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A B S T R A C T

Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS) is a curve resolu-

tion method based on a bilinear model which assumes that the observed spectra are a linear

combination of the spectra of the pure components in the system. The algorithm steps include

the determination of the number of components by rank analysis methods, initial estimates for

the concentrations and/or spectra and an iterative optimization. Sometimes, suitable results

may not be achieved when MCR-ALS is applied. One reason for this is the importance of

the initial estimates of the spectral profiles. In that case, the MCR-ALS algorithm may reach

a local minimum instead of a global minimum and this can result in ineffective curve resolution.

The most popular algorithm used to find the initial estimates (PURE derived from

SIMPLISMA) suffers from an essential drawback, which is the necessity to have ‘‘pure”

variables related to a single spectral component, which cannot be expected in all cases because

of the strong signal overlapping as in the Ultraviolet–Visible (UV–Vis) spectroscopy. This work

summarizes this problem, presenting a case study based on UV–Vis spectroscopy of heated olive

oil. To solve the problems of the need for ‘‘pure” variables and to avoid local minima with

MCR-ALS, Independent Components Analysis (ICA) was used to calculate initial estimates

for MCR-ALS. The results from this study suggest that this use of ICA prior to MCR-ALS

improves the resolution for UV–Vis data and provides acceptable resolution results when

compared to the most used method, PURE.

� 2015 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

Multivariate Curve Resolution with Alternating Least Squares

(MCR-ALS) is a curve resolution method based on a bilinear
model which assumes that the observed spectra are a linear
combination of the spectra of the pure components in the
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system [1]. The algorithm steps include the determination of
the number of components by rank analysis methods, such
as percentage of explained variance from Principal Component

Analysis (PCA) [2], PCA-Loadings or Durbin-Watson (DW)
criterion [3] and Singular Value Decomposition (SVD) [4].
PCA, PCA-Loadings and SVD are similar methods, while

DW criterion to rank analysis has been proposed as a measure
of the signal/noise ratio of the PCA loadings and regression
vectors obtained by multivariate analysis of signals [3]. Then,

an initial estimation for concentration and/or spectra with as
many profiles as the number of components estimated from
the rank analysis is constructed to start the iterative curve res-
olution process. Once the initial estimate is generated, the iter-

ative optimization step can be started [5].
The initial estimate is found, normally, based on methods

of finding the purest variables, as the PURE method that is

derived from the simple-to-use interactive self modeling analy-
sis (SIMPLISMA) [6], or on evolving factor analysis (EFA) [7].
However, these algorithms suffer from an essential drawback,

which consists in the need for ‘‘pure” variables, which cannot
be expected in all cases because of the possibility of strong sig-
nal overlapping [8]. This work offers an alternative to obtain

initial estimates based on Independent Components Analysis
(ICA) [9]. Here it is shown that the ICA improved the
MCR-ALS resolution results when ‘‘pure” variables are not
present due to the strong signal overlapping, as in the

case of analyzing heated olive oil using Ultraviolet–Visible
(UV–Vis) spectroscopy. The main objective is to verify the
modifications that occur in olive oil samples when it is heated

from room to high temperatures, such as happens during
frying, without the need for physical separation, only by using
curve resolution methods. This data set was used in order to

show the problem of methods based on SIMPLISMA as initial
estimates for MCR-ALS when ‘‘pure” variables are not
present due to the strong signal overlapping, as occur at

UV–Vis spectroscopy due the lack of selectivity in this
technique.
Experimental

Samples of Portuguese olive oil (two samples from two differ-
ent batches) were analyzed in triplicate. The samples were
heated from 30 �C until 170 �C, increasing it by steps of 10 �
C, and a first spectrum being taken at room temperature
(25 �C). UV–Vis spectra were acquired in the range from 300
to 540 nm (steps of 2 nm) in a 1 mm quartz cuvette. Data were

analyzed using MATLAB version R2007b (The Mathworks
Inc., MA, USA) where curve resolution was performed by
Multivariate Curve Resolution with Alternating Least Squares

