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Abstract

Sreedhar et al. [V.C. Sreedhar, G.R. Gao, Y.-F. Lee, A new framework for elimination-based data
flow analysis using DJ graphs, ACM Trans. Program. Lang. Syst. 20 (2) (1998) 388–435; V.C. Sreed-
har, Efficient program analysis using DJ graphs, PhD thesis, School of Computer Science, McGill
University, Montréal, Québec, Canada, 1995] have presented an elimination-based algorithm to solve
data flow problems. A thorough analysis of the algorithm shows that the worst-case performance is at
least quadratic in the number of nodes of the underlying graph. In contrast, Sreedhar reports a linear
time behavior based on some practical applications.

In this paper we prove that for goto-free programs, the average case behavior is indeed linear. As
a byproduct our result also applies to the average size of the so-called dominance frontier.

A thorough average case analysis based on a graph grammar is performed by studying properties
of the j-edges in DJ graphs. It appears that this is the first time that a graph grammar is used in order
to analyze an algorithm. The average linear time of the algorithm is obtained by classic techniques
in the analysis of algorithms and data structures such as singularity analysis of generating functions
and transfer lemmas.
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1. Introduction

Program analysis is a process of estimating properties of programs at each program
point. The information provided by program analysis is useful in compiler optimization,
code generation, program verification, testing and debugging, and parallelization. In gen-
eral, program analysis can be divided into: control flow analysis and data flow analysis.
Both methods are usually performed on a graph representation of a program called the
Control Flow Graph (CFG). The nodes in a CFG represent basic blocks or statements,
while edges of the graph represent flow of control from one basic block to another.

As an example Fig. 2 shows the CFG of the program fragment given in Fig. 1. Node
3 is the if-statement. The edge to node 4 is the then-branch and is followed only if c1 is
true. The edge 3 → 2 has assigned condition ¬c1 ∧ ¬c3 and the edge 3 → 6 has assigned
¬c1 ∧ c3. In a similar way edges 5 → 4, 5 → 2, and 5 → 6 have assigned conditions c2,
c2 ∧ ¬c3, and c2 ∧ c3, respectively. Edge 1 → 6 is only present to facilitate algorithms
performed on the CFG and has assigned false. All the other edges have assigned true.

In literature, control flow problems are typically solved using concepts from graph the-
ory, whereas data flow problems are typically solved using concepts from set theory (or
more precisely, lattice theory).

begin -- Node 1
repeat -- Node 2

if c1 then -- Node 3
repeat -- Node 4

· · · -- Node 4
until c2 -- Node 5

endif
until c3 -- Node 5

end -- Node 6

Fig. 1. Example: Program source code.

Fig. 2. Example: Control flow graph.
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Fig. 3. Example: Dominator tree.

X1 = ⊥
X2 = f (X1,X3,X5)

X3 = f (X2)

X4 = f (X3,X5)

X5 = f (X4)

X6 = f (X1,X3,X5)

Fig. 4. Example: Data flow equations.

An example of a control flow analysis is computing the dominance relation. Given a
CFG, a node u is said to dominate another node v if all paths from the start node to node
v always pass through node u, e.g., in Fig. 2 node 2 dominates nodes 3, 4, and 5, but not
1 and 6. The dominance relation can be visualized by a dominator tree [3]. The dominator
tree of our example is shown in Fig. 3.

An example of a data flow analysis is the reaching definitions problem. The reaching
definitions problem is to determine which definitions in a program reach a given point.
(A definition of variable a occurs when a is assigned a value.)

A data flow problem can be represented within a framework, called the data flow frame-
work. Within this framework we represent data flow information as elements of a lattice,
and the effect of a node (a statement or a basic block) as a data flow function. The input–
output effect of a node can be represented as a data flow equation, and so we can set up a
system of data flow equations, one equation per node, whose consistent solution gives the
desired estimate of the program property. Fig. 4 shows data flow equations of our example.
Symbol ⊥ denotes a function which does not depend on X1, . . . ,X6.

The methods for solving the system of equations can broadly be classified into itera-
tion methods and elimination methods. Iteration methods are easy to implement but cannot
handle all data flow problems. A prominent example which cannot be solved by iteration
methods is determining the worst-case execution time (WCET) of a program [5]. Elimi-
nation methods are derived from Gaussian elimination method for solving simultaneous
equations [14]. In general, elimination methods are more complex to implement than iter-
ation methods [17].
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Sreedhar et al. [18,19] have presented an efficient and easy to implement elimination-
based algorithm to solve data flow problems. The algorithm starts with a general (re-
ducible) directed CFG G. The union of G and the dominator tree of G is called a DJ
graph. The data flow problem is solved by redirecting and removing edges in the DJ graph
until the remaining graph is the dominator tree of G. Because the dominator tree is part
of the DJ graph, each node can be assigned a certain level (equal to its distance from the
root).

Edges being part of the dominator tree and not being part of G are called d-edges.
Edges being part of the dominator tree and of G are called dj-edges. The remaining edges
are j-edges.1

Three different operations are performed in a bottom-up fashion on the graph by the
algorithm: Eager1, Eager2a, and Eager2b.

Sreedhar et al. [18,19] give a thorough worst-case performance analysis of the algorithm
showing that the number of Eager (Eager1 + Eager2a + Eager2b) operations is at most
O(e · n) where n denotes the number of nodes and e denotes the number of edges in G.
A more detailed description and analysis of Sreedhar’s algorithm and how the DJ graph
can be used to solve the underlying system of equations, can be found in Section 2.

In contrast, Sreedhar reports a linear, i.e., O(e), time behavior based on some practical
application programs.

In this paper we prove that for goto-free programs, the average case behavior is indeed
linear. By “goto-free” programs we mean programs written in programming languages
without a goto statement like Modula-2 [22] and Java [1] or programs not using goto
statements or statements with similar effects (cf. [9]). Some programming languages allow
to exit loop statements not only at the beginning (while-loops) and at the end (repeat-
loops) of loop-statements, but also at certain points within the loop body. Exit-statements
are a form of “tamed” goto-statements, which while retaining structured programs, give
more freedom to the programmer and often result in more readable and understandable
program code. Our analysis covers such exit-statements, too. As a byproduct our result
also applies to the average size of the so-called dominance frontier [7]. The dominance
frontier DF(u) of a CFG node u is defined as the set of all CFG nodes v such that u

dominates a predecessor of v but does not strictly dominate v.2

Cytron et al. [7] have proved that if a program contains only straight-line code, while
loops, and if statements, the number of Eager operations is linear. Their result can easily
be reproduced by our approach (cf. end of Section 4).

