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Human immunodeficiency virus type 1 (HIV-1) needs to overcome cellular counter mechanisms such as to
successfully propagate itself. Results of our recent studies show that overexpression of insulin-like growth
factor II mRNA binding protein 1 (IMP1) inhibits production of infectious HIV-1 particles through adversely
affecting virus maturation. Here, we report that IMP1 interacts with HIV-1 Rev protein and its ectopic
expression causes relocation of Rev from the nucleus to the cytoplasm. In accordance with this observation,
ectopic expression of IMP1 severely diminishes Rev-dependent expression of CAT enzyme and disturbs HIV-1
RNA expression by causing accumulation of the multiple spliced viral RNA. Results of mutagenesis analysis
further reveal that the KH4 domain represents the key element of IMP1 in modulating HIV-1 RNA expression.
Taken together, these data suggest, in addition to hampering virus assembly, that IMP1 also has an effect on
Rev-dependent viral RNA expression.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Human immunodeficiency virus type 1 (HIV-1) encodes nine
genes including three structural genes (gag, pol and env), two
regulatory genes (tat and rev) and four accessory genes (vpr, vif, vpu
and nef; Frankel and Young, 1998). HIV-1 life cycle falls into two
phases. The early phase starts from virus entry and finishes till
integration of viral cDNA into the host chromosomal DNA to form a
provirus. The late phase begins with transcription of HIV-1 RNA and
ends with generation of infectious virus particles. HIV-1 replicates
strictly within cells by exploiting various cellular pathways and
consuming cellular resources (Goff, 2007). This is well reflected by the
fact that HIV-1 relies on the cellular RNA polymerase II to produce and
amplify viral RNA genome as well as on the cellular translation
machinery to make viral proteins. Furthermore, although HIV-1 Gag
protein is capable of generating virus-like particles, in order to
successfully check out of the cells, these Gag particles need to hijack
the ESCRT (endosomal sorting complex required for transport) for
budding and release (Fujii et al., 2007). To defend itself from HIV-1
infection, cells have evolved various means to target and block
different steps of HIV-1 replication (Goff, 2007), which is well
manifested by several recently discovered HIV-1 restriction factors.

IMP1 is one of the zip-code binding proteins (ZBPs) that recognize
cis-acting RNA elements and regulate the activity of mRNA target
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(Jambhekar and Derisi, 2007). IMP1 and its homologues from
different species form a small protein family named the VICKZ family,
including IMP1, IMP2 and IMP3 in human, coding region determinant-
binding protein (CRD-BP) in mouse, ZBP1 in chicken, and Vg1-RBP/
Vera in Xenopus (Yisraeli, 2005). The VICKZ family members all
possess two RNA recognition motifs (RRMs) followed by four tandem
hnRNP K homology (KH) domains. IMP1 was originally discovered
through its association with the leader 3 of the insulin-like growth
factor II (IGF II) mRNA and is known for its ability to regulate the
expression of IGF II at the early stage of mouse embryonic
development (Nielsen et al., 1999). A few more RNA targets of IMP1
were subsequently identified such as H19 RNA (Runge et al., 2000),
tau mRNA (Atlas et al., 2004), c-myc mRNA (Doyle et al., 1998) and
PABP mRNA (Patel and Bag, 2006). A comprehensive microarray
analysis of RNA composition of IMP1-containing RNP granules
suggests that IMP1 potentially controls the activity of 2–3% of the
cellular transcriptome (Jonson et al., 2007). The importance of IMP1 in
cell life is further highlighted by the findings that the KH4-deleted
IMP1 mutant acts in a dominant-negative fashion to inhibit cell
migration (Natkunam et al., 2007) and that elevated expression of
IMP1 is associated with several types of cancers such as colorectal
carcinoma (Ross et al., 2001), brain tumors (Ioannidis et al., 2004),
non-small cell lung carcinoma (Ioannidis et al., 2004), and mesen-
chymal tumors (Ioannidis et al., 2001).

Given that IMP1 is a typical RNA-binding protein and that its
intrinsic function is to regulate the activity of its RNA target (Yisraeli,
2005), we speculated that IMP1 may also modulate HIV-1 RNA
expression. Indeed, results of this study revealed that ectopic
expression of IMP1 caused significant accumulation of the multiple
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Fig. 1. Ectopic expression of FLAG-IMP1 alters subcellular localization of Rev protein.
(A) Domain structure of IMP1 and its mutants. Positions of the deleted amino acids are
denoted. (B) IMP1 interacts with Rev. HEK293T cells were co-transfected with the Rev
DNA and the wild-type FLAG-IMP1 or the mutated FLAG-ΔRRM(1–2), FLAG-ΔKH(1–4)
and FLAG-ΔKH(3–4) DNA. Cell lysates were incubated with agarose beads coated with
anti-FLAG antibody to immunoprecipitate FLAG-IMP1 protein and its mutants. The
precipitated materials were assessed by Western blotting using either anti-FLAG or
anti-Rev antibodies. (C) Subcellular localization of FLAG-IMP1 and Rev proteins. The
Rev-RFP DNA was transfected into HeLa cells together with the wild-type or mutated
FLAG-IMP1 DNA. Subcellular distribution of FLAG-IMP1 and the endogenous Crm1
proteins was detected by immunofluorescence staining using anti-FLAG or anti-Crm1
antibodies. Fluorescent signals for FLAG-IMP1, Rev-RFP and Crm1 are pseudo-colored
as blue, red and green, respectively.
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spliced HIV-1 RNA,which is attributed to the ability of IMP1 to interact
with Rev and to relocate Rev from the nucleus into the cytoplasm.

