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SUMMARY

We identified ubiquitin-like with PHD andRING finger
domain 1 (UHRF1) as a binding factor for DNA
interstrand crosslink (ICL) lesions through affinity pu-
rification of ICL-recognition activities. UHRF1 is re-
cruited to DNA lesions in vivo and binds directly to
ICL-containing DNA. UHRF1-deficient cells display
increased sensitivity to a variety of DNA damages.
We found that loss of UHRF1 led to retarded lesion
processing and reduced recruitment of ICL repair nu-
cleases to the site of DNA damage. UHRF1 interacts
physically with both ERCC1 and MUS81, two nucle-
ases involved in the repair of ICL lesions. Depletion
of both UHRF1 and components of the Fanconi ane-
mia (FA) pathway resulted in increased DNA damage
sensitivity compared to defect of each mechanism
alone. These results suggest that UHRF1 promotes
recruitment of lesion-processing activities via its
affinity to recognize DNA damage and functions as
a nuclease recruitment scaffold in parallel to the FA
pathway.

INTRODUCTION

The DNA interstrand crosslink (ICL) is a complex DNA lesion

arising from a variety of extrinsic and intrinsic bifunctional alky-

lating agents. ICL-inducing agents exhibit profound cytotoxicity

and are among the most widely used chemotherapy drugs

(McHugh et al., 2001). Deficiencies in repairing DNA ICLs

have severe pathological consequences, as highlighted by the

recessively inherited cancer-prone disease Fanconi anemia

(FA) (D’Andrea, 2010; Kim and D’Andrea, 2012).

Repair of DNA ICLs is accomplished by two distinct pathways.

The replication-dependent pathway operates primarily during

S phase and is initiated by replication fork encountering with

an ICL. Given that the formation of an ICL compromises both

strands of the double helix, error-free repair most likely involves
Cell
homologous recombination with the undamaged sister chro-

matid upon formation of DNA strand breaks (Knipscheer et al.,

2009; Long et al., 2011). Consistently, defects in homologous

recombination factors such as Brca2, Rad51C, and BACH1

render cells sensitive to crosslinking agents. On the other

hand, ICLs in G1 and G0 phases or during early S phase of the

cell cycle utilize a recombination-independent mechanism

involving the combined actions of the nucleotide excision repair

and lesion bypass synthesis (Sarkar et al., 2006; Williams et al.,

2012; Zheng et al., 2003).

A key step in ICL repair is the loading of the appropriate

nucleases to the damaged site to achieve the initial incision

and unhooking of an ICL. Genetic and biochemical studies

have identified several nucleases including ERCC1-XPF,

MUS81-EME1, and SNM1A (Hodskinson et al., 2014; Wang

et al., 2011) in the nucleolytic processing of ICLs. These

structural-specific endonucleases act at different stages of ICL

removal, generating intermediates of single- or double-strand

breaks adjacent to the ICL lesion and allowing subsequent lesion

bypass and homologous recombination to take place (Bhagwat

et al., 2009; Hodskinson et al., 2014). However, the molecular

mechanisms directing the recruitment of nucleases to the

damaged sites are poorly understood. The main function of the

FA pathway is presumed to be the loading of lesion-processing

nucleases via FAND2/I monoubiquitination-mediated regulation

of the SLX4/FANCP nuclease scaffold (Guervilly et al., 2015;

Muñoz et al., 2009; Ouyang et al., 2015; Smogorzewska et al.,

2010; Stoepker et al., 2011; Svendsen et al., 2009). However, it

is unclear whether ICL-processing activities can be recruited

through other mechanisms.

Ubiquitin-like with PHD andRING finger domain 1 (UHRF1) is a

multi-domain protein important for the maintenance of cytosine

methylation. It recognizes specific forms of histone modifica-

tions and DNA hemimethylation (Liu et al., 2013; Nishiyama

et al., 2013) and facilitates the recruitment of Dnmt1 in order to

catalyze the methylation reaction on hemimethylated CpG mo-

tifs. As expected, cells defective in UHRF1 have reduced ampli-

tude and site accuracy of DNAmethylation (Bostick et al., 2007).