In Section 2 we present a graph grammar which derives DJ graphs for goto-free pro-
grams. The number of these DJ graphs (or actually the probability of DJ graphs) with n

nodes is determined in Section 3. Finally, the number of Eager2b operations is studied in
Section 4.

1 Sreedhar et al. [18,19] only introduced d- and j-edges; we have defined dj-edges in order to facilitate the
description of our graph grammar in Section 2.

2 Node x strictly dominates y if x dominates y but x �= y.
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2. A graph grammar for DJ graphs

In this section we define a graph grammar3 [16] for deriving DJ graphs. A tabular form
of the graph grammar can be found in Appendix A. The context-free grammar consists of
the non-terminal nodes S, T0, and T , of one terminal node (©), and of one terminal edge
(denoted as usual by a directed arrow). Edges are labeled by d , j , and dj (cf. [18]). In
detail, d- and dj -edges form the dominator tree of the control flow graph; j -edges are part
of the control flow graph, but not contained in the dominator tree; d-edges are not part of
the control flow graph, they are usually generated when the dominator tree is constructed.
Our graph grammar builds the dominator tree concurrently to the control flow graph. This
can also be used to build the dominator tree in linear time while parsing the program source
which otherwise requires sophisticated algorithms (cf. [2,11,15]).

In the second column of Table A.1 we give a textual (BNF-like) description of the
production. The third column is the right-hand side (rhs) of the production; the left-hand
side (lhs) is simply S for the first two productions, T0 or T for the third production, and T

for the rest. From the non-terminal T0 in the second column only straight-line code can be
derived, i.e., it is mapped to a ©-node in the third column.

Since the lhs of the productions consists only of one non-terminal, we use a special
notation for the embedding relation:

(1) If terminals and/or non-terminals of the rhs are labeled by a •, this means that all
edges originating from the lhs non-terminal are adjoined to all •-nodes on the rhs,4 if
the production is applied.

(2) All edges pointing to the lhs non-terminal are adjoined to the uppermost node (root
node) of the rhs, which is a ©-node in all cases.

Note that the two cases do not exclude each other, i.e., there exist root nodes which are
labeled by a •.

The number of productions is approximately four times as big as for standard (non-
graph) grammars. There are several reasons for this:

• To avoid chains of single-entry/single-exit ©-nodes, we had to duplicate and slightly
modify certain productions for loop-statements by pre-pending a ©-node to the root
node.

• Most productions have two forms. One for the “normal” case, where other statements
“follow”, and one for the “pathological” case, where no other statements “follow”. For
example, the last production used within the then-branch of an if-statement (before the
else-branch starts) is such a “pathological” case.

Finally the fourth column contains the counting expressions for the productions, which
are set up in Section 4.

3 To the author’s knowledge this is the first time that a graph grammar is used for analyzing an algorithm.
4 If several •-nodes exist on the rhs, edges are duplicated accordingly.
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Fig. 5. Example: Derivation of DJ graph.

The graph grammar models straight-line code, if-statements, and all possible loop struc-
tures (general, while, and repeat). Each of these loops may be terminated prematurely by
an exit-statement.

It should be possible to model multiple exits per loop without violating the analysis
based on Theorem 3 and still have a linear average number of Eager2b operations. For
space considerations, however, we do not model multiple exit-statements in this paper.

As an example, consider the program fragment shown in Fig. 1. It corresponds to the
graph derivation given in Fig. 5, where the number of the production is written above the
�⇒.

To illustrate one derivation step consider the application of production 7: we have to
replace the dotted non-terminal T with the graph sentential number 7 given in Table A.1.
Both the ©-node and the non-terminal T in this sentential are dotted. This means that all
edges originating in the non-terminal T before the replacement have to be duplicated and
redirected such that they originate at the dotted nodes after the replacement. In our example
these are two j-edges, one pointing to the node above and one to the node at the left above.

Theorem 1. The graph grammar given in Table A.1 correctly generates DJ graphs for
goto-free programs.

Proof. If in Table A.1 we consider d- and dj -edges only (thereby ignoring all j -edges),
only trees can be derived. It is easy to see that by adding j -edges in the way it is done in
Table A.1, the above mentioned tree is the dominator tree of the resulting graph. Hence,
the graph grammar of Table A.1 generates DJ graphs. �

Sreedhar’s algorithm—as exemplified in Fig. 6—performs three different operations in
a bottom-up fashion on the graph:
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Fig. 6. Sreedhar’s algorithm performed on example graph.

Eager1: Removes self-loops.
Eager2a: Removes a j-edge if both its source and target (source �= target) have the same

level.5

5 The level of a target of a j-edge is smaller or equal to the level of the source of the j-edge [18].
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Eager2b: If the source and the target of a j-edge have different levels, the source of the
j-edge is moved up one level to the root along a d- or dj-edge (the level of the source
node is now one less than before).
If it happens as a result of this operation that two j-edges coincide, i.e., have the same
source and target node, then one of them is removed.

These operations are repeated until no j-edges exist in the remaining graph, which is the
dominator tree of the original CFG.

Note that in our example the DJ graph resulting from the five derivation steps has 6
nodes and Sreedhar’s algorithm (as shown in Fig. 6) performs 2 Eager1, 1 Eager2a, and 7
Eager2b operations on this graph. Note also that the resulting DJ graph is the union of the
CFG (cf. Fig. 2) and the dominator tree (cf. Fig. 3).

In analyzing Sreedhar’s algorithm it is clear that the number of Eager1 and Eager2a
operations is bounded above by e, the number of edges of the original CFG, because each
edge can be deleted at most once. Therefore the interesting quantity is the number of Ea-
ger2b operations. In the worst case the number of Eager2b operations performed on one
edge is bounded by n, the number of nodes in the original CFG. Thus the overall number
of Eager2b operations is O(n · e).

The rest of this paper is devoted to the proof that for goto-free programs the average
number of Eager2b operations is linear in e.

We conclude this section by noting that the Eager operations determine a sequence of
operations to solve the underlying system of simultaneous data flow equations:

• Whenever a j-edge u → v is treated by an Eager2a or Eager2b operation, equation Xu

has to be substituted into equation Xv .
• Whenever an Eager1 operation is performed on an edge r → r , the recursive equation

Xr = f (. . . ,Xr, . . .) has to be solved such that the rhs of the solution Xr = f ′(. . .)
does not depend on Xr . This is called a loop breaking operation [14] and is denoted
by �� in this paper.

