to the scientist, does not necessarily strive for new 
knowledge in the scientific sense he can rely more heavily on hypotheses which are 
already sufficiently confirmed. 

Summarizing, we can state that empirical research and empirical testing is desirable to 

varying degrees in science as well as in practice. In the confirmation phase of scientific 
inquiry, however, it is absolutely necessary for all theories and laws which assert “factual 
truth” and not only “formal or logical truth.” Some of the above observation shall now 
be illustrated by the following example. 

4. MODELLING DECISIONS IN FUZZY ENVIRONMENTS 

The problem 

The importance of choosing an appropriate modelling language has already been men- 
tioned. The problem considered in this context is essentially due to two well known facts: 

In natural languages the meaning of words are very often vague. The reason for this 
can also be that the meaning of a word is well defined but that when using the words 
as labels for sets the boundaries within which objects belong to the set or do not 
become fuzzy or vague. The same vagueness can of course be found in words which 
are used to express relations, so called connectives. 
Natural languages cannot be substituted by formal languages in the area of empirical 
research. Many scientists have already pointed to the fact that formal languages are 
rather simple and poor and have to be considered as very specific languages useful for 
specific purposes. Mathematics and logic as languages have, for instance, proved to 
be extremely useful for modelling purposes in the natural sciences and in engineering 
but not quite as adequate for the social sciences. 
The “Theory of Fuzzy Sets” suggested by L. A. Zadeh for the first time in 1965 [20] 

seems, as a formal language, better suited to map the vagueness of natural languages than 
classical mathematics which bases on two valued logic. For this purpose, a vague notion 
of a natural language can be interpreted as a subjective category and can be mapped by 
a fuzzy set, which is defined as follows: 
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Definition-If X = {x} is a collection of objects denoted generically by x then a fuzzy 
set A in X is a set of ordered pairs 

A = {C.u, 1*/,(x)1 I x E X}. 

pA(x) is called the membership function, grade of membership, degree of compatibility 
or degree of truth of x in A which maps X to the membership space M. [When M 
contains only the two points 0 and 1, A is nonfuzzy and am is identical to the char- 
acteristic function of a nonfuzzy set.] The range of the membership function is a subset 
of the nonnegative real numbers whose supremum is finite. For “normalized fuzzy sets” 
the membership function is limited to values between 0 and 1. A nonempty fuzzy set A 
can always be normalized by dividing pLA(x) by SU~,~~(X). 

In 1970 fuzzy sets were used to model human decisions [21]. An indication to interprete 
this model as a factual model is the frequent reference to real decision-making environ- 
ments, such as “much of the decision making in the real world takes place in an envi- 
ronment in which the goals, the constraints and the consequences of possible actions are 
not known precisely.” As in day-to-day language a decision was defined as linking goals 
and constraints by “and” (i.e., the decision should satisfy the goal and the first constraint 
and the second constraint etc.). The meaning of “and” is defined in classical logic as a 
connective such that a sentence, which consists of other sentences linked by “and” is 
only true, if and only if, all subsentences are true. This “and” is denoted symbolically 
by /‘/ which again is the symbol for the intersection of two sets in classical set theory. 

In the theory of fuzzy sets the membership function of the fuzzy set “intersection” of 
other fuzzy sets is defined by applying the minimum operator to the membership functions 
of all intersecting fuzzy sets. Consequently a decision in fuzzy environments was defined 
as the intersection of all fuzzy sets involved (goals and constraints) which, if taken as a 
factual model of human decision making, means that human beings when making deci- 
sions aggregate different goals, which can be interpreted as subjective categories, by 
applying the minimum operator. This hypothesis is a contradiction to most of the models 
in multicriteria decision making in which generally the aggregation by weighted addition 
is assumed. Neither for one way nor for the other empirical confirmation was available. 
To test, or at least to justify, the use of any of those connectives when modelling human 
decisions, two approaches were used: 

1. The reduction of the hypothesis (of using the minimum operator or other operators) 
to either empirically tested or at least, axioms with face-validity. 

2. Direct empirical research. 
The results of the first approach shall be sketched very briefly because they are of interest 
in connection with the results of the empirical research; they are characteristic for the 
approaches most frequently used in utility theory and formal decision theory. 

Axiomatic approaches L’S empirical investigution 

Deductive derivation of meuning of connectives. Starting from ten plausible axioms 
Hamacher C221 derived four basic nonredundant axioms for the connective “and” (con- 

junction) interpreted as the intersection operator, which also seemed to be sensible from 
the point of view of rational decision making: 

Axiom l-The connective C (conjunction) is associative, i.e., A A (B A C) 
= (A A B) A C, (necessary to extend C from 2 to n statements). 

Axiom 2-C is continuous (secures stability of C for small changes of ,.,&A and &. 
Axiom 3-C is injective in each argument [(A A B) # (A /‘/ C) if B # C] . 