However, UHRF1 loss also causes cellular sensitivity to DNA-

damaging agents (Muto et al., 2002). Mechanistic insights on
Reports 10, 1957–1966, March 31, 2015 ª2015 The Authors 1957

mailto:leili@mdanderson.org
http://dx.doi.org/10.1016/j.celrep.2015.03.038
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2015.03.038&domain=pdf


Substrate A Substrate B

Proteins Ratio 
(XL/Ctrl) Proteins Ratio 

(XL/Ctrl)

UHRF1 43.3 UHRF1 26.0

UBTF 20.6 UBTF 15.1

HMGB3 18.3 HMGB3 11

HMGB2 8.0 HMGB2 6.0

KRT10 7.8 APOBEC3C 4.7

TFAM 5.6 CBF-beta 3.8

CUL4A 4.3 Helicase B 2.9

BA

HeLa 
nuclear 
extracts

Pso + UVA

s

Elude bound proteins.
Mass spectrometry identification and 

quantification.

Biotin

ICL

Streptavidin

ICL-binding proteins

XL

TA
AT

TA
AT

Pso - UVA

Ctrl

PSO ICL

Ctrl
Substrate

ICL
Substrate

EBV Ori eChIP-PCR primers

Ctrl
Substrate

EBV Ori eChIP-PCR primers

ICL
Substrate

Cisplatin  ICL

D

Pre Laser 30s 55s

2:21m 4:33m 10:33m

C

FE

0

0.1

0.2

0.3

0.4

0.5

0.6

293 293 EBNA

R
el

at
iv

e 
en

ric
hm

en
t 

(%
 o

f i
np

ut
)

Ctrl
Pso ICL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

293 293 EBNA

Ctrl

Cisplatin ICL 1/kb

Cisplatin ICL 2/kb

Cisplatin ICL 3/kb

R
el

at
iv

e 
en

ric
hm

en
t 

(%
 o

f i
np

ut
)

-3000

-2000

-1000

0

1000

2000

3000

4000

00:00.0 02:52.8 05:45.6 08:38.4

Time (min)

M
ea

n 
In

te
ns

ity

Figure 1. Identification of UHRF1 as an ICL-Interacting Protein

(A) A schematic of pull-down- and mass spectrometry-based purification of ICL-binding proteins. The 120-bp crosslinked substrate contains two psoralen ICLs

at defined positions and is end-labeled with biotin for the pull-down assay.

(B) Candidate ICL-binding proteins identified by mass spectrometry analyses using two independent ICL-containing DNA substrates.

(C) Time-lapse images showing recruit of GFP-tagged UHRF1 to laser-localized psoralen ICLs in U2OS cell nuclei at indicated time points.

(D) Imaging quantification of nuclear strip intensity of GFP-tagged UHRF1 to laser-localized psoralen ICLs in U2OS cells.

(legend continued on next page)
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this unexpected phenotype are unknown. In this report, we

identified UHRF1 as an ICL-binding protein through an unbiased

affinity purification of lesion-binding activities. Analyses of

UHRF1-deficient cells revealed an unanticipated defect in lesion

processing. We found that URHF1 interacts with lesion-process-

ing nucleases ERCC1 and MUS81 and may serve as a recruit-

ment factor for the repair of DNA lesions. These results suggest

a UHRF1-dependent mechanism of directing structure-specific

nucleases to the site of DNA damage.

RESULTS

Identification of UHRF1 as an ICL-Binding Protein
To isolate proteins that bind to DNA ICLs, we designed a 120-bp

oligonucleotide duplex that has two TA nucleotide residues for

the formation of site-specific, psoralen-based ICLs (Figures 1A

and S1A). Upon psoralen and UVA treatment, crosslinked oligos

were purified, end-labeled with biotin, and used as the cross-

linked substrate for ICL-affinity purification. A control substrate

was generated in parallel without the addition of psoralen. The

crosslinked and control substrates were attached to streptavidin

beads and incubated with HeLa nuclear extracts. Tightly bound

proteins were eluded and subjected to mass spectrometry ana-

lyses. The amount of each protein bound to crosslinked sub-

strate was normalized to that of the control substrate in order

to yield a ratio (crosslinked:control) as a reflection of its affinity

to the ICL. As shown in Figure 1B, we found that the UHRF1 pro-

tein is highly enriched by the crosslinked substrate.

To exclude the possibility that the identification of UHRF1

was biased toward sequence composition, we repeated the

pull-down experiment with a second set of crosslinked and con-

trol substrates (substrate B, Figure S1A) in which only the two TA

motifs and their relative positions are identical to the original

substrate (substrate A). UHRF1 was again identified as the top

candidate, suggesting that binding of UHRF1 to ICL-containing

DNAdoes not rely on the sequence context of the ICL substrates.

To test whether UHRF1 binds to ICLs in vivo, laser-localized

psoralen ICLs were introduced into the nuclei of U2OS cells

(Muniandy et al., 2009) expressing GFP-UHRF1. Beginning at

30 s after ICL induction, GFP-UHRF1 accumulated at the ICL

track and appeared to peak around 8 min (Figures 1C and 1D).

