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a b s t r a c t

The single row facility layout problem (SRFLP) is the problem of arranging n departments
with given lengths on a straight line so as tominimize the total weighted distance between
all department pairs. We present a polyhedral study of the triplet formulation of the
SRFLP introduced by Amaral [A.R.S. Amaral, A new lower bound for the single row facility
layout problem, Discrete AppliedMathematics 157 (1) (2009) 183–190]. For any number of
departments n, we prove that the dimension of the triplet polytope is n(n−1)(n−2)/3 (this
is also true for the projections of this polytope presented by Amaral). We then prove that
several valid inequalities presented by Amaral for this polytope are facet-defining. These
results provide theoretical support for the fact that the linear program solved over these
valid inequalities gives the optimal solution for all instances studied by Amaral.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In single row facility layout problem (SRFLP), the goal is to arrange n departments on a straight line. We are given the
following data: an n× n symmetric matrix C = [cij], where cij denotes the average daily traffic between two departments i
and j, and the length li of each department i ∈ N = {1, . . . , n}. The distance zij between two departments is considered to
be the distance between their centroids. The objective is to find the permutation π that minimizes the total communication
cost, i.e.

min
π

n−1∑
i=1

n∑
j=i+1

cijzπij .

The SRFLP has several applications involving arranging rooms on a corridor, machines in a manufacturing system, and
books on a shelf [9,15,16]. The minimum linear arrangement problem (MLAP) was proven to be NP-hard in [8]. The SRFLP is
a generalization of MLAP and so is also NP-hard. Numerous heuristic solution approaches have been proposed for SRFLP
(e.g. see [9,12,17,14]).
Several exact solution techniques have also been proposed including branch and bound algorithms [16], dynamic pro-

gramming [15,11], nonlinear programming [10], and linear mixed integer programming [1,2,13]. Anjos et al. [5] and Anjos
and Vanelli [6] provided lower bounds on the optimal cost of SRFLP using semidefinite programming (SDP) relaxations.
Anjos and Yen [7] computed near optimal solutions for instances with up to 100 facilities using a new SDP relaxation. Ama-
ral and Letchford [4] conducted a polyhedral study on the distance polytope formulation of SRFLP and developed several
classes of valid inequalities. They achieved quick bounds for SRFLP using LP relaxations based on these valid inequalities.
They are comparable to the bounds achieved in [5].
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Amaral [3] presented an alternate formulation of the SRFLP, herein referred to as the triplet formulation, and introduced a
set of valid inequalities for it. It is shown in [3] that the linear program solved over these valid inequalities yields the optimal
solution for several classical SRFLP instances of sizes n = 5 to n = 30. These problem instances are from [1,2,9,10,13,16].
The results in [3] are comparable to the results of [6] which are based on SDP relaxation with cutting planes added.
The fact that the LP relaxation over the valid inequalities of [3] gives the optimal solution to so many instances suggests

that these valid inequalities are quite strong. In this paper, we conduct a polyhedral study of the triplet polytope, i.e. the
convex hull of feasible integer points for the triplet formulation. We prove that almost all valid inequalities introduced
in [3] are indeed facet-defining for the triplet polytope. More specifically, we first show that the three polytopes (triplet
polytope and its two projections defined in [3]) are of dimension n(n − 1)(n − 2)/3. After establishing the dimension of
these polytopes, we then prove the aforementioned facet-defining properties.
The paper is organized as follows: Section 2 briefly reviews the triplet polytope, its projections, and the valid inequalities

developed for them in [3]. In Section 3 we prove that these polytopes are of dimension n(n− 1)(n− 2)/3. In Section 4 we
prove the facet-defining properties of valid inequalities of [3], and we conclude in Section 5 with a few remarks.

2. Triplet polytope, its projections and valid inequalities

In the triplet formulation for the SRFLP [3], a binary vector ζ ∈ {0, 1}n(n−1)(n−2) is used to represent a permutation of the
departments in N . Each element of ζ is identified by a triplet subscript ijk, where i, j, k ∈ N are distinct, and

ζijk =

{
1 if department k lies between departments i and j
0 otherwise.