(MCR-ALS). The MCR-ALS algorithm code and Graphical
User Interface for MATLAB [10] are freely available from
the home page of MCR at http://www.mcrals.info/. By this
interface, there are two options to estimate the matrix rank:

one is based on the percentage of variance captured by singular
values decomposition (SVD) analysis and the other is the man-
ual decision of it. Sometimes it is hard to decide the rank based

only on these percentages and the decision can be improved by
the graphical visualization of the PCA loadings [3]. ICA was
performed using Joint Approximate Diagonalization of Eigen-

matrices (JADE) algorithm [11], that involves matrix diagonal-
ization. The MATLAB code of this algorithm can be found on
the website <http://perso.telecom-paristech.fr/~cardoso/Algo/
Jade/jadeR.m>.

Chemometric methods

MCR-ALS

The usual assumption in multivariate curve resolution meth-
ods is that the experimental data follow a linear model similar

to Lambert–Beer’s law in absorption spectroscopy. In matrix
form this model can be written as [12]:

Dði�jÞ ¼ Cði�kÞS
T
ðk�jÞ þ Eði�jÞ ð1Þ

where D(i�j) is the UV–Vis data matrix with ‘‘i” rows and ‘‘j”

columns (where spectra are on the rows of D and absorbance
at different wavelength is on the columns of D, C(i�k) is the
matrix of the relative amounts or concentrations with ‘‘i” rows
and ‘‘k” different species (in this case the relative concentration

profile for each sample is placed in the rows of C, while in the
C columns are the information concerning the different spe-

cies), ST
ðk�jÞ contains the pure spectra with ‘‘k” different species

and ‘‘j” columns (recovered spectra are located in the columns
of S and the information about different species is in the rows
of S), and E(i�j) is the matrix associated with noise or experi-
mental error with ‘‘i” rows and ‘‘j” columns.

To start the algorithm, the number of chemical species pre-
sent in a particular system is determined based on the chemical
rank associated with the data matrix D. Here, the chemical

rank was determined using PCA-Loadings [3], and confirmed
by the Leverage analysis [13].

The main goal of curve resolution methods is the determi-

nation of the true C and S matrices only from the analysis
of matrix D. Initial estimates of the C or S matrices can be
obtained using methods based on the detection of ‘‘purest”
variables as methods based on SIMPLISMA [6], or from tech-

niques based on evolving factor analysis [7].
Methods based on the choice of ‘‘purest” variables aim to

the determination of the most representative series of different

components in the experimental data set. If the choice is suc-
cessful, the majority of similar algorithms offers a chance for
qualitatively estimating the number of components in the sys-

tem and also the relative concentrations and spectra of individ-
ual compounds. In the group of methods based on the choice
of ‘‘purest” variable, the PURE algorithm is the most com-

monly used. However, algorithms of this group suffer from
an essential drawback, which consists in the necessity of the
presence of ‘‘pure” variables, which cannot be expected in all
cases because of the strong signal overlapping [8]. To solve this

problem, the use of ICA scores or signals is proposed as initial
estimative to MCR-ALS. In this work, the scores and signals
were tested as initial estimative for concentration (C) and spec-

tra (S), respectively, and the results are identical.
These initial estimations of C or S are optimized solving

Eq. (1) iteratively by alternating least squares optimization

[12]. At each iteration of the optimization, a new estimation
of the C and S matrices is calculated under the constraints
of two least-squares steps [14]:

C ¼ DSðSTSÞ�1 ð2Þ

ST ¼ ðCT
CÞ�1

C
T
D ð3Þ

http://www.mcrals.info/
http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
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Fig. 1 UV–Vis spectra to extra virgin olive oil heated at different