Results

IMP1 interacts with Rev protein and its ectopic expression causes
relocation of Rev from the nucleus to the cytoplasm

IMP1 shuttles between the nucleus and the cytoplasm as a
component of RNP complex and may thus have a potential role in
regulating nuclear export of RNA (Yisraeli, 2005). HIV-1 Rev is also a
shuttling protein and controls nuclear export of HIV-1 full-length and
singly spliced RNA (Pollard and Malim, 1998). We therefore asked
whether IMP1 and Rev happen to interact with each other when they
traffic between the nucleus and the cytoplasm. To address this,
HEK293T cells were co-transfected with the FLAG-IMP1 and Rev DNA
constructs. The FLAG-IMP1 protein was then immunoprecipitated
from cell lysates using the anti-FLAG antibody. The results of Western
blotting showed that Rev protein was readily detected in precipitated
materials (Fig. 1A, B). Deletion of the four KH domains, but not the two
RRM domains or the KH3/KH4 domains, eliminated this interaction
(Fig. 1A, B). Association of IMP1 and Rev was next investigated by
imaging analysis to determine whether these two proteins co-localize
in cells. To this end, we transfected HeLa cells with Rev-RFP DNA alone
or together with the FLAG-IMP1 DNA. Rev-RFP was detected in the
nucleoli in cells that were transfected only by Rev-RFP DNA (Fig. 1C).
It is known that Rev binds to Crm1 and exports HIV-1 full-length RNA
into the cytoplasm via the Crm1 pathway (Pollard and Malim, 1998).
In the absence of Rev-RFP, Crm1 was evenly distributed within the
nucleoplasm with a modest accumulation along the nuclear rim
(Fig. 1C). Expression of Rev-RFP led to accumulation of Crm1 in the
nucleoli, suggesting that Rev sequesters a substantial amount of Crm1
protein within the nucleoli for its own use. When both Rev-RFP and
FLAG-IMP1 were expressed, a significant amount of Rev-RFP was
detected within the cytoplasm and co-localized with FLAG-IMP1
(Fig. 1C). Expression of FLAG-ΔRRM(1–2), but not FLAG-ΔKH(1–4),
resulted in substantial relocation of Rev-RFP from the nucleus into the
cytoplasm (Fig. 1C). Interestingly, the FLAG-ΔKH(3–4) protein was
unable to change the subcellular location of Rev-RFP, although Rev
was efficiently co-immunoprecipitated with FLAG-ΔKH(3–4) (Fig. 1B,
C), indicating that interaction of FLAG-IMP1 with Rev is necessary but
insufficient to divert Rev from the nucleus into the cytoplasm. Taken
together, these results suggest that IMP1 interacts with Rev and has
the ability of altering Rev subcellular distribution.

Ectopic expression of IMP1 suppresses Rev-dependent expression of the
CAT enzyme

Given the adverse effects of IMP1 on Rev subcellular localization,
we speculated that ectopic IMP1 expression impairs the function of
Rev. To test this, we utilized the pDM128 plasmid DNA that expresses
the CAT enzyme in a Rev-dependent manner (Hope et al., 1990).
Results of Fig. 2A show that cotransfection of FLAG-IMP1 DNA led to a
6-fold reduction of Rev-dependent CAT production. Further testing a
panel of IMP1 mutants revealed that the FLAG-ΔRRM(1–2) mutant
inhibited CAT expression by 2-fold as opposed to modestly stimulated
CAT expression by the FLAG-ΔKH(1–4) or FLAG-ΔKH(3–4) mutants
(Fig. 2B), which is in accordance with the effect of these mutants on
the subcellular location of Rev (Fig. 1C). Therefore, ectopic IMP1
expression inhibits the function of Rev and the KH domains play an
important role in this inhibition activity.

Since Rev-dependent gene expression requires specific access to
Crm1-mediated nuclear export pathway, we next tested whether
IMP1 adversely affects Rev-dependent CAT expression through
specifically impairing the function of Crm1 but not TAP. Toward this
end, a reporter construct named DM128-ms2×4was employed in the
following experiments. This DNA construct contains four copies of RNA
binding sites for the MS2 protein (Yi, Bogerd, and Cullen, 2002).
Through co-transfection with MS2-Crm1 or MS2-TAP DNA, Crm1 or
TAP protein is recruited to the DM128-ms2×4 mRNA as a result of
specific binding of MS2 to its RNA ligandms2, followed by the nuclear
export of DM128-ms2×4 mRNA and expression of CAT enzyme
(Fig. 3A).WhenFLAG-IMP1was expressed, theMS2-Crm1-dependent,
but not MS2-TAP-dependent, expression of CAT enzyme was signi-
ficantly reduced (Fig. 3A). Results of further studies showed that the
KHdomainswere essential for this inhibitory activity of IMP1 (Fig. 3B).
This finding was confirmed by the results of experiments performed
with the GPV-ms2×6 DNA construct that encode HIV-1 Gag and Gag-
Pol proteins and carries six copies of RNA binding sites for the MS2
protein. The results in Fig. 3C show that IMP1 expression specifically
inhibited Crm1-dependent, but not TAP-dependent, production of Gag
andGag-Pol proteins. Taken together, the data suggest that, in addition
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to altering the subcellular distribution of Rev protein, IMP1 impedes
Rev-dependent gene expression by targeting the Crm1-mediated
nuclear export pathway.

Ectopic expression of IMP1 leads to significant accumulation of multiple
spliced HIV-1 RNA

Rev protein promotes the nuclear export of the unspliced and
singly spliced HIV-1 RNA and thus represents a key viral factor in
maintaining the balance between the unspliced and spliced viral RNA
species (Pollard and Malim, 1998). The adverse effect of ectopic IMP1
on Rev function is expected to result in abnormal profiles of HIV-1
RNA expression. To test this, we transfected HEK293T cells with HIV-1
proviral DNA clone BH10 together with different amounts of FLAG-
IMP1 DNA and assessed expression of viral RNA by Northern blotting.
HIV-1 RNA of three different sizes were detected, and they represent
the 9-kb unspliced RNA, the 4-kb singly spliced RNA and the 2-kb
multiple spliced RNA (Fig. 4A). When 0.2 μg of FLAG-IMP1 DNA was
used for co-transfection, levels of both the 9-kb and 2-kb viral RNA
were increased with a much greater augmentation for the 2-kb
species (Fig. 4A). Increasing FLAG-IMP1 expression further elevated
the amount of 2 kb viral RNA as opposed to a gradual decline of 9 kb
viral RNA (Fig. 4A). These results indicate that ectopically expressed
FLAG-IMP1 causes accumulation of multiple spliced viral RNA.

We next tested three IMP1 mutants, including FLAG-ΔRRM(1–2),
FLAG-ΔKH(1–4), FLAG-ΔKH(3–4), to determine which region of
IMP1 plays the critical role in altering HIV-1 RNA expression. Each of
these DNA constructs was co-transfected with BH10 DNA into
HEK293T cells. The results of Northern blotting showed that the
FLAG-ΔRRM(1–2) protein, but not the FLAG-ΔKH(1–4) and FLAG-
ΔKH(3–4) proteins, caused significant accumulation of the 2-kb viral
RNA (Fig. 4B), suggesting the indispensable role of the KH3 and KH4
domains for IMP1 to change HIV-1 RNA expression.