Throughout the paper, all the department indices used in the subscript of a single variable, coefficient, or set are assumed
to be distinct and we refrain from writing this in each case. We define

P =
{
ζ ∈ {0, 1}n(n−1)(n−2) : ζ represents a permutation of 1, . . . , n

}
,

and refer to the convex hull of P , i.e. conv(P), as the triplet polytope. Based on this formulation, the objective function of
SRFLP can be written as

min
n−1∑
i=1

n∑
j=i+1

cij

(
1
2
(li + lj)+

n∑
k6=i, k6=j

lkζijk

)
.

In [3] the following valid inequalities are presented for P:

0 ≤ ζijk ≤ 1 i, j, k ∈ N (1)

ζijk + ζikj + ζjki = 1 i, j, k ∈ N (2)

ζijd + ζjkd − ζikd ≥ 0 i, j, k, d ∈ N (3)

ζijd + ζjkd + ζikd ≤ 2 i, j, k, d ∈ N. (4)

Two projections of P are also introduced in [3]. We briefly review them here. It is clear that for any ζ ∈ P

ζijk = ζjik 1 ≤ i < j ≤ n. (5)

Using this identity, P can be projected onto the space {0, 1}n
′

, where n′ = n(n−1)(n−2)/2.We refer to this projection as P1.
The projection of a vector ζ ∈ P will be a vector λ ∈ P1 ⊆ {0, 1}n

′

with elements λijk such that λijk = ζijk for i, j, k ∈ N, i < j.
So the valid inequalities (1)–(4) can also be projected yielding the following inequalities for P1. Observe that (8)–(10) are
obtained from projection of (3).

0 ≤ λijk ≤ 1 i, j, k ∈ N, i < j (6)

λijk + λikj + λjki = 1 i, j, k ∈ N, i < j < k (7)

−λijd + λjkd + λikd ≥ 0 i, j, k, d ∈ N, i < j < k (8)

λijd + λjkd − λikd ≥ 0 i, j, k, d ∈ N, i < j < k (9)

λijd − λjkd + λikd ≥ 0 i, j, k, d ∈ N, i < j < k (10)

λijd + λjkd + λikd ≤ 2 i, j, k, d ∈ N, i < j < k. (11)

Amaral [3] also introduces a more complicated set of valid inequalities for conv(P1) as follows: for a positive even integer
β ≤ n, consider the set of distinct indices S = {it : t = 1, . . . , β} ⊆ {1, . . . , n} and d ∈ S. Let (S1, S2) be a partition of S \ {d}
such that |S1| = β2. Then, the inequality∑

p,q∈S1:p<q

λpqd +
∑

p,q∈S2:p<q

λpqd ≤
∑

p∈Sh, q∈S{1,2}\h:h=1,2, p<q

λpqd (12)

is valid for conv(P1) [3]. Inequalities (8)–(10) are special cases of (12) for β = 4, as noted in [3].
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P1 can be further projected on a lower dimensional space using identity (7). Observe that based on (7), we have
λijk = 1− λikj − λjki i, j, k ∈ N, i < j < k.

Therefore, the number of variables can be reduced to n′′ = n′ −
( n
3

)
= n(n − 1)(n − 2)/3. We refer to this projection

as P2. The projection of a vector λ ∈ P1 will be a vector µ ∈ P2 ⊆ {0, 1}n
′′

with elements µijk such that µijk = λijk for
i, j, k ∈ N, i < j, k < j. The set of valid inequalities (6)–(12) can also be projected yielding valid inequalities for P2.

3. Dimension of convex hulls of P , P1 and P2

In this section, we prove that conv(P1) is of dimension n′′. Based on the projection relationships between P , P1 and P2,
wewill then easily argue that the dimensions of conv(P) and conv(P2) are n′′ too. To prove that the dimension of P1 is n′′, we
will show that any hyperplane passing through all points in P1 can be expressed as a linear combination of the set of linearly
independent equalities (7). Since the number of these inequalities is

( n
3

)
, we will have dim(conv(P1)) = n′ −

( n
3

)
= n′′.