ICA as initial estimates for MCR-ALS 797
A reconstructed D* matrix, created from the product of the
calculated CST matrices obtained from Eqs. (2) and (3), is then
compared with the original D matrix, and the iterative opti-

mization continues until the convergence criterion is attained
(when the variation of results between consecutive iterations
falls below a pre-set threshold value) or until a pre-selected

number of iterations are exceeded. The default in the graphical
user-friendly interface uses 50 iterations but, if after 10 cycles
with no improvement, the best value found at the first iteration

cycle is used to produce the spectra and concentration profiles.
In this work, the convergence criterion used was 0.1% and 50
iterations as maximum. Alternatively, if 50 iterations were con-
sidered too small, it is possible to increase the number of iter-

ations in the graphical interface.
At each iterative cycle, the chemical or mathematical prop-

erties that the C and/or ST profiles must fulfill (constraints) can

be applied. In MCR-ALS, many types of constraint, such as
non-negativity, closure, unimodality, local rank, and trilinear-
ity, can be easily applied to the solutions during the calcula-

tions [5]. The constraints used in this study were non-
negativity for the concentrations and spectra while closure
was applied to concentrations.

ICA

ICA is a Blind Source Separation method. It is based on the
construction of latent variables or factors, called Independent

Components (ICs), which are linear combinations of the orig-
inal variables. The ICs are assumed to correspond to the sig-
nals of the ‘‘pure” source signals present in the analyzed

mixtures. The hypothesis used to enable the extraction of the
‘‘pure source signals” is that these vectors are statistically inde-
pendent, as opposed to PCA which is based on calculating

orthogonal vectors that maximize the amount of variance
extracted from the data (the dispersion of the samples) [15].

ICA searches for the decomposition of signals of a mixture

into statistically independent components. However, the sig-
nals are not always independent, ICA always finds indepen-
dent components which are not always pure signals, and
signals are not always chemically independent. This can occur

for example, if the signals of the different compounds do not
evolve independently. Thus, the existence of ‘‘natural” mutual
dependences of the mixture components means that ICA

extracts signals corresponding to independent phenomena,
and that the isolation of fully independent spectra of pure
chemical compounds is not possible in such cases [8].

The general ICA model is [16] as follows:

Xði�jÞ ¼ Aði�cÞSðc�jÞ ð4Þ
where X(i�j) is the matrix of observed spectra with ‘‘i” rows and
‘‘j” columns (where spectra are located in the rows of X and
absorbance at different wavelength in its columns), S(j�c) is

the matrix of unknown ‘‘pure” source spectra with ‘‘c” ICs
and ‘‘j” columns (recovered signals are in the columns of S

and the information about different sources in its rows), and

A(i�c) is the mixing matrix of unknown coefficients with ‘‘i”
rows and ‘‘c” ICs, related to the corresponding concentrations
(where sample information is in the rows of A and information
concerning different sources in its columns).

The calculation of these source signals is based on the crite-
rion of independence. As indicated above, if two components
with different characteristic signals evolve simultaneously in
the matrix of the observed signals, these components are con-
sidered as a single source, and it is described by the same inde-

pendent component. This kind of situation happens for
example when a compound is converted in a chemical reaction
to give rise to another compound, as during the cis–trans iso-

merization of fatty acids, where the spectra of the two isomers
are not independent. For this reason, ICA is not comparable
to the methods as MCR or methods based on SIMPLISMA

[17,18].
Based on the Central Limit Theory, ICA assumes that the

statistically independent source signals have intensity distribu-
tions that are less Gaussian than are their mixtures [9]. As

there are several approaches in assessing statistical indepen-
dence, there exist several different ICA algorithms and Joint
Approximate Diagonalization of Eigenmatrices (JADE) [11]

was used in this work.