This result indicates that UHRF1 is specifically enriched at the

sites of ICL lesions and that its recruitment is an early event in

ICL response in comparison to the recruitment of FANCA (Yan

et al., 2012).

Next, we performed the episomal chromatin immunoprecipia-

tion (eChIP) assay (Shen et al., 2009) with psoralen- or cisplatin-

derived ICL lesions. TheeChIPsubstrate contains adefinedpsor-

alen ICL positioned 488 bases downstream of the Epstein-Barr

virus (EBV) replication origin (Figures S1B and 1C). Therefore,

protein recruitment to the site of the ICL can be analyzed in the
(E) Top: Schematic representation of the DNA substrate used in the eChIP assay. T

the direction of replication fork movement. Small arrows indicate the region of qPC

protein in 293 and 293EBNA cells. Error bars are SD from four independent expe

(F) Top: Schematic representation of the DNA substrates used in the eChIP assay

region of qPCR amplification. Bottom: eChIP assay measuring the recruitment of

represent average distributions. Error bars are SD from three independent exper

Cell
absence or presence of DNA replication to determine whether a

blocked replication fork is required. We found that the presence

of a single-defined psoralen ICL yielded significant UHRF1

enrichment onto the crosslinked substrate (Figure 1E). The

enrichment was not significantly increased when substrate repli-

cation was enabled in the 293EBNA cells, suggesting that stalled

replication fork is not essential for UHRF1 binding to the ICL. The

increased UHRF1 recruitment in both control and ICL substrates

mostly likely reflects a replication-coupled enrichment of UHRF1

(Nishiyama et al., 2013). Consistently, the eChIP substrate con-

taining randomly introduced cisplatin ICLs showed a significant

enrichment of UHRF1 in a dose-dependent manner in both repli-

cated and unreplicated sites of ICLs (Figure 1F). These results

suggested that UHRF1 is recruited to sites of DNA ICLs in vivo.

UHRF1 Binds Directly to ICLs through the SRA Domain
Although UHRF1 is shown to be associated with ICLs in nuclear

extracts and in vivo, such association could be mediated

by other factors. Therefore, we tested whether UHRF1 directly

bound DNA ICLs. An MBP-UHRF1 recombinant protein was

purified via amylose beads and incubated with DNA containing

psoralen- or cisplatin-induced ICLs. As shown in Figure 2A,

MBP-UHRF1 retained specifically crosslinked, but not control,

DNA, whereas maltose-binding protein (MBP) alone showed

no detectable binding to either DNA probes.

We further validated the affinity of UHRF1 to ICL substrates in

a competition assay. Immobilized MBP-UHFR1 fusion protein

was pre-incubated with 32P-labeled oligonucleotide containing

psoralen or cisplatin ICLs followed by the addition of increasing

amounts of unlabeled ICL-containing or control oligo (Figures 2B

and 2C). The results showed that the ICL-containing oligonucle-

otide was much more efficient in competing for UHRF1 binding

than the control. These results demonstrated that UHRF1 ex-

hibits direct affinity for DNA ICLs.

UHRF1 contains five conserved motifs that include UBL, tan-

dem tudor (TUDOR), plant homeodomain (PHD), SET and RING-

associated (SRA), and RING domains (Figure 2D). To determine

whether the ICL-binding activity could be localized to a specific

region or domain(s), we generated five truncation mutants. Each

mutant has one of the five conserved domains removed.

MBP-fusion proteins of each mutant were purified and tested

in the ICL pull-down assay with psoralen or cisplatin ICL DNA.

As shown in Figure 2E, only deletion of the SRA domain

completely abolished UHRF1 binding to ICL-containing DNA,

indicating that the SRA domain is most critical for UHRF1’s

ability to recognize DNA crosslinking lesions.

Loss of UHRF1 Function Leads to DNA Damage
Sensitivity
The association of UHRF1 with ICL lesions suggested that it may

play a role in cellular response to ICLs. To test this premise, we
he presence of a single-defined psoralen-ICL is indicated. The arrow indicates

R amplification. Bottom: eChIP assay measuring the recruitment of the UHRF1

riments.

. The presence of random cisplatin-ICLs is illustrated. Small arrows indicate the

the UHRF1 protein in 293 and 293EBNA cells. Numbers of cisplatin ICL per kb

iments.
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Figure 2. UHRF1 Binds to ICLs Directly to ICLs through the SRA Domain
(A) Binding of MBP-tagged UHRF1 to crosslinked (XL) and control (Ctrl) probes with 32P end-labeling (left). MBP or MBP-UHRF1 were immobilized onto amylose

beads and incubated with PSO ICL- or cisplatin ICL-containing probes. Bound DNA was eluded with maltose, and resolved on 2% agarose gel. Aliquots of

amylose beads bound proteins were eluded and resolved by PAGE as the loading control (right).