The KH3 and KH4 domains represent the key RNA-binding motifs
of IMP1 (Nielsen et al., 2004). Results of a recent study further show
that the KH4 domain directly contacts with the RNA target and that
expression of a KH4-deleted mutant named EGFP-IMP1-ΔKH4, but
not the wild-type EGFP-IMP1, affects cell migration (Oberman et al.,
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2007). We therefore wished to further test the importance of the KH4
sequence in IMP1 modulating HIV-1 RNA expression. To this end, the
EGFP-IMP1 and EGFP-IMP1-ΔKH4 DNA constructs were used to
transfect HEK293T cells together with BH10 DNA. Similar to the
results obtained with FLAG-IMP1, expression of EGFP-IMP1 also
significantly enhanced expression of the 2-kb HIV-1 RNA albeit
modestly inhibited production of the 9-kb RNA (Fig. 4C). In contrast,
expression of EGFP-IMP1-ΔKH4 did not affect levels of the unspliced
and spliced HIV-1 RNA (Fig. 4D). These results indicate the key role of
the KH4 domain of IMP1 in modulating HIV-1 RNA expression.

The EGFP-IMP1 fusion protein potently suppresses production of
infectious HIV-1 particles

While measuring the effect of EGFP-IMP1 or EGFP-IMP1-ΔKH4 on
HIV-1 RNA expression, we also monitored their effects on production
of Gag protein and HIV-1 particles by Western blotting and ELISA. In
contrast with the modest inhibition of Gag production in HEK293T
cells transfected by FLAG-IMP1 (Zhou et al., 2008), EGFP-IMP1
suppressed Gag expression by as much as 30-fold when 1 μg of
EGFP-IMP1 DNA was used in transfection (Fig. 5A, B). This profound
decrease of Gag expression accounts, to a large extent, for the 100-fold
inhibition of virus production (Fig. 5C). Furthermore, when viruses
equivalent to the same amount of HIV-1 p24 antigen were tested for
their infectivity by infecting TZM-bl indicator cells, the results showed
that EGFP-IMP1 diminished the infectivity of HIV-1 virions by asmuch
as 30-fold (Fig. 5D). In contrast, the EGFP-IMP1-ΔKH4 mutant
diminished Gag expression by 3-fold (Fig. 6A, B), reduced virus
production by 10-fold (Fig. 6C), and decreased infectivity of HIV-1
virions by 7-fold (Fig. 6D). Further increasing the amount of EGFP-
IMP1-ΔKH4 DNA to 2 μg in transfection did not inhibit HIV-1
production to a more severe extent (Fig. 6). It was noted that
expression of FLAG-IMP1 or EGFP-IMP1 protein did not affect the
viability of transfected cells within the period of experiments. These
results suggest that the EGFP moiety greatly enhances the potency of
IMP1 in suppressing production of infectious HIV-1 particles and that
the KH4 domain plays an important role in this event.

Ectopic expression of IMP1 and IMP2 inhibit replication of HIV-1 in
SupT1 cells

Wenext assessed the effect of IMP1 onHIV-1 replication in a CD4+
T-cell line named SupT1. To this end, a SupT1 cell linewas generated to
express FLAG-IMP1 with induction by a tetracycline derivative
doxycycline (Fig. 7A). As a control, a second SupT1 cell line was
engineered to express the FLAG-ΔKH(1–4) mutant whose expression
does not affect HIV-1 production (Zhou et al., 2008). Wild-type HIV-1
was used to infect the FLAG-IMP1 and FLAG-ΔKH(1–4) cell lines in the
absence or presence of doxycycline. The results showed that expres-
sion of FLAG-IMP1 reduced production of HIV-1, as opposed to a
modest increase of virus production with expression FLAG-ΔKH(1–4)
(Fig. 7B).We further tested the two homologues of IMP1, namely IMP2
and IMP3, in these experiments. The results showed that IMP2
inhibited HIV-1 replication in SupT1 cells to a more significant extent
than IMP1, whereas IMP3 did not exert any effect on HIV-1 infection
(Fig. 7). Together, these data support the inhibitory role of IMP1 in
HIV-1 replication in CD4+ T cells and further indicate that IMP2
possesses a stronger inhibitory activity toward restricting HIV-1
infection. This explains why knockdown of IMP1 alone does not
significantly affect HIV-1 production (Zhou et al., 2008).
Fig. 2. Ectopic expression of FLAG-IMP1 inhibits Rev-dependent expression of CAT
enzyme. (A) Different amounts of FLAG-IMP1 DNAwere transfected into HEK293T cells
together with the pDM128 reporter DNA and Rev DNA. Levels of the CAT activity were
measured as being described in Materials and Methods. Result from one representative
experiment is shown. The average of three independent transfection experiments is
summarized in the bar graph with level of CAT activity in the control experiment (0 μg
of FLAG-IMP1 DNA) set as 100. (B) The pDM128 DNA, Rev DNA and the wild-type or
mutated FLAG-IMP1 DNAwere co-transfected into HEK293T cells. Levels of CAT activity
were measured as being described in Materials and Methods. Results from three
independent transfection experiments were summarized in the bar graph.