Results and discussion

Fig. 1 shows the UV–Vis spectra of an extra virgin olive oil
heated at different temperatures. It is possible to note that
the absorbance is increasing or decreasing at some specific

wavebands. In accordance with a previous study [19], the toco-
pherol shows a maximum absorbance peak at 325 nm, while
the oxidation products, formed during heating oils, present

absorbance around 400 nm. Although the absorbance is
increasing or decreasing at some specific wavebands, it is hard
to find differences in UV–Vis raw spectra due to the high
degree of band overlapping and due to the lack of selectivity

in UV–Vis spectroscopy. The difficulty to draw conclusions
only by analyzing the spectra can be overcome by the use of
the chemometric curve resolution methods that can contribute

to the reliability of the results.
From this spectral data set, the chemical rank (pseudorank,

a mathematical rank in absence of experimental noise) was

estimating using the PCA-loadings [3], shown in Fig. 2. Based
on the observations in the PCA loadings, the chemical rank for
these spectra sets are four, since the loadings from Principal

Component 5 (PC5) presented only noise. The scores plot with
95% confidence level versus leverage, shown in Fig. 3, was
temperatures.



Fig. 2 PCA Loadings, (A) on PC1 (96.79%), (B) on PC2 (2.16%), (C) on PC3 (0.87%), (D) on PC4 (0.09%), and (E) on PC5 (0.03%).
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done in order to confirm that the PC5 is not important in this

case. In this way, when a PC is referred as belonging to a sam-
ple with high leverage or score values which is outside of the
confidence level considered, this PC is informative in the rank
analysis.

Leverage represents how far a sample is distant from the
center of the data. A low leverage (lower than a limit value cal-

culated as: 3 Aþ1
n
, where A is the number of PCs and n is the

number of samples) for an object shows that the object is near
to the center of the data set in X with respect to the
A-dimensional component space, and consequently this object

is a good leverage point, because it stabilizes the model. How-
ever, a leverage larger than a limit value shows that the object
is far from the mean and this may have had a very high impor-
tance on the resulting A-dimensional model. In calibration

models, an object with leverage larger than an established limit
can indicate that this object is an outlier due to an extreme
analyte concentration or extreme value of an interferent which

was also modeled [13]. In exploratory analysis, an object with
high leverage is caused by the fact that this object is particu-
larly informative. Therefore, it is possible to conclude that

the PC has some importance in the analysis and in this case,
that the PC represents a chemical species which is present as
result from rank analysis. In this data set, no samples pre-
sented high leverage, since all samples are above the vertical

dash line in Fig. 3. However, until PC4 it is possible to observe
samples with score values outside a 95% confidence level (hor-
izontal dash lines). Therefore, in Fig. 3 it is possible to observe

that it can be considered informative from PC 1 to 4, while in
PC number 5 all objects present leverage lower than the limit
and inside the confidence level. This analysis confirms that

the rank for the UV–Vis matrix from heated olive oils is four.
The next step was to make an initial estimate for ST con-

taining as many profiles as the number of components esti-

mated by the rank analysis. Here, the initial S
T was
determined using either PURE and ICA. Once the initial esti-

mate was generated, the iterative optimization step was
started, under constraints of non negativity for C and ST

and closure for C, performed by alternating least squares.
Fig. 4 shows the spectra recovered by MCR-ALS when

using PURE for the initial estimates. Here one can note that
there is practically no resolution, particularly by expanding
the spectra using an approaching zoom. Sometimes, suitable

results may not be achieved when MCR-ALS is applied [20].
The main reason for this is the importance of the initial esti-
mates of the spectral profiles. In this particular application

of PURE initializing MCR-ALS, the algorithm has reached
a local minimum instead resulting in insufficient curve resolu-
tion [21]. This was probably due to the high degree of band

overlapping and the lack of selectivity in UV–Vis spectroscopy
technique.

In order to evaluate the extent of rotation ambiguity (Sets
of C and ST profiles with shapes different from the real ones

can reproduce the data set D with optimal fit) associated with
MCR-ALS solutions, the MCR-BANDS was applied [22].
This procedure allows for checking up the effect of applied

constraints in the results of a particular system solved by
MCR-ALS. The results obtained are shown in the Fig. 5.
Although a possible improved resolution for the profiles 1

and 4 in Fig. 4, no improvement was achieved for the profiles
2 and 3. One solution from MCR-BANDS for the profile 1
resembles the spectra of phenolic and polyphenolic com-
pounds [23] while for the profile 4 one solution resembles

hydrolysis products spectra [24].
When using ICA as an alternative method to calculate the