(B) Binding affinity of UHRF1 toward psoralen DNA ICL. Left: MBP-tagged UHRF1 was preincubated with 32P-labeled PSO-ICL probe prior to the addition of cold

PSO-ICL competitor probe (top) or cold control competitor probe (bottom) with the indicated concentrations. Bound DNA was recovered by amylose beads and

resolved on 2% agarose gel to reveal the retention of 32P-labeled PSO-ICL probe. Right: Quantification of relative ICL retention as a function of excess amount of

control or ICL competitors. Error bars are SD from three independent experiments.

(C) Binding affinity of UNRF1 toward cisplatin DNA ICL performed as in (B).

(D) Illustration of UHRF1 domain structure and UHRF1 domain deletion mutants. UBL, ubiquitin-like domain; TUDOR, tandem tudor domain; PHD, plant

homeodomain; SRA, SET and RING-associated domain.

(E) Binding of UHRF1 domain deletion mutants to PSO-ICL and cisplatin-ICL probes. Bottom: Input recombinant proteins for the ICL binding assay as

performed in (A).
established a UHRF1 conditional allele in the HCT116 back-

ground via somatic cellular targeting (Figure S2A). Although ho-

mozygous deletion of UHRF1 leads to severe proliferation defect

(Figures S2B–S2D), we obtained two independent hypomorphic

mutants (UHRF1�/Neo-1 andUHRF1�/Neo-2) in which oneUHRF1

allele was inactivated and the other was rendered hypomorphic

by the insertion of a NeoR cassette upstream of exon 4. As a

result, both hypomorphic mutants express UHRF1 protein at

significantly reduced levels in comparison to wild-type (WT)

UHRF1+/+ cells but maintain normal growth characteristics.

Next, we analyzed UHRF1�/Neo-1 and UHRF1�/Neo-2 mutants

for their sensitivity toDNAdamageexposure.As shown inFigures
1960 Cell Reports 10, 1957–1966, March 31, 2015 ª2015 The Author
3A–3C, both hypomorphic mutants displayed increased sensi-

tivity tomitomycinC,UV, orPso-UVA treatments.Complementa-

tion of both mutants withWT UHFR1 restored cell survival to that

of theWTHCT116 cells. Knockdown of UHRF1 in 293T andHeLa

cells also significantly increased their sensitivity to mitomycin C

and UV (Figures S2E and S2F). When compared to FANCL- or

SLX4-null mutants, UHRF1 hypomorphic cells are considerably

less sensitive (Figures 5B and 5C). However, in comparison to

isogenic FANCM�/� and FAAP24�/� mutants, the UHRF1 hypo-

morphic mutants displayed similar sensitivities to mitomycin C

(Figure S2G). These result suggested that UHRF1 is functionally

involved in cellular resistance against DNA damage.
s
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Figure 3. UHRF1 Deficiency Sensitizes Cells to DNA Damage and Attenuates Lesion Processing

Clonogenic survival of UHRF1�/Neo-1 and UHRF1�/Neo-2 and their complemented derivatives exposed to mitomycin C (A), UV (B), and psoralen plus UVA (C)

treatment. Error bars are SD across three or more technical replicates.

(D) Formation of mitomycin C (MMC)-induced gH2AX nuclear foci in WT (UHRF1+/+) and hypomorphic mutant (UHRF1�/Neo-1 and UHRF1�/Neo-2) cells 12 hr after

treatment.

(E) Percentage of gH2AX foci-positive nuclei fromMMC-treatedUHRF1+/+ andUHRF1�/Neo-1 andUHRF1�/Neo-2 cells at indicated time points afterMMC exposure.

(F) Immunoblot detecting gH2AX in UHRF1+/+ and UHRF1�/Neo cells treated with mitomycin C and collected at indicated time points.
As an important factor in maintaining DNA cytosine methyl-

ation (Bostick et al., 2007), the UHRF1 RING-domain-dependent

E3 ligase activity has been found essential for the recruitment

of DNMT1 and subsequent replication of cytosine methylation

patterns (Nishiyama et al., 2013). When two UHRF1 E3 ligase

mutants, C724A and H741A (Jenkins et al., 2005), were used

to complement the UHRF1�/Neo cells, the DNA damage resis-

tance was largely restored (Figure S2H). This result indicated

that disruption of methylation maintenance was unlikely the pri-

mary cause for the damage sensitivity phenotype and that
Cell
UHRF1 may have functions directly linked to the DNA damage

response.