Our example produces the following sequence of operations: 5 → 6, 5 → 2, 5 → 4, 4 ��,
4 → 6, 4 → 2, 3 → 6, 3 → 2, 2 ��, and 2 → 6.

As a final step equations have to be substituted along the edges of the remaining dom-
inator tree to obtain the solution of the data flow equations, i.e., in our example 1 → 6,
1 → 2, 2 → 3, 3 → 4, 4 → 5.

3. Enumerating DJ graphs

In this section and in Section 4 we use a method originally due to Darboux [8], the
singularity analysis of generating functions, to determine the asymptotic behavior of coef-
ficients of generating functions. The method is based on the following theorem:

Theorem 2 (Darboux). Suppose A(z) = ∑
n�0 anz

n is analytic near 0 and has only alge-
braic singularities αk on its circle of convergence |z| = r , i.e., in a neighborhood of αk ,
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then we have

A(z) ∼
(

1 − z

αk

)−ωk

gk(z),

where ωk �= 0,−1,−2, . . . and gk(z) denotes a non-zero analytic function near αk . Let
ω = maxk R(ωk) denote the maximum of the real part of ωk and by αj , ωj , and gj denote
the values of α, ω, and g such that ωj = ω. Then we have

an =
∑
j

gj (αj )

�(ωj )
nωj −1α−n

j + o(nωr−n).

Another well-known tool which allows to determine the asymptotic behavior of coeffi-
cients of generating functions is concerned with functional equations [4,6,13].

Suppose that a generating function w = y(z) = ∑∞
1 ynz

n with non-negative coefficients
is a formal solution of the functional relation w = F(z,w), where F(z,w) is an analytic
function of z and w in some neighborhood of the origin. We let D denote the interior of
the set of points (z,w) such that the series defining F(z,w) converges absolutely. We shall
denote by S the set of all points (ρ, τ ) with positive coordinates such that

(ρ, τ ) ∈D,

τ = F(ρ, τ),

1 = Fw(ρ, τ ).

We cite a theorem from [13].

Theorem 3 (Meir and Moon). With the definitions from above, suppose that all the coeffi-
cients of F(z,w) are non-negative and that (ρ, τ ) is in S . Then

r = ρ and y(r) = τ,

where r denotes the radius of convergence of y(z).
Moreover, z = ρ is the only singularity of y(z) in the disk |z| � ρ.

We use the graph grammar given in Table A.1 to set up a probability generating function
(PGF) for DJ graphs. In particular, this means that if we expand the PGF into its Taylor
series S(z) = ∑

n�0 snz
n, then sn = [zn]S(z) denotes the probability that a DJ graph con-

sisting of n ©-nodes is derived by the graph grammar of Table A.1.
In order to set up S(z) we assign a probability to each production of the graph grammar.

In particular we assign 0 � pi � 1 to the production numbered i and assume that p1 +p2 =
1 and

∑31
i=3 pi = 1. In addition, we assume that p1 > 0, p2 > 0, 0 < p3 < 1, and there is

at least one 4 � i � 31 such that pi > 0.
Furthermore, we define the following predicate

(1)Branch :=
∑
i∈B

pi > 0,
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where B = {4,5,6,8,9,12,13,14,15,16,17,18,19,20,21,22,23,28,29,30,31}. The
branch predicate is true if there appear two non-terminals T on the right-hand side of
at least one of the productions. Depending on the value of the branch predicate we ob-
tain different results both for the enumeration of DJ graphs and for the average number of
Eager2b operations.

In addition, we assume according to [13] that

(2)[zi]T (z) · [zj ]T (z) > 0 for some j > i � 1 with gcd(i, j) = 1.

This is no real restriction, because if Eq. (2) is not fulfilled, there are several (gcd(i, j) �= 1)
singularities on the radius of convergence of T (z) and our results can be transfered to this
case easily.

3.1. The branch predicate is true

We obtain in a straightforward manner (cf. [21])

S(z) = p1z
2 + p2z

2T (z),

(3)T (z) = p3z + p4zT
3(z) + p5zT

2(z) + · · · + p30z
2T 2(z) + p31zT

2(z),

i.e., each ©-node is replaced by z (if two ©-nodes appear in one production, they are
replaced by z2) and each appearance of a non-terminal is replaced by its corresponding
PGF.

The asymptotic behavior of sn for (n → ∞) can be derived with help of Theorem 3. For
notational convenience, we rewrite Eq. (3)

S(z) = p1z
2 + p2z

2T (z),

(4)T (z) = zϕ1
(
T (z)

) + z2ϕ2
(
T (z)

)
,

where ϕi(t) = ∑
j qi,j t

j and qi,j = ∑[zi][T (z)j ]R(z) and R(z) denotes the right-hand
side of T (z) in Eq. (3).

In addition, we define F(z,w) = zϕ1(w) + z2ϕ2(w). In order to derive the radius of
convergence of T (z), which plays a central role in the asymptotic behavior of sn, we apply
Theorem 3. We obtain

(5)w = zϕ1(w) + z2ϕ2(w),

(6)1 = zϕ′
1(w) + z2ϕ′

2(w).

From Eq. (6) we find that

(7)z = 1 − z2ϕ′
2(w)

ϕ′
1(w)

.

Inserting this into Eq. (5) we obtain

w = ϕ1(w)

ϕ′
1(w)

+ z2
(

ϕ2(w) − ϕ1(w)

ϕ′
1(w)

ϕ′
2(w)

)
.
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From this we find

(8)z2 = wϕ′
1(w) − ϕ1(w)

ϕ′
1(w)ϕ2(w) − ϕ1(w)ϕ′

2(w)
,

which when inserted into Eq. (7) produces

z = ϕ2(w) − wϕ′
2(w)

ϕ′
1(w)ϕ2(w) − ϕ1(w)ϕ′

2(w)
.

Inserting this into Eq. (8) and finally calling the solution (z,w) = (ρ, τ ) we see that τ can
be found from the equation

(9)
(
ϕ2(τ ) − τϕ′

2(τ )
)2 = (

τϕ′
1(τ ) − ϕ1(τ )

) · (ϕ′
1(τ )ϕ2(τ ) − ϕ1(τ )ϕ′

2(τ )
)

and that

(10)ρ = ϕ2(τ ) − τϕ′
2(τ )

ϕ′
1(τ )ϕ2(τ ) − ϕ1(τ )ϕ′

2(τ )
.