We first define some notations that we will use throughout the paper. For any N ′ ⊆ N , we define ΠN ′ as the set of
all permutations of the departments in N ′. Each λ ∈ P1 corresponds to a member of ΠN . To denote the λ vector which
corresponds to a given permutation π ∈ ΠN , we write λπ . Similarly if for example π1 ∈ ΠN\{x,y}, then λxπ

1y is the vector
in P1 corresponding to the permutation xπ1y, i.e. the permutation in which x is the first department, y is the last one, and
the rest are in the middle in the order π1. Similar notations are also used for ζ ∈ P and µ ∈ P2 that correspond to a given
permutation.
Based on the definition of P1, λijk is only defined when i < j. Therefore for any given three distinct departments i, j, and

k, the variable representing whether k is between i and j or not, is λijk if i < j, and is λjik if i > j. In many cases, just for the
sake of notation simplicity, we would like to avoid differentiating between these two cases. In order to do so, wherever we
have λijk, where i > j, we mean λjik. We emphasize that this is just a notational substitute and does not mean that when
i > j the variable λijk really exists. We also employ this practice for aijk, the coefficient of λijk in a hyperplane, so the reader
should be careful that when i > j, aijk is only a notational substitute for the real coefficient ajik.
The following lemma is fundamental to the result in this section.

Lemma 1. For some given departments x, y, z ∈ N and permutations π1 ∈ ΠN\{x,y}, π2 ∈ ΠN\{x,y,z}, if λxyπ
1
, λyxπ

1
, λzxyπ

2
, and

λzyxπ
2
lie on the hyperplane∑
i,j,k∈N:i<j

aijkλijk = b, (13)

then ayzx = axzy.

Proof. We substitute λxyπ1 and λyxπ1 in (13). The left-hand sides are both equal to b; therefore,∑
i,j,k∈N:i<j

aijkλ
xyπ1
ijk =

∑
i,j,k∈N:i<j

aijkλ
yxπ1
ijk . (14)

Now observe that λxyπ
1

ijk = λ
yxπ1
ijk for any i, j, k such that {x, y} 6⊂ {i, j, k}. Therefore, aijk’s for such terms cancel out from both

sides. Also λxyπ
1

xyh = 0, λ
xyπ1
yhx = 0, λ

xyπ1
xhy = 1, λ

yxπ1
xyh = 0, λ

yxπ1
xhy = 0, and λ

yxπ1
yhx = 1 for all h 6= x, y. Therefore, (14) reduces to∑

h6=x,y

axhy =
∑
h6=x,y

ayhx. (15)

Next we substitute the other two vectors λzxyπ
2
and λzyxπ

2
in (13) and equate the left-hand sides, we get∑

i,j,k∈N:i<j

aijkλ
zxyπ2
ijk =

∑
i,j,k∈N:i<j

aijkλ
zyxπ2
ijk . (16)

Like above by substituting the variable values and canceling the common terms, it is easy to see that (16) reduces to

ayzx +
∑
h6=x,y,z

axhy = axzy +
∑
h6=x,y,z

ayhx. (17)

Subtracting (17) from (15), we get axzy − ayzx = ayzx − axzy or ayzx = axzy, which concludes the proof. �

Amaral and Letchford [4] use a similar pairwise switching of departments to obtain the dimension of the distance
polytope formulation they presented for SRFLP.

Theorem 2. conv(P1) is of dimension n′′.
Proof. conv(P1) ⊂ Rn

′

and any λ ∈ P1 satisfies the set of
( n
3

)
equalities (7). Clearly these set of equalities are linearly

independent because no variable appears in more than one equality. Hence, dim
(
conv(P1)

)
≤ n′−

( n
3

)
= n′′. To prove that
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the dimension is actually equal to n′′, we just need to show that any other hyperplane like∑
i,j,k∈N:i<j

aijkλijk = b (18)

satisfied by all λ ∈ P1 will be a linear combination of the equalities (7). For this purpose observe that λπ ∈ P1 for any
permutation π ∈ ΠN . Therefore, for any three distinct departments x, y, z, by choosing any two arbitrary permutations
π1 ∈ ΠN\{x,y} and π2 ∈ ΠN\{x,y,z}, the vectors λxyπ