The DNA damage sensitive phenotype suggests that UHRF1

mutant cells may be deficient in the removal of ICL lesions

efficiently, resulting in a higher level of residue damage and

decreased cell survival. Thus, we analyzed gH2AX foci formation

in UHRF1�/Neo and UHRF1+/+ cells exposed to mitomycin C.

Under unperturbed growth conditions, UHRF1�/Neo cells exhibit

a higher percentage of gH2AX foci-positive nuclei (Figure 3D).

This result suggests that cells lacking UHRF1 function indeed
Reports 10, 1957–1966, March 31, 2015 ª2015 The Authors 1961



accumulate DNA damage. However, upon mitomycin C

treatment, both the UHRF1�/Neo-1 and UHRF1�/Neo-2 mutants

showed a markedly reduced gH2AX foci formation in compari-

son to WT UHRF1+/+ cells, especially at later time points (12

and 24 hr; Figure 3E). Similarly, immunoblotting of gH2AX (Fig-

ure 3F) also confirmed the attenuated onset of gH2AX induction

upon DNA damage and a higher level of basal level gH2AX in the

absence of exogenous DNA damage. To further validate these

results, we analyzed 53BP1 foci formation in UHRF1�/Neo

mutants exposed to mitomycin C. Consistent with the gH2AX

results, mitomycin C-mediated 53BP1 foci formation also de-

creases inUHRF�/Neomutant cells (Figures S3A and S3B). These

results suggest that UHRF1 plays a role in the repair of both

endogenous and exogenous lesions.

UHRF1 Function Is Involved in the Recruitment of ICL
Damage-Processing Activities
Because the formation of DNA strand breaks is a primary signal

that triggers the accumulation of gH2AX and 53BP1, attenuated

foci formation in UHRF1-deficient cells may reflect a potential

lackof ICL processing that createsDNAstrandbreaks. Therefore,

we tested the premise that impaired recruitment of lesion-

processing nuclease activities contributes to the diminished

inductionofgH2AXand53BP1 foci and to theDNAdamagesensi-

tivity phenotype fromUHRF1-deficiency. First, we askedwhether

UHRF1 interacts directly with ERCC1-XPF or MUS81-EME1, two

structure-specific endonucleases that are required in processing

ICL lesions. As shown by coimmunoprecipitation of both tagged

andendogenousproteins (Figures 4A–4CandS3B),UHRF1 inter-

actswithbothERCC1/XPFandMUS81/EME1.Moreover, recom-

binant MBP-UHRF1 was able to pull down MUS81 and ERCC1

from HeLa nuclear extract. An N-terminal UHRF1 truncation

lacking the SRA and RING domains disrupted the association

with both ERCC1 and MUS81, whereas a C-terminal truncation

retaining these domains was able to bind MUS81 and ERCC1

(Figure 4D). Together, these results suggest a direct interaction

between UHRF1 and ICL-processing nucleases.

Both ERCC1-XPF and MUS81-EME1 are known to be associ-

ated with a common scaffold protein, SLX4/FANCP (Fekairi

et al., 2009; Muñoz et al., 2009; Svendsen et al., 2009). We asked

whether the observed interactions are mediated by SLX4. To

this end, we generated a HeLa SLX4-null mutant and examined

the interactions between UHRF1 and the two nucleases by co-

immunoprecipitation (Figure 4E). We found that deletion of

SLX4 does not abolish the interactions, suggesting that binding

of UHRF1 to the lesion-processing nucleases is independent of

SLX4. Consistently, reciprocal immunoprecipitation between

Myc-SLX4 and SFB-UHRF1 showed no detectable interaction

between the two proteins (Figure 4F).

Given UHRF1’s lesion-binding affinity and its direct interac-

tions with lesion-processing nucleases, a likely function for

UHRF1 in DNA damage response may be to recruit lesion-pro-

cessing nucleases to the site of damage. We tested this notion

by eChIP in the UHRF1�/Neo hypomorphic mutant cells. As

shown in Figure 4G, enrichment of Mus81 onto cisplatin-ad-

ducted DNA substrate is significantly reduced in both UHRF1

mutants in comparison to the parental UHRF+/+ cells. Similarly,

enrichment of ERCC1 is also reduced in the UHRF1�/Neo hypo-
1962 Cell Reports 10, 1957–1966, March 31, 2015 ª2015 The Author
morphic mutant cells (Figure 4H), suggesting a role for UHRF1

in the processing of ICL lesions by recruiting structure-specific

endonucleases.