With the definitions of ρ and τ above and Theorem 3 we see that T (z) has an algebraic
singularity at z = ρ and we can use Theorem 2 to prove the following lemma:

Lemma 1. The PGF T (z) given in Eq. (4) fulfills

T (z) = τ −
√

2ρFz(ρ, τ )

Fww(ρ, τ )
(1 − z/ρ)1/2 + O(1 − z/ρ)

for (z → ρ).
From this it follows that

tn = [zn]T (z) =
√

ρFz(ρ, τ )

2πFww(ρ, τ )
ρ−nn−3/2

(
1 + O

(
1

n

))
(n → ∞).

Remark 1. From Eq. (3) and Theorem 2 it follows that similar results hold for S(z) and
sn. In both cases the right-hand sides of Lemma 1 have to be multiplied with p2ρ

2 and the
term p1ρ

2 has to be added to the series expansion of S(z).

3.2. The branch predicate is false

In this case we have

T (z) = p3z + p7zT (z) + p10z
2T (z) + p11zT (z)

(11)+ p24z
2T (z) + p25zT (z) + p26z

2T (z) + p27zT (z).

Letting q1 = p7 + p11 + p25 + p27 and q2 = p10 + p24 + p26, we find

(12)T (z) = p3z

1 − q1z − q2z2
.

If q2 > 0, let σ1 and σ2 denote the (complex) zeros of the denominator of T (z). By
expanding the right-hand side of Eq. (12) we can prove the following lemma.
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Lemma 2. The coefficients of T (z) given in Eq. (11) fulfill

tn = c1σ
−n
1 + c2σ

−n
2

for some (complex) constants c1 and c2.

If q2 = 0, let σ3 = 1/q1 and by expanding we have the following lemma.

Lemma 3. The coefficients of T (z) given in Eq. (12) fulfill tn = c3σ
−n
3 for some con-

stant c3.

4. The average number of Eager2b operations

We introduce the PGF S(x, y, z) such that [xkzn]S(x, x, z) is the probability that a DJ
graph consisting of n ©-nodes requires exactly k Eager2b operations. The variable y is
only used to simplify the setup process of the PGF and is not needed later on.

In fact, we will not determine S(x, y, z) and its properties; instead we will study
d

dx
S(x, y, z) which will enable us to derive the average number of Eager2b operations

En by

En = [zn] d
dx

S(x, x, z)|x=1

sn
,

where the average is taken over all DJ graphs with n nodes (cf. e.g. [10]). We will derive
asymptotic estimates for the numerator only.

In the following, we assume that the branch predicate (1) is true until Section 4.5.
We start by introducing T (x, y, z), the PGF for the T -productions (number 3 to 31

of Table A.1). As already mentioned, z counts the number of ©-nodes and x counts the
number of Eager2b operations. Variable y counts the nesting level of j-edges.

In order to illustrate the term nesting level fix a node u in an arbitrary DJ graph. If there
exists a node v dominated by u which is a source of a j-edge pointing to a node w such
that the level (in terms of the dominator tree) of w is higher than or equal to that of u, then
node u is in the first nesting level. If there are k such j-edges, node u is in nesting level k.
We call all such j-edges critical in respect to u.

The importance of the nesting level stems from the fact that if u is a non-terminal in a
DJ graph sentential which is replaced during a derivation step, then all nodes dominated
by u “gain height” (in terms of the dominator tree). Thus the Eager2b operations for all
the critical j-edges are increased by an amount to be considered below. Anyway, it is very
important to know the number of critical j-edges which is equal to the nesting level to keep
track of the correct number of Eager2b operations.

In order to set up a functional equation for T (x, y, z) based on the graph grammar given
in Table A.1, we have to obey the following rules.

• Normally all •T-nodes are replaced with T (x, y, z). These nodes are presumptive
sources for j-edges and the nesting level of j-edges, i.e., the variable y, is not changed.
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• The •T-nodes in productions 16, 17, 20, 21, 24, 25, 26, 27, 30, and 31 are different in
that they are inside a loop local to the production. Thus, the nesting level of j-edges is
increased by one. This is reflected by replacing the variable y in T (x, y, z) with xy.

• All the other T-nodes are independent from existing j-edges. Thus, they are replaced
with T (x,1, z), T (x, x, z), or T (x, x2, z) depending on how many j-edges have their
source in the T-node.

For example, consider production 19: the uppermost T-node is not a source of a j-edge;
thus, it is replaced with T (x,1, z). The left one of the remaining T-nodes is replaced with
T (x, y, z) and the right one with T (x, x, z) because one j-edge has its source there.

In addition, we have to consider the number of ©-nodes in the productions, which result
in zr if there are r ©-nodes.

Finally, we have to take into account how much the number of Eager2b operations is
increased by the production. Locally this is just the difference s of the levels between the
source and the target of the j-edges and is mapped to xs . Globally we also have to consider
that the current production is nested inside a j-edge structure. The nesting level is counted
in variable y. If there is only one •-node in a certain production, let h denote the height
of the •-node, i.e., the distance to the root in the production. Then we have to add yh to
our counting expression. In general, if there is more than one •-node in production p, we
define a tree Hp in the following way:

• Hp is a subgraph of production p.
• The root of Hp is the root of production p.
• The leaves of Hp are the •-nodes in p.
• Internal nodes and edges of Hp are found along the shortest paths of d- or dj-edges in

p from the root to the leaves of Hp .

Denoting the number of edges in Hp by h, we have to add yh to our counting expression.
A proof of the correctness of this construction is straightforward. Note that this con-

struction simplifies to the case with only one •-node discussed above.
Note also that our construction correctly takes care of the fact that sometimes one of

two coinciding j-edges is removed. For example, consider production 7: all j-edges that get
duplicated when this production is applied, are removed when their sources reach the root
node of production 7 (cf. also Fig. 6).

Returning to production 19 we get a factor z since there is one ©-node, a factor x2

because there is one local j-edge spanning two levels, and a factor y2 as the height of the
•T-node equals 2.