1
, λyxπ

1
, λzxyπ

2
, λzyxπ

2
are in P1 and so lie on (18). Hence by Lemma 1,

ayzx = axzy. Also for any arbitrary π3 ∈ ΠN\{y,z}, the vectors λyzπ
3
, λzyπ

3
, λxyzπ

2
, λxzyπ

2
are in P1 and so lie on (18). Hence

again by Lemma 1, axyz = axzy (note that based on our notation the order of the first two departments in the subscript does
not matter). Therefore in (18), for any three departments x, y, z we have

axyz = axzy = ayzx. (19)

Identity (19) along with equalities (7) shows that b =
∑
i,j,k∈N:i<j aijk and (18) has to be a linear combination of equalities

(7), which concludes the proof. �

Remember that P1 is a projection P based on identities (5) and P2 is a projection of P1 based on identities (7). Therefore,
dimensions of conv(P) and conv(P2) can be derived as a corollary to Theorem 2. This corollary is based on the following
simple Lemma, which we state first.

Lemma 3. Let A be a n1 × n2 matrix and b be a constant n2-vector. If S ⊆ Rn1 and T = {(x, xA − b) ∈ Rn1+n2 : x ∈ S}, then
dim (S) = dim (T ).

Proof. The proof is the direct result of the fact that x1, . . . , xm ∈ S are affinely independent if and only if (x1, x1A −
b), . . . , (xm, xmA− b) ∈ T are affinely independent. �

Observe that in Lemma 3, if we denote the elements of T by (x, y), then S is in fact the projection of T over Rn1 based on
identity y = xA− b.

Corollary 4. conv(P) and conv(P2) are also of dimension n′′.
Proof. Based on the identities (5), conv(P1) and conv(P) play the roles of S and T in Lemma 3, respectively (we would have
n1 = n′ and n1 + n2 = 2n′), so according to Lemma 3, dim (conv(P)) = dim

(
conv(P1)

)
= n′′.

Similarly, based on identities (7), conv(P2) and conv(P1) play the roles of S and T in Lemma 3, respectively (we would
have n1 = n′′ and n1 + n2 = n′), so according to Lemma 3, dim

(
conv(P2)

)
= dim

(
conv(P1)

)
= n′′. �

Therefore, conv(P), conv(P1), and conv(P2) all have the same dimension n′′ and conv(P2) is full dimensional.

4. Facet-defining properties of valid inequalities

In this section, we prove that inequalities (8)–(10) and (12) are facet-defining for conv(P1). Then as a result of Lemma 3,
their corresponding inequalities for P and P2 are also facet-defining for conv(P) and conv(P2).
We note that trivial inequalities (6) as well as inequality (11) are not facet-defining in general. This can be easily seen

by listing all λ ∈ P1 that lie on the defining hyperplanes of these inequalities for n = 3 or n = 4 and checking their affine
independence.

Theorem 5. Inequalities (8)–(10) are facet-defining for conv(P1).
Proof. Consider any chosen four departments i, j, k, d (i < j < k). We prove the theorem for inequality (8). The proof for
inequalities (9) and (10) is similar. By Theorem 2, we know dim

(
conv(P1)

)
= n′′. Let P ′ be the face of conv(P1) defined by

(8). Therefore, for every point in P ′, (8) is satisfied at equality, i.e.