UHRF1 Function in DNA Damage Response Is Not
Redundant with the FA Pathway
Although UHRF1 interacts with ERCC1 and MUS81 indepen-

dently of SLX4, it is unclear whether UHRF1 is functionally

distinct from the FA pathway. To address this question, we

tested whether activation of the FA pathway is compromised in

the UHRF1-deficient cells (Figure 5A). We found that both

UHRF1 hypomorphic mutants exhibited mitomycin C-induced

FANCD2 monoubiquitination similar to WT controls, suggesting

that activation of the FA pathway is not significantly affected

by UHRF1 depletion.

To functionally determine whether UHRF1’s role in DNA dam-

age response is distinct from the FA mechanism, we knocked

down UHRF1 in SLX4�/� HeLa cells and analyzed clonogenic

survival against cisplatin (Figures 5B and S4A). In comparison

to cells lacking UHRF1 or SLX4 alone, the combined loss of

UHRF1 and SLX4 acquired additional hypersensitivity to DNA

damage, suggesting that the damage repair function of UHRF1

is parallel to that of SLX4.

To substantiate this result further, FANCL�/� cells constructed

in HeLa background were depleted of UHRF1 via small hairpin

RNA (shRNA) knockdown. Clonogenic survival indicated that

UHRF1 knockdown in HeLa cells yielded increased sensitivity

to mitomycin C, although it was less profound than in FANCL

knockout cells. However, UHRF1 knockdown in FANCL�/�

HeLa cells produced enhanced sensitivity to mitomycin C

(Figures 5C and S4B). Consistently, UHRF1 knockdown in

FANCL�/� HCT116 cells also rendered additional cell killing

by mitomycin C (Figure 5D). These results suggest that UHRF1

provides ICL repair functions independent of the FA pathway

components most likely through its lesion-binding capability

and recruitment of lesion-processing nucleases.

DISCUSSION

Each type of DNA damage, such as bulky adducts, mismatches,

and DNA double-strand breaks, is recognized by a lesion-spe-

cific damage-binding protein to initiate the repair process. In

the case of DNA ICLs, it has been unclear whether an ICL-spe-

cific lesion recognition factor exists. We approached this ques-

tion by biochemical purification of ICL binding affinities from

nuclear extracts and identified UHRF1. Previous studies have

shown that loss of UHRF1 renders cells sensitive to DNA-dam-

age exposure (Jenkins et al., 2005; Muto et al., 2002). In this

study, we constructed genetic and knockdown mutants of

UHRF1 and analyzed its function in DNA damage response.

Our experimental evidence suggests that UHRF1 possesses ac-

tivities recognizing ICL lesions while also interacting with lesion

processing nucleases, suggesting that it is a candidate factor

in promoting DNA damage processing.

DNA Damage Affinity of UHRF1
The lesion-binding ability of UHRF1 was examined by three

independent approaches: cell biology with laser-localized ICLs
s
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Figure 4. UHRF1-Dependent Recruitment of ICL-Processing Nucleases

(A) Co-immunoprecipitation between UHRF1 and ICL-processing nucleases. 293T cells co-transfected with SFB-tagged UHRF1 and indicated nucleases were

co-immunoprecipitated with anti-Flag antibody and immunoblotted (IB) with indicated antibodies. The asterisk marks a nonspecific band in 293 cells.

(B) Immunoblot detecting indicated proteins from control (IgG) and UHRF1 co-immunoprecipitation of MMC-treated 293T cells.

(C) Immunoblot detecting UHRF1 from control (IgG), MUS81, and ERCC1 antibody co-immunoprecipitation of MMC-treated 293T cells.

(D) Pull down of MUS81 and ERCC1 from HeLa extract. MBP-UHRF1 and two UHRF1 truncations, UHRF1C (DUBL-TUDOR-PHD) and MBP-UHRF1N (DSRA-

RING), were immobilized onto amylose beads and incubated with HeLa nuclear extract. Bound proteins were eluted with maltose for immunoblot detection of

ERCC1 and MUS81.

(E) Co-immunoprecipitation between UHRF1 and ICL-processing nucleases. SLX4-null HeLa cells co-transfected with SFB-tagged UHRF1 and indicated

nucleases were in co-immunoprecipitation with anti-FLAG antibody as immunoblotted with the indicated antibodies.

(F) Reciprocal immunoprecipitation between UHRF1 and SLX4. 293T cells co-transfected with SFB-tagged UHRF1 and Myc-tagged SLX4 were subjected to

reciprocal IP with anti-Myc and anti-Flag antibodies.