Fig. 3. FLAG-IMP1 inhibits Crm1-mediated but not TAP-mediated gene expression. (A) HEK293T cells were transfected by the DM128-ms2×4 DNA together with MS2-Crm1 or MS2-TAP in the presence of different amounts of FLAG-IMP1
DNA. (B) The DM128-ms2×4 and the MS2-Crm1 DNA was co-transfected with the wild-type or the mutated IMP1 DNA. Levels of CAT expression were measured as described in Materials and Methods. (C) The GPV-ms2×6 DNA was co-
transfected with either MS2-Crm1 or MS2-TAP in the presence of the wild-type IMP1 or its mutants. Levels of Gag expression in cells were assessed in Western blots using anti-HIV-1 p24 antibody. Expression of FLAG-IMP1 and its mutants
was detected using anti-FLAG antibody.
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Fig. 4. Ectopic expression of FLAG-IMP1 leads to accumulation of multiple spliced HIV-1 RNA. (A) Northern blots to measure levels of the unspliced and spliced HIV-1 RNA in the
presence of ectopic expression of IMP1. HEK293T cells were transfected with BH10 DNA and different amounts of FLAG-IMP1 DNA. Total cellular RNAwas extracted and subjected to
Northern blotting using [α-32P] labeled HIV-1 DNA probes. The GAPDHmRNA was also detected as the internal control. RNA signals were measured using PhosphoImager. Ratios of
the multiple spliced vs. full-length viral RNA were calculated. Results shown are the average of two independent experiments. (B) The BH10 DNA was co-transfected with the wild-
type or themutated IMP1 DNA into HEK293T cells. Viral RNA expressionwas assessed by Northern blotting. The ratios of themultiple spliced and full-length viral RNA are presented.
Results shown are the average of two independent experiments. (C) Ectopic expression of EGFP-IMP1 causes accumulation of multiple spliced HIV-1 RNA. (D) Deletion of the KH4
domain alone abrogates the activity of IMP1 in affecting HIV-1 RNA expression.
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Discussion

The full-length HIV-1 RNA undergoes complex alternative splicing,
which generates more than 30 different kinds of viral RNA (Frankel
and Young, 1998). On the basis of their splicing patterns and their
sizes, HIV-1 RNA can be divided into three major groups, the 9-kb
unspliced (full length) viral RNA, the 4-kb singly spliced (incomple-
tely spliced) viral RNA and the 2-kb multiple spliced (completely
spliced) viral RNA. At the early stage of HIV-1 gene expression, the
full-length viral RNA is spliced to produce the messenger RNA to
translate Tat, Rev and Nef proteins. Rev then shuttles back into the
nucleus and exports the unspliced and singly spliced viral RNA into
the cytoplasm to produce viral structural proteins such as Gag, Gag-
Pol and Env, which marks the late stage of viral gene expression and
the beginning of virus assembly. Rev plays a key role in regulating the
relative levels of different viral RNA species such that optimal
amounts of different viral proteins can be produced to ensure efficient
virus production (Pollard and Malim, 1998). By exporting the
unspliced and singly spliced HIV-1 RNA into the cytoplasm, Rev
actually diminishes production of multiple spliced RNA including its
own messenger RNA. This feedback mechanism creates a balance
between unspliced and spliced viral RNA that relies on the level of Rev
and Rev's activity. Results of this study show that overexpression of
IMP1 changes the subcellular location of Rev and disturbs Rev's
function. A direct consequence of this interference is less efficient
export of unspliced and singly spliced viral RNA that are therefore
further spliced to generate more multiple spliced viral RNA. A new
balance between different HIV-1 RNA species is reached when the



Fig. 5. EGFP-IMP1 impairs production of infectious HIV-1 particles. (A) Various amounts of EGFP-IMP1 DNA was transfected into HEK293T cells together with BH10 DNA (0.2 μg).
Expression of HIV-1 Gag protein and EGFP-IMP1 was examined by Western blotting using anti-p24(CA) and anti-EGFP antibodies, respectively. Levels of tubulin were also assessed
as the internal control. (B) Amounts of Gag and its derivatives (p40 and p24) in cells were determined by HIV-1 p24 ELISA. Results shown represent the average from three
independent transfection experiments. (C) Levels of HIV-1 particles in the culture supernatants were determined by HIV-1 p24 ELISA. Results shown represent the average from
three independent transfection experiments. (D) Infectivity of HIV-1 virions was measured by infecting the TZM-bl indicator cells using viruses equivalent to 10 ng of HIV-1 p24
antigen. Results shown represent three infection assays using viruses from three independent transfection experiments. RLU, relative luciferase unit. Values of the control
experiments performed with BH10 alone are arbitrarily set at 100. Percentages of Gag expression, virus yield and virus infectivity in the presence of EGFP-IMP1 expression are
calculated and indicated in the bar graphs.
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reduced export activity Rev is compensated by a higher level of Rev
protein produced from the accumulated multiple spliced viral RNA.
This observation exemplifies how interfering with Rev function affects
the balance between the unspliced and spliced viral RNA and also how
the virus survives this disturbance by adjusting the levels of multiple
spliced viral RNA to produce more Rev and hereby restore efficient
export of the unspliced viral RNA. As a result, expression of viral Gag
protein is not profoundly affected by overexpression of IMP1 (Zhou et
al., 2008). We also observed that expression of FLAG-IMP1 led to
modest increase in the levels of the full-length (9 kb) and singly
spliced (4 kb) viral RNA (Fig. 4A). One possible mechanism behind
this result is that IMP1 associates with HIV-1 RNA and increases viral
RNA stability. In support of this possibility, HIV-1 RNA is co-
immunoprecipitated with FLAG-IMP1 protein (unpublished data).

IMP1 is not the only cellular protein that has been reported to
affect subcellular distribution of Rev. Hax-1 has been shown to cause
relocation of Rev and inhibits Rev function (Modem and Reddy, 2008).
Rev's distribution in cells also changes under oxidative and osmotic
shocks but not with ultraviolet radiation and heat shock (Soros and
Cochrane, 2001). Inhibition of RNA transcription using actinomycin D
or dichlorobenzimidizole also leads to redistribution of Rev into the
cytoplasm (Meyer and Malim, 1994). These results further demon-
strate the shuttling nature of Rev in cells. In any case, the nucleolar
location is a prerequisite for Rev to function. For instance, mutation of
arginine residues in the arginine-rich domain leads to release of Rev
from the nucleolus and concomitant inhibition of Rev's RNA export
activity (Cochrane et al., 1990). Furthermore, randomly inserted
mutations that change the subcellular localization of Rev to the
cytoplasm severely impede Rev function (Wolff et al., 2006). Given
that nucleoli undergo dynamic changes in response to extracellular
stimuli and nutrition conditions, the nucleolar localization may allow
Rev to sense these cues and regulate the rate of virus production
accordingly.