initial estimates for MCR-ALS, a very appropriate resolution

was obtained, as shown in Fig. 6. The recovered spectra were
compared to those in the literature and it could be verified that
they are very similar to the spectra of phenolic and polypheno-

lic compounds (270–330 nm) [23], tocopherol (maximum



Fig. 3 Leverage against scores.
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absorbance peak at 325 nm) [19], hydrolysis products pro-

duced by oxidized triacylglycerols (monomers) and dimeric
and polymerized triacylglycerols during frying [19,24],
and carotenes (a-carotene with maximum absorbance peak
at 447 nm, b-carotene with maximum absorbance peak at

451 nm, and c-carotene with maximum absorbance peak at
462 nm) [25]. These compounds present chromophore groups
with transitions d? d*, n? d*, p ? p*, n? p* or combina-

tion of these [25].
These results suggest that the use of ICA prior to MCR-

ALS could be an efficient way to improve the resolution of
curves. ICA promotes the minimization of the statistical

dependence of the signals, and solves the problems as the
necessity of the presence of ‘‘pure” variables and local mini-
mum instead of global minimum by MCR-ALS. Gonçalves
et al. [19] evaluated olive oils by UV–Vis spectroscopy and

they recovered only two spectral profiles by using MCR-ALS
and PURE as initial estimates. In other studies, Valderrama
et al. [3] also studied olive oil degradation but using molecular

fluorescence spectroscopy. In this case, the authors reached to
recover five spectral profiles by applying Parallel Factor
Analysis (PARAFAC). Thus, considering the difference of



Fig. 4 (A) Spectral profiles recovered from MCR-ALS when PURE was used to obtain initial estimates. (B) Spectral profiles zoom from

300 to 320 nm. (C) Spectral profiles zoom from 320 to 540 nm. (—) unknown profile 1, (- - -) unknown profile 2, (—) unknown profile 3,

and (- - -) unknown profile 4.

Fig. 5 Spectral profiles obtained from MCR-BANDS. (—)

unknown profile 1, (- - -) unknown profile 2, (—) unknown profile

3, and (- - -) unknown profile 4.

Fig. 6 Spectral profiles recovered from MCR-ALS when ICA

was used to calculate initial estimates. (—) Tocopherol, (- - -)

Hydrolysis products, (—) Carotenes, and ( ) Phenolic and

polyphenolic compounds.
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sensitivity among these techniques, it is notorious that UV–Vis
spectroscopy coupled with MCR-ALS, employing ICA to the

initial estimates, could provide more reliable information
about complex systems.

Fig. 7 presents the initial estimates obtained from PURE

and ICA. The results reinforce that PURE suffers from an
essential drawback, which consists in the necessity of ‘‘pure”
variables, which cannot be expected in the UV–Vis spec-

troscopy data of complex samples, as olive oil, due to the
strong signal overlapping and due to the lack of selectivity in
UV–Vis technique. The strong signal overlapping for heated

olive oil samples and the lack of selectivity in UV–Vis spec-
troscopy reinforce the existence of natural mutual dependences
of the mixture components in this data set. The results confirm

that the signals of the different compounds found in heated
olive oil do not evolve independently. In cases like this, the
ICA can promote the minimization of the statistical depen-

dence of the signals and by employing the results from ICA
as initial estimates for MCR-ALS it is possible to solve both



Fig. 7 Initial estimates obtained from (A) PURE and (B) ICA.

(—) specie 1, (- - -) specie 2, (� � �) specie 3, and (-�-�-) specie 4.
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the need for ‘‘pure” variables of the PURE method and the
problem of local minimum instead of global minimum of the
MCR-ALS.

Conclusions

The results from this study suggest that using ICA as a mean
to obtain initial estimates for the MCR-ALS algorithm results

can improve the resolution for UV–Vis data besides providing
better resolution results when compared with the most com-
monly used method. Furthermore, this strategy would be used

as an interesting alternative when the most used tools do not
provide appropriate resolution.
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