(G) eChIP assay measuring the recruitment of Mus81 to cisplatin ICLs inUHRF1+/+,UHRF1�/Neo-1, andUHRF1�/Neo-2 cells. Error bars are SD derived from three

independent experiments.

(H) eChIP assay measuring the recruitment of ERCC1 to cisplatin ICLs inUHRF1+/+,UHRF1�/Neo-1, andUHRF1�/Neo-2 cells. Error bars are SD derived from three

independent experiments.
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Figure 5. UHRF1-Dependent Recruitment of ICL-Processing Nucleases

(A) Immunoblots detecting FANCD2 monoubiquitination in cells with indicated genotypes treated or mock-treated with MMC (300 ng/ml). L and S represent

monoubiquitinated and native forms of FANCD2, respectively. Note that the tubulin loading control is shared with Figure 3F because they are from the same blot.

(B) Clonogenic survival of SLX/HeLa cells infected with lentivirus expressing control (Ctrl) or UHRF1 shRNA (sh3 and sh4).

(C) Clonogenic survival of FANCL/HeLa cells with UHRF1 knockdown (UHRF1 sh3 and sh4).

(D) Clonogenic survival of HCT116 (WT) and FANCL/HCT116 cells with UHRF1 knockdown (UHRF1 sh3 and sh4).

(E) A model depicting UHRF1 acts as a damage recognition protein and nuclease scaffold in parallel to the FA-SLX4-mediated ICL DNA damage response.
in vivo, ChIP-based ICL damage enrichment at the molecular

level, and biochemical binding assays in vitro. Results from these

experiments consistently indicated that UHRF1 exhibited strong

and direct affinity toward DNA ICL damage. The structural basis

for UHRF1’s ICL binding affinity is not clear. Using a panel of

UHRF1 domain deletion mutants, we found that the SRA domain

is required for the binding to ICL lesions (Figure 2E). The SRA
1964 Cell Reports 10, 1957–1966, March 31, 2015 ª2015 The Author
domain has been reported to exhibit a moderate affinity toward

hemimethylated CpG duplex DNA and was considered as a

hemimethylation recognition mechanism for the recruitment of

DNMT1 (Avvakumov et al., 2008). However, recent studies indi-

cate that the Tudor and E3 ligase domains playmore critical roles

in directing DNMT1 to hemimethylated DNA (Arita et al., 2012;

Liu et al., 2013; Nishiyama et al., 2013). It is conceivable that
s



the UHRF1 SRA domain exhibits structural flexibility and can

recognize a broad range of damage-induced helix distortions,

thus enabling it to bind to a variety of damages.

UHRF1 as a Nuclease Scaffold
Lack of DNA damage-induced gH2AX and 53BP1 foci accu-

mulation in the UHRF1 mutant cells hinted at an impaired

lesion processing that could arise from a deficit of nuclease

activity at the site of the lesion. Accordingly, we examined

UHRF1 protein-protein interactions and found both ERCC1/

XPF and MUS81/EME1 are associated with UHRF1, suggest-

ing that structure-specific endonucleases interact with UHRF1

in their heterodimeric forms. A protein-protein interaction be-

tween UHRF1 and EME1 was previously detected by a yeast

two-hybrid screen (Mistry et al., 2008). This observation also

suggests a direct interaction between UHRF1 and lesion-pro-

cessing enzymes.

The functionality of the interactions is supported by the

reduced nuclease recruitment to the sites of DNA lesions. The

dual activities of UHRF1 in damage-binding and nuclease asso-

ciation functions may allow it to recruit lesion-processing activ-

ities to promote DNA damage removal. Such a property is akin

to the NER protein XPA, which has lesion-binding affinity and

acts as a scaffold for nuclease recruitment (Li et al., 1994; Orelli

et al., 2010). The dual activities of UHRF1 is also functionally

analogous to that of budding SAW1 protein which binds flap

structures and promotes the recruitment of Rad1/Rad10 through

direct interactions (Li et al., 2008).

Interestingly, the nuclease recruitment function of UHRF1

seems non-epistatic to that of SLX4/FANCP. This is supported

by the experiments examining DNA damage sensitivity in cells

with combined UHRF1 and SLX4 depletions. SLX4 is considered

a main downstream effector of FA pathway activation, which is

presumed to guide lesion-processing and Holliday junction res-

olution lesion-processing nucleases (Hodskinson et al., 2014;

Klein Douwel et al., 2014; Wan et al., 2013). The enhanced

phenotype from a combined loss of SLX4 and UHRF1 suggests

that UHRF1 provides a parallel mechanism for the enrichment of

lesion processing nucleases (Figure 5E). Such a notion is further

supported by the epistatic analyses indicating that UHRF1

function is non-redundant to FANCL. However, given the early

lesion recognition function of UHRF1, it remains possible that

a portion of UHRF1 function is projected through promoting

FA pathway activation (Liang et al., 2015). Together, our findings

revealed a DNA damage response function of UHRF1 and an

FA-pathway-independent mechanism of nuclease recruitment

to the site of lesions.