An approach similar to our nesting level being counted by y has been followed by Knuth
[12, 2.3.4.5] to determine the average path length of binary trees. He finds a generating
function for the number of binary trees with n nodes and internal path length p

B(w, z) =
∑

n,p�0

bn,pwpzn = 1 + zB(w,wz)2,

where z is used to accumulate the internal path length by appropriate powers of w.
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Applying the above rules to all productions we get the fourth column in Table A.1.
Hence we obtain the following functional equation

T (x, y, z) = p3z

+ p4yzT (x, x, z)2T (x, y, z)

+ p5y
2zT (x, y, z)2

+ p6yzT (x, x, z)T (x, y, z)

+ p7yzT (x, y, z)

+ p8xy2z2T (x, x, z)T (x, y, z)

+ p9xyzT (x, x, z)T (x, y, z)

+ p10xyz2T (x, x, z)

+ p11xzT (x, x, z)

+ p12xy2z2T (x, x2, z)T (x, y, z)

+ p13xyzT (x, x2, z)T (x, y, z)

+ p14x
2y2z2T (x,1, z)T (x, x2, z)T (x, y, z)

+ p15x
2yzT (x,1, z)T (x, x2, z)T (x, y, z)

+ p16x
2y3z2T (x, x2, z)T (x, xy, z)

+ p17x
2yzT (x, x2, z)T (x, xy, z)

+ p18x
2y3z2T (x,1, z)T (x, x, z)T (x, y, z)

+ p19x
2y2zT (x,1, z)T (x, x, z)T (x, y, z)

+ p20x
2y2z2T (x, x, z)T (x, xy, z)

+ p21x
2yzT (x, x, z)T (x, xy, z)

+ p22xy3z2T (x, x, z)T (x, y, z)

+ p23xy2zT (x, x, z)T (x, y, z)

+ p24xy2z2T (x, xy, z)

+ p25xyzT (x, xy, z)

+ p26xy2z2T (x, xy, z)

+ p27xyzT (x, xy, z)

+ p28x
2y3z2T (x,1, z)T (x, x, z)T (x, y, z)

+ p29x
2y2zT (x,1, z)T (x, x, z)T (x, y, z)

+ p30x
2y3z2T 2(x, xy, z)

(13)+ p31x
2y2zT 2(x, xy, z).

In addition, we clearly have

S(x, x, z) = p1z
2 + p2z

2T (x, x, z).
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Thus,

En = [zn] d
dx

S(x, x, z)|x=1

sn
= p2

[zn]z2( d
dy

T (x, y, z) + d
dx

T (x, y, z))|x=1,y=1

sn

and we have to deal with derivatives of T (x, y, z).
Returning to our example (Fig. 5) we derive (ignoring the probabilities pi )

S(x, x, z)
2−→ z2T (x, x, z)

25−→ x2z3T (x, x2, z)

7−→ x4z4T (x, x2, z)
25−→ x7z5T (x, x3, z)

3−→ x7z6

which correctly finds that the number of nodes is 6 (the exponent of z) and the number
of Eager2b operations is 7 (the exponent of x). By denoting Ty(z) = d

dy
T (x, y, z)|x=1,y=1

and T (z) = T (x, y, z)|x=1,y=1, which is equivalent to T (z) in Section 3, we find by differ-
entiating Eq. (13) w.r.t. y and letting x = 1 and y = 1

Ty(z) = p4zT (z)3 + p4zT (z)2Ty(z)

+ 2p5zT (z)2 + 2p5zT (z)Ty(z)

+ p6zT (z)2 + p6zT (z)Ty(z)

+ p7zT (z) + p7zTy(z)

+ 2p8z
2T (z)2 + p8z

2T (z)Ty(z)

+ p9zT (z)2 + p9zT (z)Ty(z)

+ p10z
2T (z)

+ 2p12z
2T (z)2 + p12z

2T (z)Ty(z)

+ p13zT (z)2 + p13zT (z)Ty(z)

+ 2p14z
2T (z)3 + p14z

2T (z)2Ty(z)

+ p15zT (z)3 + p15zT (z)2Ty(z)

+ 3p16z
2T (z)3 + p16z

2T (z)Ty(z)

+ p17zT (z)2 + p17zT (z)Ty(z)

+ 3p18z
2T (z)3 + p18z

2T (z)2Ty(z)

+ 2p19zT (z)3 + p19zT (z)2Ty(z)

+ 2p20z
2T (z)2 + p20z

2T (z)Ty(z)

+ p21zT (z)2 + p21zT (z)Ty(z)

+ 3p22z
2T (z)2 + p22z

2T (z)Ty(z)

+ 2p23zT (z)2 + p23zT (z)Ty(z)

+ 2p24z
2T (z) + p24z

2Ty(z)

+ p25zT (z) + p25zTy(z)

+ 2p26z
2T (z) + p26z

2Ty(z)
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+ p27zT (z) + p27zTy(z)

+ 3p28z
2T 3(z) + p28z

2T 2(z)Ty(z)

+ 2p29zT
3(z) + p29z

2T 2(z)Ty(z)

+ 3p30z
2T 2(z) + 2p30z

2T (z)Ty(z)

(14)+ 2p31zT
2(z) + 2p31zT (z)Ty(z).

We obtain an explicit expression Ty(z) = Ny(z)

Dy(z)
where

Ny(z) = p4zT (z)3 + 2p5zT (z)2 + p6zT (z)2

+ p7zT (z) + p8z
22T (z)2 + p9zT (z)2

+ p10z
2T (z) + 2p12z

2T (z)2 + p13zT (z)2

+ 2p14z
2T (z)3 + p15zT (z)3 + 3p16z

2T (z)2

+ p17zT (z)2 + 3p18z
2T (z)3 + 2p19zT (z)3

+ 2p20z
2T (z)2 + p21zT (z)2 + 3p22z

2T (z)2

+ 2p23zT (z)2 + 2p24z
2T (z) + p25zT (z)

+ 2p26z
2T (z) + p27zT (z) + 3p28z

2T 3(z)

(15)+ 2p29zT
3(z) + 3p30z

2T 2(z) + 2p31zT
2(z)

and

Dy(z) = 1 − p4zT (z)2 − 2p5zT (z) − p6zT (z)

− p7z − p8z
2T (z) − p9zT (z) − p12z

2T (z)

− p13zT (z) − p14z
2T (z)2 − p15zT (z)2

− p16z
2T (z) − p17zT (z) − p18z

2T (z)2

− p19zT (z)2 − p20z
2T (z) − p21zT (z)

− p22z
2T (z) − p23zT (z) − p24z

2 − p25z

− p26z
2 − p27z − p28z

2T 2(z)

(16)− p29zT
2(z) − 2p30z

2T (z) − 2p31zT (z).