As opposed to the inhibitory role of IMP1 in HIV-1 Rev function, a
number of cellular factors have been shown to enhance Rev-mediated
expression of HIV-1 genomic RNA. One example is DDX3 that binds to
Crm1 and is essential for Rev/Crm1-mediated nuclear export of HIV-1
full-length RNA (Yedavalli et al., 2004). hRIP (human Rev-interacting
protein) is required for the release of HIV-1 RNA from the perinuclear
region (Sanchez-Velar et al., 2004). Sam68 (src-associated protein in
mitosis) is able to either promote nuclear export of HIV-1 RNA in a
Rev-independent manner or assist Rev to express RRE-containing
RNA (Li et al., 2002; Modem et al., 2005; Reddy et al., 1999; Soros et
al., 2001). It appears that the function of Rev is subject to a complex
regulation by a number of cellular factors.

The increased levels of multiple spliced HIV-1RNA may also be a
result of changed splicing efficiency at certain splice sites in HIV-1
RNA. There are four splice donor sites and eight splice acceptor sites in
HIV-1 RNA (Neumann et al., 1994; Purcell and Martin, 1993). The
splicing efficiency at each of these sites is modulated by the activities
of exonic splicing silencers (ESS) and intronic splicing silencers (ISS)
that are often bound by hnRNP A/B family or hnRNP H, as well as
exonic splicing enhancers (ESE) that are selectively bound by SR
proteins (Stoltzfus and Madsen, 2006). We currently cannot rule out
the possibility that IMP1 may recognize one of these ESS, ISS or ESE
elements and thus modulates splicing efficiency.



Fig. 6. Deletion of the KH4 domain alleviates the inhibitory effect of EGFP-IMP1 on production of infectious HIV-1 particles. (A) Western blots to measure expression of HIV-1 Gag
protein, EGFP-IMP1-ΔKH4 and tubulin. (B) Levels of Gag protein in cells were determined by HIV-1 p24 ELISA. (C) Levels of HIV-1 particles in culture supernatants were measured by
HIV-1 p24 ELISA. (D) HIV-1 infectivity was measured by infecting the TZM-bl indicator cells using viruses equivalent to 10 ng of HIV-1 p24 antigen. Data shown represent the results
from three independent experiments. RLU, relative luciferase unit. Percentages of Gag expression, virus yield and virus infectivity in the presence of EGFP-IMP1-ΔKH4 expression are
calculated and indicated in the bar graphs.
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One interestingobservation in this study is that EGFP-IMP1 is able to
reduce the production of infectiousHIV-1 particles by asmuch as 3000-
fold in comparison to the 25-fold inhibition by FLAG-IMP1 (Zhou et al.,
2008). This potent inhibition by EGFP-IMP1 reflects the sum of defects
in several steps of HIV-1 replication; these include a 30-fold decrease of
Gag expression in cells, a 100-fold diminution in virus production and a
30-fold reduction in the infectivity of HIV-1 virions. It is noted that
expression of FLAG-IMP1 protein only modestly reduced Gag expres-
sion in contrast with the potent inhibition effect from EGFP-IMP1
(Zhou et al., 2008). This may have resulted from the possibility that the
FLAG tag interferes with RNA-binding ability of IMP1, which is
supported by the results showing that the N-terminal glutathione S-
transferase (GST)-tagged or the N- and C-terminal His-tagged IMP1
binds to RNA with low affinity (Nielsen et al., 1999). The EGFP tag
differs from the FLAG,GSTorHis tags in that EGFP is able tomultimerize
and may thus help IMP1 to form multimers (Jain et al., 2001). Since
several IMP1molecules bind to its RNA target in a cooperative manner
(Nielsen et al., 2004), the intrinsic multimerization property of EGFP
may have enhanced EGFP-IMP1 binding to RNA and consequently
increases the ability of IMP1 to modulate translation.

The KH4 domain is directly involved in IMP1 binding to RNA and is
essential for IMP1oligomerization (Nielsen et al., 2004;Obermanet al.,
2007). It is thus not surprising that deletion of KH4 sequence in the
context of EGFP-IMP1 largely alleviates suppression of Gag expression.
Interestingly, the EGFP-ΔKH4, EGFP-IMP1 and FLAG-IMP1 proteins all
reduced the efficiency of virus production by approximately 3-fold
following adjustment by the intracellular Gag levels. Therefore, as
opposed to its important role inmodulatingHIV-1 RNA expression, the
KH4 domain is dispensable for IMP1 to interfere with the assembly of
HIV-1 particles.

In summary, results of this study reveal a new activity of IMP1 in
promoting expression of multiple spliced HIV-1 RNA by interfering
with the function of Rev protein. Importantly, attaching EGFP to IMP1
greatly enhances the activity of IMP1 to suppress production of
infectious HIV-1 particles, which raises the possibility of using EGFP-
IMP1 as a tool to develop new strategies to block HIV-1 infection.

Materials and Methods

Plasmid DNA and antibodies

The infectious HIV-1 proviral DNA clone BH10 was obtained from
the National Institutes of Health AIDS Research and Reference Reagent
Program. The pEGFP-IMP1 and pEGFP-IMP1-ΔKH4 DNA constructs
were kindly provided by Joel K .Yisraeli (Natkunam et al., 2007). They
express the EGFP-IMP1 fusion protein and the EGFP-IMP1-ΔKH4
mutant lacking the KH4 domain, respectively. The pFLAG-IMP1,
pFLAG-ΔRRM(1–2), pFLAG-ΔKH(1–4) and pFLAG-ΔKH(3–4) DNA
constructs were described previously (Zhou et al., 2008), they express
FLAG-tagged wild-type IMP1 and IMP1 mutants. The GPV-ms2×6
DNA construct was created by replacing the four copies of CTE
element within the GPV-CTEx4 DNA (Wodrich et al., 2000) with six
copies of the ms2-binding sites. The anti-GFP antibody was purchased
from Invitrogen, anti-FLAG and anti-tubulin antibodies from Sigma,
anti-HIV-1 p24 antibody from ID Labs, Inc., anti-Crm1 antibody from
Bethyl Laboratories.
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Cell culture and transfection

HEK293T, HeLa and TZM-bl cells were grown in Dulbecco's
modified Eagle's medium (DMEM) supplemented with 10% fetal
bovine serum (Invitrogen). The TZM-bl cells were obtained from the
National Institutes of Health AIDS Research and Reference Reagent
program (Wei et al., 2002). One day prior to transfection, HEK293T
Fig. 7. Effects of expression of IMP1, IMP2 and IMP3 on HIV-1 replication in SupT1 cells.
(A) Expression of FLAG-IMP1, FLAG-IMP2, FLAG-IMP3 and FLAG-ΔKH(1–4) in the
presence of doxycline. SupT1 cell lines were exposed to different amounts of doxycline
for 20 h before cells were harvested and lysed for Western blot analysis using
antibodies against FLAG or tubulin. (B) Growth of HIV-1 in SupT1 cells with the
expression of FLAG-IMP1, FLAG-IMP2, FLAG-IMP3 and FLAG-ΔKH(1–4). Each SupT1 cell
lines was infected with wild-type HIV-1 in the absence or presence of doxycycline (500
ng/ml). Levels of viral reverse transcriptase activity in the culture supernatants were
measured at different time points after infection. Results shown are the average of two
independent infection experiments.
cells were seeded in six-well plate at 5×105 per well. Transfection
was performed with Lipofectamine 2000 (Invitrogen) in accordance
with the manufacturer's instruction.