− λijd + λjkd + λikd = 0. (20)

To prove P ′ is a facet, we must show dim
(
P ′
)
= n′′ − 1. To show this we prove any hyperplane like∑

e,f ,g∈N:e<f

aefgλefg = b (21)

that passes through P ′ has to be a linear combination of the hyperplanes (7) and the hyperplane (20). First we prove the
following identity:

aefg = aegf = afge for any {e, f , g} 6= {i, j, d},{i, k, d},{j, k, d}. (22)

To show this observe that the following three cases are possible:
(i) d 6∈ {e, f , g}: Note that any for any π ∈ ΠN\{d}, λπd satisfies (20) and hence belongs to P ′. Thus, it must satisfy (21).
So in particular, for any arbitrary π1 ∈ ΠN\{e,f ,d}, π2 ∈ ΠN\{e,f ,g,d}, the vectors λefπ

1d, λfeπ
1d, λgefπ

2d, and λgfeπ
2d satisfy
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(21). Therefore by Lemma 1, aegf = afge. For the same reason, for any arbitrary π3 ∈ ΠN\{f ,g,d}, λfgπ
3d, λgfπ

3d, λefgπ
2d,

and λegfπ
2d satisfy (21). So again by Lemma 1, aefg = aegf . Therefore (22) is true in this case.

(ii) d ∈ {e, f , g} and {e, f , g} ∩ {i, j, k} = ∅, {i} or {j}: We assume e = d (the arguments for the cases f = d or g = d are
similar by symmetry). Now observe that for any arbitrary π1 ∈ ΠN\{d,f }, π2 ∈ ΠN\{d,f ,g}, the vectors λdfπ

1
, λfdπ

1
, λgdfπ

2
,

and λgfdπ
2
satisfy (20) and hence belongs to P ′ so they must satisfy (21) too. Therefore by Lemma 1, adgf = afgd. Also

for the same reason, for any arbitrary π3 ∈ ΠN\{d,g}, λdgπ
3
, λgdπ

3
, λfdgπ

2
, and λfgdπ

2
satisfy (21). So again by Lemma 1,

adfg = afgd. Therefore, since d = e, identity (22) is true in this case too.
(iii) d ∈ {e, f , g} and {e, f , g} ∩ {i, j, k} = {k}: We assume e = d and f = k (the arguments for other possibilities are similar

by symmetry). First observe that for any arbitraryπ1 ∈ ΠN\{g,k} andπ2 ∈ ΠN\{d,g,k}, the vectors λgkπ
1
, λkgπ

1
, λdgkπ

2
, and

λdkgπ
2
satisfy (20) and hence belong to P ′. So they satisfy (21). Therefore again by Lemma 1, adkg = adgk. Now to prove

adkg = agkd we cannot simply use Lemma 1 as before. The proof is as follows: note that for any arbitrary π3 ∈ ΠN\{d,g},
the vectors λdgπ

3
and λgdπ

3
satisfy (20) so they must satisfy (21) too. Similar to the proof of Lemma 1, by substituting

these two vectors in the left-hand side of (21) and equating them, we get∑
h6=d,g

adhg =
∑
h6=d,g

aghd. (23)

Moreover for any arbitrary π4 ∈ ΠN\{d,g,i,k}, the vectors λikdgπ
4
and λikgdπ

4
must satisfy (21) for the same reason. By

substitution the two vectors in the left-hand side of (21) and equating, we get

agkd + agid +
∑

h6=d,g,i,k

adhg = adkg + adig +
∑

h6=d,g,i,k

aghd. (24)

Subtracting (24) from (23) we get

adkg − agkd + adig − agid = agkd − adkg + agid − adig . (25)

But agid = adig according to case (ii). So (25) reduces to adkg = agkd. Therefore, identity (22) is true in this case too.
Moreover, for any arbitraryπ1 ∈ ΠN\{i,j,d}, the vectorsλijπ

1d, λjiπ
1d, λdijπ

1
, λdjiπ

1
are in P ′ andhence satisfy (21). Therefore

by Lemma 1,

aidj = ajdi. (26)

By a similar argument, we also have

aidk = akdi, (27)
ajdk = akdj. (28)

Now observe that identities (22) imply that hyperplane (21) is a linear combination of equalities (7) for {e, f , g} 6=
{i, j, d},{i, k, d},{j, k, d} as well as equality (29) below (the coefficient of any particular equality (7) like λefg +λegf +λgfe = 1
in this linear combination is aefg (= aegf = afge) and we have b1 = b−