A 
Ax’om 4-xe(o, 11 

D(x,x) = x <=> x = 1. 
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A, B, and C denote fuzzy sets and x is the degree of membership of an element with 
respect to the appropriate fuzzy set. 

Hamacher proved that if C is an algebraic function, a rational function and a polynom 
in x and y then only the following mathematical description of the operator is possible: 

C(x,y) = 
X.J 

y + (1 - y)(x + 4’ - ay)’ 
y 2 0. 

y is an arbitrary constant. For y = 1 the above formula reduces to 

C(X,Y) = x . Y, 

which obviously contradicts the assertion that the minimum operator is used to model 
the “and.” 

Empirical testing [34] 

1. Experimental design and pretest: It had already been established that formal edu- 
cation had an important influence on the meaning that persons attach to the word “and.” 
It was also known that the degree of membership had the quality of an absolute scale 
and that human beings are not reliable and valid measuring devices on this level. By 
choosing an appropriate experimental design, selecting or developing appropriate mea- 
suring methods, and by choosing appropriate “test examples” it had to be insured that: 

- Biases due to former education were eliminated by selecting an appropriate random 
sample of test persons; 

- The intersection could really be interpreted as the aggregation of subjective cate- 
gories by selecting appropriate test examples and by insuring that the fuzzy sets 
(subjective categories) to be intersected were of equal weight and independent from 
each other; 

- The required scale level was at least approximately achieved by using especially 
designed indirect measuring methods. 

2. Testing the hypothesis: Because of obvious reasons the minimum operator and the 
product operator were tested as hypothetical connectives corresponding to “and.” It 
turned out that at the required significance level both operators had to be rejected even 
though the minimum operator showed a better fit than the product operator. In discus- 
sions with colleagues, however, another surprising observation was made: No one was 
able to come up with practical examples of decision making in which the “and”-connec- 
tive was really used in the sense of the logical “and.” It was felt that in linking goals in 
the sense of an “and” certain compensatory effects had always to be assumed. The 
logical “and” however, does not allow any compensation between the degrees of mem- 
bership of elements with respect to different fuzzy sets. 

3. Modifying the hypotheses: On the basis of the observations described above, the 
hypotheses as well as the test examples had to be modified in the following way. 

a. 

b. 

C. 

Fuzzy sets had to be selected for intersection, for which a certain compensation 
could be assumed when intersected in order to find the resulting fuzzy set. 
In addition to the minimum operator and the product operator the following oper- 
ators were used as additional hypotheses: Maximum Operator, Algebraic Sum, 
Arithmetic Mean, Geometric Mean. 
A new generalized operator was developed as additional hypothesis and on the 
basis of the following considerations. The logical “and” does not allow any com- 
pensation; the logical (inclusive) “or” however, implies full compensation. We, 
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therefore, assumed that an operator implying a certain degree of compensation 
would have to lie between the two extremes: “logical and” and “logical or.” Char- 
acterizing the “logical and” by the product operator and the “logical or” by the 
generalized algebraic sum the following generalized operator was derived. 

In this operator pi are the normalized degrees of membership of the fuzzy sets and y 
is a parameter indicating the degree of compensation. This parameter can easily be 
determined on the basis of a few observations when solving the above equation for y. 

Further testing showed that the minimum operator performed as badly as the maximum 
operator; arithmetic and geometric mean performed better. The best results were obtained 
for the above mentioned generalized operator for y = 0.615. 

Results, interpretations, and conclusions 

How can it be explained that the word “and,” when used by human beings in con- 
necting goals or constraints neither means “plus ” in the mathematical sense nor “and” 
as defined in logic and characterized by the minimum or the product operator? The 
following interpretation seems to be plausible. Human beings connect goals and con- 
straints context-dependently in many different ways, i.e., they use numerous “latent” 
operators. In our language however, which is much poorer than our thinking, only two 
words are available to indicate the linkage of subjective categories: “and” and “or.” The 
meaning of these two words has been defined formally by logicians in a very definite way. 
If a human being wants to articulate the type of operator he has used in aggregating these 
categories, he can only choose one of these two words and he probably chooses the 
word, which according to his feeling comes closest to the operator he has really used 
(i.e., he chooses the word which expresses as well as possible the degree of compensation 
that is implied in his real operator). By contrast to the “logical and” we called the 
generalized operator “compensatory and,” a connective which could never be used in 
verbal communication because it had not been defined before. 

The above mentioned empirical tests were very time-consuming and much more ex- 
pensive than the axiomatic treatment of the same problem. They are, however, only a 
first step in the direction of generating a formal (mathematical) modelling language, which 
is appropriate to model decisions or problems, which originate or exist “only in the minds 
of managers” and cannot be observed directly by looking at real things. The existence 
of such a language is, however, a prerequisite for models and theories, which assert to 
be “factual models” of decision making and problem solving, which are falsifiable and 
confirmable 123,241. 
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