Creating doxcycline-inducible SupT1 cell lines that express IMP1, IMP2
or IMP3 protein

The cDNA sequences of IMP1, IMP2 and IMP3, with the FLAG
sequence attached to the 5′ end, were cloned into a doxycycline-
inducible retroviral vector PUR-GOI (Clontech). The FLAG-ΔKH(1–4)
cDNA was also inserted into PUR-GOI. The created DNA clones were
co-transfected together with the VSV (vesicular stomatitis virus)-G
DNA into the GP2-293 packaging cell line to produce retrovirus
particles, which were used to infect SupT1 cells together with
viruses that express the rtTA activitor. One day after infection, G418
(1 mg/ml) and puromycin (2 μg/ml) were added into the culture to
select for stably infected cells. Expression of FLAG-IMP1, FLAG-IMP2,
FLAG-IMP2 and FLAG-ΔKH(1–4) in the presence of doxycycline was
assessed by Western blot using anti-FLAG antibody. Wild-type HIV-1
equivalent to 10 ng p24 antigen was used to infect 1×106 cells.
Growth of viruses was monitored by measuring the level of viral
reverse transcriptase activity in the culture supernatants.

HIV-1 protein analysis

HIV-1 proteins were detected either by Western blotting or by
HIV-1 p24 ELISA. HEK293T cells that have been transfected with the
BH10 DNA were harvested and lysed in the protein extraction buffer
(Novus Biologicals). Cell lysates of 20 μg proteins were fractionated on
SDS-10% PAGE followed by transfer of proteins onto polyvinylidene
difluoride membranes (GE Healthcare). After blocking with 5% milk
(in 1×phosphate buffered saline), the membranes were incubated
with anti-HIV-1 p24 antibodies (1:1000) for 2 h at room temperature,
followed by washing for three times with 1×phosphate buffered
saline containing 0.05% Tween 20. The membranes were then
incubated with the horseradish peroxidase conjugated secondary
antibodies for 1 h at room temperature. After washing with
1×phosphate buffered saline (0.05% Tween 20), the membranes
were treatedwith the ECL reagents (Perkin-Elmer) and exposed to the
X-ray films to visualize the protein signals. The amounts of HIV-1 p24
antigen in the cell lysates or the culture supernatants were also
measured using the HIV-1 p24 microELISA kit (bioMerieux) following
instruction from the manufacturer.

HIV-1 RNA analysis

Levels of HIV-1 RNA in HEK293T cells that had been transfected by
the BH10 DNAwere measured by denaturing Northern blotting (Zhou
et al., 2008). Briefly, total cellular RNA was extracted using Trizol
reagent (Invitrogen) followed by electrophoresis in 1% denaturing
agarose gels in a 1×MOPS (3-(N-morpholino) propanesulfornic acid)
buffer at 100 V for 4 h. RNA was then transferred to hybond N
membranes and hybridized to [α-32P]-labeled HIV-1 DNA probes
(HIV-1 nucleotide positions 1–2000 in BH10). RNA signals were
visualized by exposure to X-ray films. Intensity of the signals was
measured using a PhosphoImager (Storm 840, Amersham).
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Measuring the infectivity of HIV-1 virions

TZM-bl cells were seeded in 24-well plates at 4×104 cells per well
1 day prior to infectionwith HIV-1 virions equivalent to 10 ng of HIV-1
p24 antigen. The infected cells were collected 40 h later and lysed in
100 μl of 1×passive lysis buffer (Promega). The lysates (10 μl) were
mixed with 100 μl of firefly luciferase substrate solution (Promega)
followed by reading luciferase activity in an luminometer (Promega).

CAT (chloramphenicol acetyl transferase) assay

HEK293T cellswere seeded in six-well plates at 5×105 cells perwell
1 day before transfection with 100 ng pDM128 and 50 ng pRev DNA.
The TK-RL DNA (100 ng) was also used in transfection. Expression of
Renilla luciferase was measured using luciferase assay kit (Promega)
and the data were used as an internal control to normalize the levels of
CAT activity. pDM128 carries the CAT gene and the Rev response
element (RRE) and expresses CAT enzyme in a Rev-dependentmanner
(Hope et al., 1990). Cellswere harvested and suspended in 200 μl of 250
mM Tris–HCl (pH 7.5). After three times of freeze and thaw, cells were
pelleted at 1000×g at 4 °C for 10 min to remove the nuclei and cell
debris. 10 μl of the cell lysates were mixed with a reaction buffer
containing 250 mM Tris–HCl (pH 7.5), 0.3 mg/ml n-butyryl coenzyme
A (Sigma), 30 μM[14C]chloramphenicol (at 50 μCi/ml, Amersham), and
incubated at 37 °C for 1 h. The substrates and the products were
extracted with ethyl acetate, spotted on to the TLC plate and separated
by chromatography using chlorophorm/methanol (190:10, v/v).
[14C]chloramphenicol and the products were visualized by exposure
to X-ray films and their levels were quantified using a PhosphorImager
(Storm 840; Amersham).

Immunomicroscopy

HeLa cells were seeded in a four-well chamber slide (40,000 cells
per well) and transfected with the pRev-RFP (50 ng) and pFLAG-IMP1
(50 ng) DNA constructs. Cells were fixed with 4% paraformaldehyde
(in 1×phosphate buffered saline) for 10 min at room temperature
followed by permeabilization with 0.2% Triton X-100 for 10 min. After
washing with 1×phospate buffered saline, cells were incubated with
mouse anti-FLAG (1:500) and anti-Crm1 (1:200) antibodies for 2 h at
room temperature, followed by incubation with Alexa Fluor 488-
conjugated anti-mouse and Alexa Fluor 546-conjugated anti-rabbit
secondary antibodies (Molecular Probes). Images were recorded
using the PASCAL laser scanning confocal microscope (Zeiss).