By denoting Tx(z) = d
dx

T (x, y, z)|x=1,y=1 and T (z) = T (x, y, z)|x=1,y=1 we find by
differentiating Eq. (13) w.r.t. x and letting x = 1 and y = 1

Tx(z) = p4zT (z)2Tx(z) + 2p4zT (z)2(Tx(z) + Ty(z)
)

+ 2p5zT (z)Tx(z)

+ p6zT (z)Tx(z) + p6zT (z)
(
Tx(z) + Ty(z)

)
+ p7zTx(z)

+ p8z
2T (z)2 + p8z

2T (z)Tx(z) + p8z
2T (z)

(
Tx(z) + Ty(z)

)
+ p9zT (z)2 + p9zT (z)Tx(z) + p9zT (z)

(
Tx(z) + Ty(z)

)
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+ p10z
2T (z) + p10z

2(Tx(z) + Ty(z)
)

+ p11zT (z) + p11z
(
Tx(z) + Ty(z)

)
+ p12z

2T (z)2 + p12z
2T (z)Tx(z) + p12z

2T (z)
(
Tx(z) + 2Ty(z)

)
+ p13zT (z)2 + p13zT (z)Tx(z) + p13zT (z)

(
Tx(z) + 2Ty(z)

)
+ 2p14z

2T (z)3 + 2p14z
2T (z)2Tx(z) + p14z

2T (z)2(Tx(z) + 2Ty(z)
)

+ 2p15zT (z)3 + 2p15zT (z)2Tx(z) + p15zT (z)2(Tx(z) + 2Ty(z)
)

+ 2p16z
2T (z)2 + p16z

2T (z)
(
Tx(z) + Ty(z)

)
+ p16z

2T (z)
(
Tx(z) + 2Ty(z)

)
+ 2p17zT (z)2 + p17zT (z)

(
Tx(z) + Ty(z)

) + p17zT (z)
(
Tx(z) + 2Ty(z)

)
+ p18z

22T (z)3 + p18z
22T (z)2Tx(z) + p18z

2T (z)2(Tx(z) + Ty(z)
)

+ p19z2T (z)3 + p19z2T (z)2Tx(z) + p19zT (z)2(Tx(z) + Ty(z)
)

+ p20z
22T (z)2 + 2p20z

2T (z)
(
Tx(z) + Ty(z)

)
+ p21z2T (z)2 + 2p21zT (z)

(
Tx(z) + Ty(z)

)
+ p22z

2T (z)2 + p22z
2T (z)Tx(z) + p22z

2T (z)
(
Tx(z) + Ty(z)

)
+ p23zT (z)2 + p23zT (z)Tx(z) + p23zT (z)

(
Tx(z) + Ty(z)

)
+ p24z

2T (z) + p24z
2(Tx(z) + Ty(z)

)
+ p25zT (z) + p25z

(
Tx(z) + Ty(z)

)
+ p26z

2T (z) + p26z
2(Tx(z) + Ty(z)

)
+ p27z

2T (z) + p27z
(
Tx(z) + Ty(z)

)
+ 2p28z

2T 3(z) + 2p28z
2T 2(z)Tx(z) + p28z

2T 2(z)
(
Tx(z) + Ty(z)

)
+ 2p29zT

3(z) + 2p29zT
2(z)Tx(z) + p29zT

2(z)
(
Tx(z) + Ty(z)

)
+ 2p30z

2T 2(z) + 2p30z
2T (z)

(
Tx(z) + Ty(z)

)
+ 2p31zT

2(z) + 2p31zT (z)
(
Tx(z) + Ty(z)

)
.

We obtain an explicit expression Tx(z) = Nx(z)
Dx(z)

where

Nx(z) = 2p4zT (z)2Ty(z)

+ p6zT (z)Ty(z)

+ p8z
2T (z)2 + p8z

2T (z)Ty(z)

+ p9zT (z)2 + p9zT (z)Ty(z)

+ p10z
2T (z) + p10z

2Ty(z)

+ p11zT (z) + p11zTy(z)

+ p12z
2T (z)2 + p12z

22T (z)Ty(z)

+ p13zT (z)2 + p13z2T (z)Ty(z)
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+ 2p14z
2T (z)3 + 2p14z

2T (z)2Ty(z)

+ 2p15zT (z)3 + 2p15zT (z)2Ty(z)

+ 2p16z
2T (z)2 + 3p16z

2T (z)Ty(z)

+ 2p17zT (z)2 + 3p17zT (z)Ty(z)

+ 2p18z
2T (z)3 + p18z

2T (z)2Ty(z)

+ 2p19zT (z)3 + p19zT (z)2Ty(z)

+ 2p20z
2T (z)2 + 2p20z

2T (z)Ty(z)

+ 2p21zT (z)2 + 2p21zT (z)Ty(z)

+ p22z
2T (z)2 + p22z

2T (z)Ty(z)

+ p23zT (z)2 + p23zT (z)Ty(z)

+ p24z
2T (z) + p24z

2Ty(z)

+ p25zT (z) + p25zTy(z)

+ p26z
2T (z) + p26z

2Ty(z)

+ p27zT (z) + p27zTy(z)

+ 2p28z
2T 3(z) + p28z

2T 2(z)Ty(z)

+ 2p29zT
3(z) + p29zT

2(z)Ty(z)

+ 2p30z
2T 2(z) + 2p30z

2T (z)Ty(z)

(17)+ 2p31zT
2(z) + 2p31zT (z)Ty(z)

and

Dx(z) = 1 − 3p4zT (z)2 − 2p5zT (z)

− 2p6zT (z) − p7z − 2p8z
2T (z)

− 2p9zT (z) − p10z
2 − p11z − 2p12z

2T (z)

− 2p13zT (z) − 3p14z
2T (z)2 − 3p15zT (z)2

− 2p16z
2T (z) − 2p17zT (z) − 3p18z

2T (z)2

− 3p19zT (z)2 − 2p20z
2T (z) − 2p21zT (z)

− 2p22z
2T (z) − 2p23zT (z) − p24z

2 − p25z

− p26z
2 − p27z − 3p28z

2T 2(z)

(18)− 3p29zT
2(z) − 2p30z

2T (z) − 2p31zT (z).

