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Abstract
Leta = exp(—1/+/n). Newman inequality is

n—1

1_[ i;ji <e_“/ﬁ, Vn > 5.
k=1

We prove in this paper that

sl_lli;—zl; =n%e_§ﬁ+o(l), Vs >n,

k=1

which will be applied to improve the estimate concerning the approximatign|dfy using New-

man’s construction.
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1. Introduction

Leta = exp(—1/4/n). In 1964 Newman established the following well-known inequal-
ity:
n—1 k
1—
a <e vV

k
k=11+a

, Vn>5. (1.1)

Using this inequality Newman proved

max]ix| = Na(0)] <37, Vi =5, (1.2)
x|<

where the rational function§,, (x) are given by

n—1
_Px)—P(-x) _ k
Nn(x)_xip(x)_’_})(_x) and P(x)_]!:[l(a +x).

Because of the simple constructiondf Newman'’s approach was used widely to construct
interesting rational functions in approximation theory (see [1-4,6] and the papers cited
there).

Recently we find out that the right-hand side of (1.1) can be replaced by a smaller
number, thus (see [7]), there holds

n—1

1— k
H I ak <(Cle13Vn, (1.3)
k=1 +a

whereC’ > 0 is an absolute constant. Using this inequality, we obtain the asymptotic ex-
press of may <1 |1x| — N, (x)| (see [7]):

A 1
- = V" SV 1.4
max|lx| — N ()| 7 +0(ne ) (1.4)

whereA = maxo<;<oo t/(1+€"). Therefore, the exact approximation rate ffofrby N, (x)
RN

Comparing (1.1) and (1.3) with Newman’s approach it is natural to ask what is the
exact order in (1.3) and whether can we modify this term to improve the approximation
rate of|x|. The aim of this paper is to answer these questions. For this goal let us denote

sfll_ak
Asznl—i— L Vs=n,n+1,....

k=1

Let further
s—1
Py(x) — Py(—x) -

N,s(x)=x——"—————- and P,(x)= a® 4+ x).
ms () = O ¥ P s(0 El( )

The main result of this paper is
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Theorem 1.1. For all s > n > 1 there holds

1 712
Ay =n4 exp(—jx/ﬁ + O(l)), (1.5)
where O(1) does not depends on s and n. Conseguently,
1 _ s 1 e
_ ~ o Un P i e
m?f“x' Nps (x)| ﬁe +nie 3, (1.6)

where B; ~ B> means that there is an absolute positive constant C such that C 1B, <
B1 < CB».

Therefore, (1.3) can be improved by

nfll_ak
k
k:ll—i—a

2
—ni exp(—%\/ﬁ + (’)(1)).

Moreover, we can modify Newman'’s functia, (x) to get better approximation rate. In-
deed, for suitable the estimate (1.6) is better than (1.4). In particularsfer vn we have

Corollary 1.2. There holds
max_|[[x| — Ny 2, (x)| = O(1)e 2"
—1<x<1
Moreover,

1 712
max [|x| — Ny ()| =O@nie" V" vu=34,....
—1<x<1

We notice that if we us&/,, (x) to approximatex| then (1.4) tells us that the exact ap-
proximation rate is exp—./vn)//vn. Therefore, for X v < 7%4/16 (i.e.,v=2,3,...,6)
the rational functionw,, ,, (x) is better thanv,, (x) for the approximation ofx|. We no-
tice also that the degree for bot), ,,, and N,,, as well as the construction are the same.
However, this modification is “saturated.” The best approximation rate by this approach is
nY/4exp(—m2/n/4), which can be reached if
1 _= 72 n
—e =(’)(n%1e_T).
n
In other words, for those there holds
72
max||x| — N,H(x)| ~ n%e_T.
Ix]<1

We will prove Theorem 1.1 in the next section.

2. Proof of Theorem 1.1

We need the following lemma.
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LemmaZ2.l. Leta =exp(—1/n),n=1,2, ..., and s > n. Then there holds

0 a2m+l 1
Ac=e® =20 G g +0<;) ’

where O does not depend on s.

Proof. Itis known that for O< ¢ < 1 one has

1—1¢ 2
In—— = —2r— =3 =45
1+1¢ 3
Hence,
1—1 =1
— —expl -2 sl
1+¢ p( ZZerl
m=0
which in turn implies
S—ll_ak 00 1 s—1
As=|]— =exp| -2 k@m+1) ) 2.1

Itis clear that

s—1 2m+1 s(2m+1)
Z k@m+1) _ @ —a

a =
k=1

o 22)

Thus, replacing: by exp(—1/+/n), we conclude
as@n+1) - Jn e_(s_l)%.
1—a2m+tl = 2m+1

Now ass > n we obtain

_(s—1)2ntl
e(“‘l)ﬁ

=0(n?@2m+17%).
In particular, one has
as(2m+l) 1
—— =0 ———). 2.3
1— g2+l <n(2m+1)> 3
The assertion follows from (2.1)—(2.3).0

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. We first verify (1.5). According to Lemma 2.1, we need only to
calculate

o a2m+l
Z 2m +1)(1 — g2nt+ly’
m=0

To this end we observe first the terms with< /z. By Taylor’s formula, we conclude