Immunoprecipitation

HEK293T cells were transfected with the FLAG-IMP1 DNA and the
pRev DNA. Cells were lysed in a buffer containing 50mMTris–HCl (pH
7.4), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 and protease
inhibitor cocktail (Roche). Following clarification by spinning at
10,000×g for 10 min at 4 °C, cell lysates of 1 mg were incubated with
30 μl slurry of agarose beads coated with anti-FLAG antibody (Sigma)
for 2 h at 4 °C. After washing with a buffer containing 50 mM Tris–HCl
(pH 7.4), 150 mM NaCl and protease inhibitor cocktail (Roche), the
beads were incubated with 150 ng/μl 3×FLAG peptides (Sigma) for
30min to elute the FLAG-IMP1 and the associated proteins. The eluted
materials were assessed by Western blotting using anti-FLAG or anti-
Rev antibodies.

Acknowledgments

We thank Finn C Nielson and Jan Christiansen for providing the
cDNA clones of IMP1, IMP2 and IMP3, and IMP1 antiserum, Joel K
Yisraeli for providing the pEGFP-IMP1 and pEGFP-IMP1-ΔKH4 DNA
constructs, and Bryn Cullen for the gift of DM128-ms2×4, MS2-Crm1
andMS2-TAP DNA constructs. The researchwas supported by funding
from Canadian Institutes of Health Research (CIHR) and Canadian
Foundation for AIDS Research (CANFAR). C.L. is the recipient of bourse
de chercheur-boursier senior award from Fonds de la recherché en
santé.

References

Atlas, R., Behar, L., Elliott, E., Ginzburg, I., 2004. The insulin-like growth factor mRNA
binding-protein IMP-1 and the Ras-regulatory protein G3BP associate with tau
mRNA and HuD protein in differentiated P19 neuronal cells. J. Neurochem. 89 (3),
613–626.

Cochrane, A.W., Perkins, A., Rosen, C.A., 1990. Identification of sequences important in
the nucleolar localization of human immunodeficiency virus Rev: relevance of
nucleolar localization to function. J. Virol. 64 (2), 881–885.

Doyle, G.A., Betz, N.A., Leeds, P.F., Fleisig, A.J., Prokipcak, R.D., Ross, J., 1998. The c-myc
coding region determinant-binding protein: a member of a family of KH domain
RNA-binding proteins. Nucleic Acids Res. 26 (22), 5036–5044.

Frankel, A.D., Young, J.A., 1998. HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem.
67, 1–25.

Fujii, K., Hurley, J.H., Freed, E.O., 2007. Beyond Tsg101: the role of Alix in 'ESCRTing'
HIV-1. Nat. Rev. Microbiol. 5 (12), 912–916.

Goff, S.P., 2007. Host factors exploited by retroviruses. Nat. Rev. Microbiol. 5 (4),
253–263.

Hope, T.J., McDonald, D., Huang, X.J., Low, J., Parslow, T.G., 1990. Mutational analysis of
the human immunodeficiency virus type 1 Rev transactivator: essential residues
near the amino terminus. J. Virol. 64 (11), 5360–5366.

Ioannidis, P., Trangas, T., Dimitriadis, E., Samiotaki, M., Kyriazoglou, I., Tsiapalis, C.M.,
Kittas, C., Agnantis, N., Nielsen, F.C., Nielsen, J., Christiansen, J., Pandis, N., 2001.
C-MYC and IGF-II mRNA-binding protein (CRD-BP/IMP-1) in benign and
malignant mesenchymal tumors. Int. J. Cancer 94 (4), 480–484.

Ioannidis, P., Kottaridi, C., Dimitriadis, E., Courtis, N., Mahaira, L., Talieri, M.,
Giannopoulos, A., Iliadis, K., Papaioannou, D., Nasioulas, G., Trangas, T., 2004.
Expression of the RNA-binding protein CRD-BP in brain and non-small cell lung
tumors. Cancer Lett. 209 (2), 245–250.

Jain, R.K., Joyce, P.B., Molinete, M., Halban, P.A., Gorr, S.U., 2001. Oligomerization of
green fluorescent protein in the secretory pathway of endocrine cells. Biochem. J.
360 (Pt 3), 645–649.

Jambhekar, A., Derisi, J.L., 2007. Cis-acting determinants of asymmetric, cytoplasmic
RNA transport. RNA 13 (5), 625–642.

Jonson, L., Vikesaa, J., Krogh, A., Nielsen, L.K., Hansen, T., Borup, R., Johnsen, A.H.,
Christiansen, J., Nielsen, F.C., 2007. Molecular composition of IMP1 ribonucleo-
protein granules. Mol. Cell. Proteomics 6 (5), 798–811.

Li, J., Liu, Y., Kim, B.O., He, J.J., 2002. Direct participation of Sam68, the 68-kilodalton
Src-associated protein in mitosis, in the CRM1-mediated Rev nuclear export
pathway. J. Virol. 76 (16), 8374–8382.

Meyer, B.E., Malim, M.H., 1994. The HIV-1 Rev trans-activator shuttles between the
nucleus and the cytoplasm. Genes Dev. 8 (13), 1538–1547.

Modem, S., Reddy, T.R., 2008. An anti-apoptotic protein, Hax-1, inhibits the HIV-1 rev
function by altering its sub-cellular localization. J. Cell. Physiol. 214 (1), 14–19.

Modem, S., Badri, K.R., Holland, T.C., Reddy, T.R., 2005. Sam68 is absolutely required for
Rev function and HIV-1 production. Nucleic Acids Res. 33 (3), 873–879.

Natkunam, Y., Vainer, G., Chen, J., Zhao, S., Marinelli, R.J., Hammer, A.S., Hamilton-
Dutoit, S., Pikarsky, E., Amir, G., Levy, R., Yisraeli, J.K., Lossos, I.S., 2007. Expression of
the RNA-binding protein VICKZ in normal hematopoietic tissues and neoplasms.
Haematologica 92 (2), 176–183.