∑
{e,f ,g:e<f }6={i,j,d},{i,k,d},{j,k,d} aefg ):

aijdλijd + aidjλidj + ajdiλjdi + aikdλikd + aidkλidk + akdiλkdi + ajkdλjkd + ajdkλjdk + akdjλkdj = b1. (29)

Furthermore having identities (26)–(28), equality (29) can be written as a linear combination of equalities (7) for {i, j, d},
{i, k, d}, and {j, k, d} (with coefficients aidj, aidk, and ajdk, respectively) as well as the equality

(aijd − aidj)λijd + (aikd − aidk)λikd + (ajkd − ajdk)λjkd = b2, (30)

where b2 = b1 − aidj − aidk − ajdk. This means any point in P ′ must satisfy (30) (because it satisfies (21) and equalities (7)).
In particular for any arbitrary π1 ∈ ΠN\{d,i}, the vector λiπ

1d is in P ′ and hence satisfies (30). If we substitute it in (30), we
get b2 = 0. The vector λidπ

1
also belongs to P ′. Substituting this vector in (30) gives

− (aijd − aidj) = aikd − aidk. (31)

Also for any arbitrary π2 ∈ ΠN\{d,i,k}, the vector λikdπ
2
is in P ′ and hence satisfies (30). Substituting this vector in (30) gives

− (aijd − aidj) = ajkd − ajdk. (32)

Using identities (31) and (32) and the fact that b2 = 0, equality (30) reduces to

(aijd − aidj)(−λijd + λikd + λjkd) = 0. (33)

Therefore, (33) is equality (20) multiplied by aijd − aidj. So we have shown that (21) is a linear combination of (20) and the
hyperplanes (7). This concludes the proof. �



1866 S. Sanjeevi, K. Kianfar / Discrete Applied Mathematics 158 (2010) 1861–1867

We mentioned that inequality (12) is a generalization of inequalities (8), (9), or (10). It turns out that this generalized
inequality is also facet-defining.We prove this in Theorem 7 below; but first we prove the following lemma about a property
of permutations that satisfy (12) at equality as we need it in proving Theorem 7.

Lemma 6. Consider inequality (12) for given β , S, S1, S2 and d. Let π ∈ ΠN , and γ1 and γ2 be the number of departments in S1
and S2 which are to the left of d in π , respectively. Then, λπ ∈ P1 satisfies (12) at equality if and only if γ1 − γ2 = 0 or 1.

Proof. Let |S1| = α. Hence, |S2| = α−1. The number of departments in S1 and S2 to the left of d inπ is γ1 and γ2, respectively;
therefore, the number of departments in S1 and S2 to the right of d is α − γ1 and α − 1 − γ2, respectively. Now it is easy
to see that on the left-hand side of (12), the first summation is equal to γ1(α − γ1) and the second summation is equal to
γ2(α − 1− γ2). Also the summation on the right-hand side of (12) is equal to γ1(α − 1− γ2)+ γ2(α − γ1). So the validity
of (12) is equivalent to the validity of

γ1(α − γ1)+ γ2(α − 1− γ2) ≤ γ1(α − 1− γ2)+ γ2(α − γ1).

This of course reduces to

(γ1 − γ2) ≤ (γ1 − γ2)
2, (34)

which is trivial (and hence proves the validity of (12)). Now see that (34) is satisfied at equality if and only if γ1 − γ2 = 0
or 1, which means λπ satisfies (12) at equality if and only if γ1 − γ2 = 0 or 1. �

Theorem 7. Any of inequalities (12) is facet-defining for conv(P1).