Note that Dx(z) is equivalent to 1 − Fw(z,w) of Section 3 which means that for (z → ρ)

the denominator of Tx(z) approaches zero. Thus, Tx(z) has a pole at z = ρ.
The asymptotic behavior of En is determined by the singularities of Dy(z) and Dx(z).

We have to discriminate two cases: case (1) is when Dy(z) and Dx(z) have different sin-
gularities and case (2) is when the singularities coincide. Hence, we define

Δ(z) = Dy(z) − Dx(z)
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= z
(
2p4T (z)2 + p6T (z) + p8zT (z) + p9T (z) + p10z + p11 + p12zT (z)

+ p13T (z) + 2p14zT (z)2 + 2p15T (z)2 + p16zT (z) + p17T (z)

+ 2p18zT (z)2 + 2p19T (z)2 + p20zT (z) + p21T (z)

(19)+ p22zT (z) + p23T (z) + 2p28z
2T 2(z) + 2p29zT

2(z)
)
.

4.1. The case Δ(z) �≡ 0

It is easy to see that the Taylor series expansion of ψ(z) = 1/Dy(z) at z = 0 has only
non-negative coefficients. Thus, the smallest singularity of ψ(z) is located on the real axis.

On the other hand, Dx(z) has its smallest zero at z = ρ which follows from [13]. Now
for real argument Dx(z) is monotonically decreasing with Dx(0) = 1 and Dx(ρ) = 0.

In addition, Δ(z) is monotonically increasing for real argument with Δ(0) = 0 and
Δ(ρ) > 0. Hence, Dy(z) = Dx(z) + Δ(z) > 0 for 0 � z � ρ which implies that the singu-
larity of ψ(z) > ρ.

Letting T (z) = τ − c1u
1/2 + O(u) (see Lemma 1), where u = 1 − z/ρ, we obtain for

(z → ρ)

Dy(z) = c2 + O(u)

for some constant c2, and

Sx(z) = d

dx
S(x, x, z)

∣∣∣∣
x=1

= c3u
−1/2 + c4 + O(u1/2)

for some constants c3 and c4.
Applying Theorem 2, it follows that for some constant c5 and (n → ∞)

[zn]Sx(z) = c5n
−1/2ρ−n

(
1 + O

(
1

n

))
.

Hence, dividing by sn, we obtain

En = c6 · n + O(1)

for some constant c6 and (n → ∞).

4.2. The case Δ(z) ≡ 0

In this case p4 = p6 = p8 = p9 = p10 = p11 = p12 = p13 = p14 = p15 = p16 = p17 =
p18 = p19 = p20 = p21 = p22 = p23 = p28 = p29 = 0.

We further discriminate the cases where p5 = 0 and where p5 �= 0.

4.3. The case Δ(z) ≡ 0 and p5 �= 0

In this case Dx(z) ≡ Dy(z) which implies that d
dx

S(x, x, z)|x=1 has a double pole at
z = ρ. Hence, we get for (z → ρ)

Sx(z) = d
S(x, x, z)

∣∣∣∣ = c7u
−1 + O(u−1/2)
dx x=1
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for some constant c7.
This implies that for some constant c8 and for (n → ∞)

[zn]Sx(z) = c8ρ
−n

(
1 + O

(
1

n

))
.

Dividing by sn we get for some constant c9 and for (n → ∞)

En = c9 · n3/2 + O(n1/2).

4.4. The case Δ(z) ≡ 0 and p5 = 0

This case contradicts the branch predicate and for this reason is treated in Section 4.5.

4.5. The branch predicate is false

In this case we obtain

Dy(z) = 1 − p7z − p24z
2 − p25z − p26z

2 − p27z

and

Dx(z) = 1 − q1z − q2z
2,

where q1 and q2 are defined in Section 3.2.
If Δ(z) = Dy(z) − Dx(z) �≡ 0, it is easy to see from Eq. (12) that near its singularities

T (z) behaves like Dx(z)
−1. Furthermore, we obtain that Ty(z) behaves like Dx(z)

−1 and
that both Tx(z) and Sx(z) behave like Dx(z)

−2.
Hence we have

En = c10 · n + O(1) (n → ∞)

for some constant c10.
In case of Δ(z) ≡ 0, i.e., p10 = p11 = 0, we find that Ty(z) behaves like Dx(z)

−2. In
addition, Tx(z) and Sx(z) behave like Dx(z)

−3.
Thus we have

En = c11 · n2 + O(n) (n → ∞)

for some constant c11.
Summing up, we have proved the following theorem.

Theorem 4. Let G be a DJ graph with n nodes which can be derived by the graph gram-
mar depicted in Table A.1. Then the average number of Eager2b operations performed by
Sreedhar’s algorithm En can be determined as follows.

If the branch predicate (1) is true, then

(a) if further p4 = p6 = p8 = p9 = p10 = p11 = p12 = p13 = p14 = p15 = p16 = p17 =
p18 = p19 = p20 = p21 = p22 = p23 = 0,

En = c9 · n3/2 + O(n1/2),
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(b) otherwise

En = c6 · n + O(1).

If the branch predicate (1) is false and

(c) if further p10 = p11 = 0, we obtain

En = c11 · n2 + O(n),

(d) otherwise

En = c10 · n + O(1).

Taking a closer look at Theorem 4 we find that programming languages of case (c) con-
sist of repeat-until-loops only. Programming languages of case (a) support only restricted
forms of if-statements and repeat-until-loops. Except for such very uncommon languages,
the following corollary holds.

Corollary 1. The average number of Eager2b operations performed by Sreedhar’s algo-
rithm for goto-free programs is linear in the size of the program.

Remark 2. Note that a program P , consisting only of straight-line code and repeat-until-
loops written in a certain programming language L that also supports other language
features like if-statements and while-loops, implies quadratic running time of Sreedhar’s
algorithm for this specific program P .

Since, however, the probabilities for if-statements and while-loops are non-zero, ac-
cording to Theorem 4 the average case performance of Sreedhar’s algorithm for programs
written in L is linear.

It is shown in [18] that the number of Eager2b operations corresponds to the size of the
dominance frontier [7] (which is needed for SSA6 analysis, a method common in compiler
construction).

Thus, we have also proved the following corollary as a byproduct.

Corollary 2. Under the same assumptions as in Corollary 1, the average size of the domi-
nance frontier is linear in the program size.