T. Xie, X. Zhou / J. Math. Anal. Appl. 315 (2006) 359-366 363

1 Un 1
2n+1 - n 2
L 2m+1 " 14 2ol d(2meh)
_ Q2L ((omt 2 _
2m +1 2n Jn
Thus,
[iﬁ:] g2m+1 lil Ji Wy \om
= 2m+D(1- a?n+l) ¢ (2m + @m+12 2 = 2m+1 ’
On the other hand, it is easy to see that
1 Wm
1 1
= I 1
Z omt1 gnt oD
Therefore, we get
[Vn] amt1 [V/n]
a Vn
In 0@
2 G na- ~ 2 a1 8O
= I 1
Z(Zm—l—l)z 8nn+(’)()
_ Ji— Sinn+0a) (2.4)

Next, we consider the terms with > /n. Clearly, in this case one has always

—-o(5)
Tl T :
1 2m+1

e vn
Hence,
i a2n+l
=00Q). (2.5)
(1 — 2m+1
m:[ﬁ]+1(2’"+ Y1—a )

We conclude from (2.4) and (2.5) that

o 2m+1 7[2

a
mX:‘; Cm+1D(1—a2m) ~ g

Jn— %Inn—i—(’)(l).

The desired assertion follows from Lemma 2.1 and the last estimate.
To show (1.6), we use Newman'’s approach (see [5]) to obtain

s=1 s—1 k
a—x l1—a

max T4 =TT 5%
a’<x<1 i1 @ +x k_ll—i—a
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Hence,
s=1 s—1 k
a“ —x 1—a
max |x - =1] - (2.6)
e<x<1| L a +x k_ll—i—a

But N, ¢(x) is an even function, so there is

2x| Py (—x)|
max |IXI —Nn,s(X)| = max ||x| _Nn,s(x)| = max ———————
as<Jx|<1 as<a<d as<x<L | Ps(x) + Ps(—x)|
s—1 ak—x
2x|1_[k=l ak+x |
= maxlﬁ.
S<x K - -
(SN ‘1+ l_[k:]. x |
It follows from (2.6) that
s—1 1—a* -1 1-d*
21—[&‘ 11l-a 21—[3 a
k=1 k k=1 k
—— < max[lx] = Nos (0] < ——
1+l @shIS 1—TTiz1 5ar
From (1.5) we conclude
1 112
max ||x| — Npg (x)| —pie VO, 2.7)

a*<x|<1
Next we estimate max<qs ||x] — Ny s(x)|. Thus, for 0< x < a* we have
2x

||x| - Nn,s(x)| = (2.8)
1+ [Ty
On the other hand, using
14+ 25 25
N——=2r+-t>+-t>+---,
1—1¢ + 3 * 5 +
we obtain
s—1 ak +x ( 00 1 s—1
=exp| 2 Z Za"(z’”ﬂ)xz’"“). (2.9
k_
=14 T o2+l
Denote
oo 1 s—1
- —k(@2m+1) 2m+1
y=2 Z ] Za Ty .
m=0 k=1
Obviously,

s—1
y=2x Za_k.
k=1

Thus, it follows from (2.8) and (2.9) that forQ x < a°,
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1

y
Toey evn —1
x| = Nypos ()] < 22 =1 Y - x = .
k=14 te evn —evn
Clearly,
1 1 1
evn —1=—+4+0|-) and max —— = —2° ,
Jn n o<y<oo 1+ey  14eo
whereyg = 1.2784.... Hence, forA = yp/(1+ ¢’°) we get
o?la)ﬁ, |1x] = N5 (0)] < 7e ﬁ+o<—e ﬁ) (2.10)

Moreover, ifxg satisfies
s—1
2()60261 +x02a >=y0,
k=1
thenxo = O(1) exp —ﬁ)/\/ﬁ. Hence, there exisigy such that for alk > ng,
= 1
xpevr < > (2.11)
But(In(1—1)/(141)) < 2(r + 1) for 0 < ¢ < 1/2. Therefore, we obtain for > ny,
s—1 ak + X0 s—1 s—1
—k 3 —3k
I1 xS exp(ZxoZa +2:3) a )
k=1 k=1 k=1

Combining the last inequality with (2.8), we obtain
A

P T
Yiia Tt +xgd1a 3

|1x0] = Nou,s (x0)| >

while (2.11) implies

= S
> a +xoZa‘3k <
k=1 evn —1
Therefore,
%
evn —1 A _ s 1 _ s
||x0|_Nn,s(xO)’>Aﬁ=7€ ﬁ—i—(’)(l);e v,
eV + x3e "

It follows from this inequality and (2.10) that

A s 1 s
max ||x| Ny s (X)| = —=e 4O =e V.

0<x Jn

The desired assertion follows from (2.7) and the last inequality.

From the above proof one can easily obtain an analogue of (1.4).



366 T. Xie, X. Zhou / J. Math. Anal. Appl. 315 (2006) 359-366

Corollary 2.2. Let n < s < w%n/4 —5/4/nInn. Then

A s 1 s
max||x|_Nn,s(x)‘=—€ ﬁ+0(1);€ v

x|<1 Jn
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