Neumann, M., Harrison, J., Saltarelli, M., Hadziyannis, E., Erfle, V., Felber, B.K., Pavlakis,
G.N., 1994. Splicing variability in HIV type 1 revealed by quantitative RNA
polymerase chain reaction. AIDS Res. Hum. Retroviruses 10 (11), 1531–1542.

Nielsen, J., Christiansen, J., Lykke-Andersen, J., Johnsen, A.H., Wewer, U.M., Nielsen, F.C.,
1999. A family of insulin-like growth factor II mRNA-binding proteins represses
translation in late development. Mol. Cell. Biol. 19 (2), 1262–1270.

Nielsen, J., Kristensen, M.A., Willemoes, M., Nielsen, F.C., Christiansen, J., 2004.
Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a
cooperative mechanism providing RNP stability. Nucleic Acids Res. 32 (14),
4368–4376.

Oberman, F., Rand, K., Maizels, Y., Rubinstein, A.M., Yisraeli, J.K., 2007. VICKZ proteins
mediate cell migration via their RNA binding activity. Rna 13 (9), 1558–1569.

Patel, G.P., Bag, J., 2006. IMP1 interacts with poly(A)-binding protein (PABP) and the
autoregulatory translational control element of PABP-mRNA through the KH III-IV
domain. FEBS J. 273 (24), 5678–5690.

Pollard, V.W., Malim, M.H., 1998. The HIV-1 Rev protein. Annu. Rev. Microbiol. 52,
491–532.

Purcell, D.F., Martin, M.A., 1993. Alternative splicing of human immunodeficiency virus
type 1 mRNA modulates viral protein expression, replication, and infectivity.
J. Virol. 67 (11), 6365–6378.

Reddy, T.R., Xu, W., Mau, J.K., Goodwin, C.D., Suhasini, M., Tang, H., Frimpong, K., Rose,
D.W., Wong-Staal, F., 1999. Inhibition of HIV replication by dominant negative
mutants of Sam68, a functional homolog of HIV-1 Rev. Nat. Med. 5 (6), 635–642.

Ross, J., Lemm, I., Berberet, B., 2001. Overexpression of an mRNA-binding protein in
human colorectal cancer. Oncogene 20 (45), 6544–6550.

Runge, S., Nielsen, F.C., Nielsen, J., Lykke-Andersen, J., Wewer, U.M., Christiansen, J.,
2000. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding
protein. J. Biol. Chem. 275 (38), 29562–29569.



220 Y. Zhou et al. / Virology 393 (2009) 210–220
Sanchez-Velar, N., Udofia, E.B., Yu, Z., Zapp, M.L., 2004. hRIP, a cellular cofactor for Rev
function, promotes release of HIV RNAs from the perinuclear region. Genes Dev. 18
(1), 23–34.

Soros, V., Cochrane, A., 2001. Alterations in HIV-1 Rev transport in response to cell
stress. Virology 280 (2), 199–210.

Soros, V.B., Carvajal, H.V., Richard, S., Cochrane, A.W., 2001. Inhibition of human
immunodeficiency virus type 1 Rev function by a dominant-negative mutant of
Sam68 through sequestration of unspliced RNA at perinuclear bundles. J. Virol. 75
(17), 8203–8215.

Stoltzfus, C.M., Madsen, J.M., 2006. Role of viral splicing elements and cellular RNA
binding proteins in regulation of HIV-1 alternative RNA splicing. Curr. HIV Res. 4
(1), 43–55.

Wei, X., Decker, J.M., Liu, H., Zhang, Z., Arani, R.B., Kilby, J.M., Saag, M.S., Wu, X., Shaw,
G.M., Kappes, J.C., 2002. Emergence of resistant human immunodeficiency virus
type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob.
Agents Chemother. 46 (6), 1896–1905.

Wodrich, H., Schambach, A., Krausslich, H.G., 2000. Multiple copies of the Mason-Pfizer
monkey virus constitutive RNA transport element lead to enhanced HIV-1 Gag
expression in a context-dependent manner. Nucleic Acids Res. 28 (4), 901–910.

Wolff, H., Hadian, K., Ziegler, M., Weierich, C., Kramer-Hammerle, S., Kleinschmidt, A.,
Erfle, V., Brack-Werner, R., 2006. Analysis of the influence of subcellular localization
of the HIV Rev protein on Rev-dependent gene expression by multi-fluorescence
live-cell imaging. Exp. Cell. Res. 312 (4), 443–456.

Yedavalli, V.S., Neuveut, C., Chi, Y.H., Kleiman, L., Jeang, K.T., 2004. Requirement of
DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 119 (3),
381–392.

Yi, R., Bogerd, H.P., Cullen, B.R., 2002. Recruitment of the Crm1 nuclear export factor is
sufficient to induce cytoplasmic expression of incompletely spliced human
immunodeficiency virus mRNAs. J. Virol. 76 (5), 2036–2042.

Yisraeli, J.K., 2005. VICKZ proteins: a multi-talented family of regulatory RNA-binding
proteins. Biol. Cell. 97 (1), 87–96.

Zhou, Y., Rong, L., Lu, J., Pan, Q., Liang, C., 2008. Insulin-like growth factor II mRNA
binding protein 1 associates with Gag protein of human immunodeficiency virus
type 1, and its overexpression affects virus assembly. J. Virol. 82 (12), 5683–5692.


	Insulin-like growth factor II mRNA binding protein 1 modulates Rev-dependent human immunodefici.....
	Introduction
	Results
	IMP1 interacts with Rev protein and its ectopic expression causes �relocation of Rev from the n.....
	Ectopic expression of IMP1 suppresses Rev-dependent expression of the CAT enzyme
	Ectopic expression of IMP1 leads to significant accumulation of multiple spliced HIV-1 RNA
	The EGFP-IMP1 fusion protein potently suppresses production of �infectious HIV-1 particles
	Ectopic expression of IMP1 and IMP2 inhibit replication of HIV-1 in �SupT1 cells

	Discussion
	Materials and Methods
	Plasmid DNA and antibodies
	Cell culture and transfection
	Creating doxcycline-inducible SupT1 cell lines that express IMP1, IMP2 �or IMP3 protein
	HIV-1 protein analysis
	HIV-1 RNA analysis
	Measuring the infectivity of HIV-1 virions
	CAT (chloramphenicol acetyl transferase) assay
	Immunomicroscopy
	Immunoprecipitation

	Acknowledgments
	References