EXPERIMENTAL PROCEDURES

Antibodies and Plasmids

Commercial antibodies used in this study were purchased as follows, anti-

human UHRF1 (Abgent, NP-037414), anti-gH2AX (Upstate, 07-164), anti-hu-

man mus81 (Thermo Scientific, MA1-5837), anti-human ERCC1 (NeoMarker,

MS-671-P0), and anti-MCM5 (Bethyl Laboratories, A300-195A). WT UHRF1

cDNA, DPHD, DSRA, and DRING constructs in pPyCAGIP-FLAG vector

were a kind gift from Dr. Jiemin Wong. pENTER-UHRF1C724A and

pENTER-UHRF1H741A were a kind gift from Dr. Yonchu Jenkins (Rigel

Pharmaceuticals).
Cell
eChIP Assay

The eChIP assay protocol and substrate preparation were described earlier

(Shen et al., 2009). Cisplatin-adducted plasmid substrates were prepared by

incubating the pOriP plasmid with different dose of cisplatin for 3 hr at 37�C
in the dark.

Clonogenic Survival Assay

Prior to treatment, 1–33 105 cells were seeded in a 100mmculture plate 24 hr.

Cells were exposed to various doses of DNA-damage agents for 1 hr and then

seeded with appropriate cell number in triplicates for each dosage. After

14 days, colonies were fixed with 6% glutaraldehyde (v/v) and stained with

0.5% crystal violet (w/v).

SUPPLEMENTAL INFORMATION

Supplemental Information contains Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2015.03.038.
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and Schärer, O.D. (2010). The XPA-binding domain of ERCC1 is required for

nucleotide excision repair but not other DNA repair pathways. J. Biol. Chem.

285, 3705–3712.

Ouyang, J., Garner, E., Hallet, A., Nguyen, H.D., Rickman, K.A., Gill, G., Smo-

gorzewska, A., and Zou, L. (2015). Noncovalent interactions with SUMO and

ubiquitin orchestrate distinct functions of the SLX4 complex in genome main-

tenance. Mol. Cell 57, 108–122.

Sarkar, S., Davies, A.A., Ulrich, H.D., and McHugh, P.J. (2006). DNA inter-

strand crosslink repair during G1 involves nucleotide excision repair and

DNA polymerase zeta. EMBO J. 25, 1285–1294.

Shen, X., Do, H., Li, Y., Chung, W.H., Tomasz, M., de Winter, J.P., Xia, B.,

Elledge, S.J., Wang, W., and Li, L. (2009). Recruitment of fanconi anemia

and breast cancer proteins to DNA damage sites is differentially governed

by replication. Mol. Cell 35, 716–723.

Smogorzewska, A., Desetty, R., Saito, T.T., Schlabach, M., Lach, F.P., Sowa,

M.E., Clark, A.B., Kunkel, T.A., Harper, J.W., Colaiácovo, M.P., and Elledge,

S.J. (2010). A genetic screen identifies FAN1, a Fanconi anemia-associated

nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39, 36–47.

Stoepker, C., Hain, K., Schuster, B., Hilhorst-Hofstee, Y., Rooimans, M.A.,

Steltenpool, J., Oostra, A.B., Eirich, K., Korthof, E.T., Nieuwint, A.W.M., et al.

(2011). SLX4, a coordinator of structure-specific endonucleases, is mutated

in a new Fanconi anemia subtype. Nat. Genet. 43, 138–141.

Svendsen, J.M., Smogorzewska, A., Sowa, M.E., O’Connell, B.C., Gygi, S.P.,

Elledge, S.J., and Harper, J.W. (2009). Mammalian BTBD12/SLX4 assembles

a Holliday junction resolvase and is required for DNA repair. Cell 138, 63–77.

Wan, B., Yin, J., Horvath, K., Sarkar, J., Chen, Y.,Wu, J.,Wan, K., Lu, J., Gu, P.,

Yu, E.Y., et al. (2013). SLX4 assembles a telomere maintenance toolkit by

bridging multiple endonucleases with telomeres. Cell Rep. 4, 861–869.
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