Proof. Consider inequality (12) for given β , S, S1, S2 and d. This proof is a generalization of the proof of Theorem 5 (in fact
we had S1 = {i, j} and S2 = {k} in Theorem 5). Let P ′ be the face of conv(P1) defined by (12). Therefore, for every point in
P ′, (12) is satisfied at equality, i.e.∑

p,q∈S1:p<q

λpqd +
∑

p,q∈S2:p<q

λpqd −
∑

p∈S1,q∈S2

λpqd = 0. (35)

Similar to Theorem 5, we need to show that any hyperplane like∑
e,f ,g∈N:e<f

aefgλefg = b (36)

that passes through P ′ is a linear combination of hyperplanes (7) and hyperplane (35). First notice that as a generalization
of (22) we prove the following identity:

aefg = aegf = afge for any e, f , g such that d 6∈ {e, f , g} or {e, f , g} 6⊂ S. (37)

To prove this see that the following cases are possible: (i) d 6∈ {e, f , g}; (ii) d ∈ {e, f , g} and ({e, f , g} \ d) ∩ S = ∅ or
{i}, where i ∈ S1; (iii) d ∈ {e, f , g} and ({e, f , g} \ d) ∩ S = {k}, where k ∈ S2. The arguments for these three cases are very
similar to the arguments for cases (i)–(iii) in the proof of Theorem 5, respectively. The λ vectors used are exactly the same
and the reason why they satisfy (35) is Lemma 6 because in all given permutations γ1 − γ2 = 0 or 1. In case (iii), the i that
is used in the proof of Theorem 5 represents any arbitrary member of S1.
Moreover for any p, q ∈ S1 and any arbitrary permutation π1 ∈ ΠN\{p,q,d}, the vectors λpqπ

1d, λqpπ
1d, λdpqπ

1
, and λdqpπ

1

satisfy (35) by Lemma 6, so they must satisfy (36). Therefore by Lemma 1,

apdq = aqdp for all p, q ∈ S1. (38)

By a similar argument, we also have

asdt = atds for all s, t ∈ S2 , (39)
apds = asdp for all p ∈ S1, s ∈ S2 . (40)

Now observe that having identities (38)–(40), hyperplane (36) can be written as a linear combination of equalities (7) as
well as the equality:∑

p,q∈S1, p<q

(apqd − apdq)λpqd +
∑

s,t∈S2, s<t

(astd − asdt)λstd +
∑

p∈S1, s∈S2

(apsd − apds)λpsd = b1. (41)

Now for any arbitrary π1 ∈ ΠN\{d}, λπ
1d is in P ′. Substituting this vector in (41) gives b1 = 0. Moreover, for any p, q ∈ S1,

s ∈ S2 and arbitrary π2 ∈ ΠN/{d,p,q,s}, the vector λpdqsπ
2
belongs to P ′. Substituting this vector in (41) gives

apqd − apdq = −(apsd − apds) for all p, q ∈ S1, s ∈ S2 . (42)

Also for any p ∈ S1, s, t ∈ S2 and arbitrary π3 ∈ ΠN\{d,i,k}, the vector λptdsπ
3
is in P ′. Substituting this vector in (41) gives
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astd − asdt = −(apsd − apds) for all p ∈ S1, s, t ∈ S2 . (43)

Identities (42) and (43) imply that all coefficients in equality (41) are equal. Let the constant K denote their common value.
Therefore, (41) reduces to

K

( ∑
p,q∈S1, p<q

λpqd +
∑

s,t∈S2, s<t

λstd −
∑

p∈S1, s∈S2

λpsd

)
= 0. (44)

Therefore, (44) is equality (35) multiplied by K . So we have shown that (36) is a linear combination of (35) and the
hyperplanes (7). This concludes the proof. �

Corollary 8. Inequalities (12), written for ζ instead of λ, and inequalities (3) are facet-defining for conv(P). Also the projections
of inequalities (8)–(10) and (12) for P2 are facet-defining for conv(P2).

Proof. The proof is a direct result of Theorems 5 and 7 and Lemma 3 applied to the faces defined by these inequalities. �

5. Conclusions

We proved that the convex hulls of the triplet formulation for SRFLP and its projections [3] are of dimension n(n−1)(n−
2)/3, where n is the number of departments. We also showed that many valid inequalities presented in [3] for this polytope
are facet-defining. Our result provides a theoretical support for the fact that the LP solution over these valid inequalities
gives the optimal solution for all instances studied in [3]. A possible direction for future research is to develop new classes
of valid inequalities and facets for the triplet polytope.
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