In the following we prove a theorem originally due to [7].

Theorem 5 (Cytron et al.). For programs comprised of straight-line code, if-then-else and
while-do constructs, the dominance frontier of any CFG node contains at most two nodes.

6 Static Single Assignment.
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Proof. We prove this theorem by restricting our graph grammar to the productions 1 to 11.
Note that in this case no T (x, xy, z) term appears. Thus, we obtain the following functional
equation for T (x, x, z).

T (x, x, z) = p3z + p4xzT (x, x, z)3 + p5x
2zT (x, x, z)2

+ p6xzT (x, x, z)2 + p7xzT (x, x, z) + p8x
3z2T (x, x, z)2

(20)+ p9x
2zT (x, x, z)2 + p10x

2z2T (x, x, z) + p11xzT (x, x, z).

Note that [xk][zn]S(x, x, z) = [xk][zn](p1z
2 + p2z

2T (x, x, z)) denotes the exact number
of DJGs with n nodes and k Eager2b operations. From Eq. (20) the theorem is obvious. �

5. Conclusion

First we would like to note that the probability distribution employed in this paper is
very general in nature. Although the pi assigned to the productions are considered inde-
pendent from each other and from the number of nodes in the graphs, they can be used to
model any particular set of programs for which then the average case timing behavior can
be predicted quite accurately since the constants of Theorem 4 can be determined exactly
if the pi for each production are known.

In this paper we have proved that for goto-free programs written in usual programming
languages, i.e., languages that provide at least for straight-line code, if-statements, repeat-
until-loops, and while-loops (or semantically equivalent features such as general loops
with exit-statements), the average number of Eager2b operations performed by Sreedhar’s
algorithm is linear in the size of the input program. Our approach employs a graph grammar
to specify goto-free programs and well-known methods for the analysis of algorithms and
data-structures to determine the average number of Eager2b operations.

As a consequence it follows that for goto-free programs the average size of the domi-
nance frontier [7] is linear in the size of the underlying program.

An earlier result of Cytron et al. [7] can be reproduced by our approach.
In terms of solving a system of simultaneous equations our result can be interpreted

in the following way: if a system of simultaneous equations can be described in terms of
a graph which can be derived by our graph grammar, then, on the average, a solution of
the system of equations can be obtained in linear time. This also holds for suitable sparse
systems of linear equations [20].

It is easy to add productions to our graph grammar that model some kind of multiple
entry loops. Table A.2 shows one of the productions required to model such loops. With
help of this extension our result also applies to some irreducible graphs [3] for which the
average number of Eager2b operations is still linear in the size of the program.

On the other hand, it is still an open question whether the average number of Eager2b
operations is linear for all reducible flow graphs [3] under some practically useful proba-
bility distribution.
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Appendix A. The graph grammar in tabular form

This appendix contains the graph grammar underlying this paper.

Table A.1
A graph grammar for DJ graphs

No. Productions Count. expr.

Language Graph

1 S → begin end p1z2

2 S → begin T end p2z2T (x, x, z)

3 T → s, T0 → s p3z

4 T → if c then T else T endif T p4yzT (x, x, z)2

T (x, y, z)

5 T → if c then T else T endif p5y2zT (x, y, z)2

6 T → if c then T endif T p6yzT (x, x, z)

T (x, y, z)

7 T → if c then T endif p7yzT (x, y, z)

8 T → T0 while c loop T endloop T p8xy2z2

T (x, x, z)T (x, y, z)

9 T → while c loop T endloop T p9xyz

T (x, x, z)T (x, y, z)

10 T → T0 while c loop T endloop p10xyz2T (x, x, z)

(continued on next page)
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Table A.1 (Continued from Table A.1)

No. Productions Count. expr.

Language Graph

11 T → while c loop T endloop p11xzT (x, x, z)

12 T → T0 while c loop
T exit when c endloop T

p12xy2z2

T (x, x2, z)T (x, y, z)

13 T → while c loop
T exit when c endloop T

p13xyz

T (x, x2, z)T (x, y, z)

14 T → T0 while c loop
T exit when c T endloop T

p14x2y2z2T (x,1, z)

T (x, x2, z)T (x, y, z)

15 T → while c loop
T exit when c T endloop T

p15x2yzT (x,1, z)

T (x, x2, z)T (x, y, z)

16 T → T0 while c loop
T exit when c T endloop

p16x2y3z2

T (x, x2, z)T (x, xy, z)

17 T → while c loop
T exit when c T endloop

p17x2yz

T (x, x2, z)T (x, xy, z)

18 T → T0 loop T exit when c

T endloop T

p18x2y3z2T (x,1, z)

T (x, x, z)T (x, y, z)

(continued on next page)
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Table A.1 (Continued from Table A.1)

No. Productions Count. expr.

Language Graph

19 T → loop T exit when c

T endloop T

p19x2y2zT (x,1, z)

T (x, x, z)T (x, y, z)

20 T → T0 loop T exit when c

T endloop
p20x2y2z2

T (x, x, z)T (x, xy, z)

21 T → loop T exit when c

T endloop
p21x2yz

T (x, x, z)T (x, xy, z)

22 T → T0 repeat T until c T p22xy3z2

T (x, x, z)T (x, y, z)

23 T → repeat T until c T p23xy2z

T (x, x, z)T (x, y, z)

24 T → T0 repeat T until c p24xy2z2T (x, xy, z)

25 T → repeat T until c p25xyzT (x, xy, z)

26 T → T0 while c loop
T exit when c endloop

p26xy2z2T (x, xy, z)

27 T → while c loop
T exit when c endloop

p27xyzT (x, xy, z)

(continued on next page)



674 J. Blieberger / Journal of Discrete Algorithms 4 (2006) 649–675
Table A.1 (Continued from Table A.1)

No. Productions Count. expr.

Language Graph

28 T → T0 repeat T exit when c

T until c T

p28x2y3z2T (x,1, z)

T (x, x, z)T (x, y, z)

29 T → repeat T exit when c

T until c T

p29x2y2zT (x,1, z)

T (x, x, z)T (x, y, z)

30 T → T0 repeat T exit when c

T until c

p30x2y3z2T 2(x, xy, z)

31 T → repeat T exit when c T until c p31x2y2zT 2(x, xy, z)

Table A.2
Extension of graph grammar: Multiple entry loop

No. Productions

Description Graph

32 Multiple entry loop
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