
Saudi Pharmaceutical Journal (2014) 22, 223–230

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
King Saud University

Saudi Pharmaceutical Journal

www.ksu.edu.sa
www.sciencedirect.com
ORIGINAL ARTICLE
Engineering erythrocytes as a novel carrier for

the targeted delivery of the anticancer drug

paclitaxel
* Corresponding author. Address: Department of Pharmaceutics,

College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh

11451, Saudi Arabia. Tel.: +966 546269544; fax: +966 (1) 4676295.

E-mail address: gamal.harisa@yahoo.com (G.I. Harisa).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

1319-0164 ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.

http://dx.doi.org/10.1016/j.jsps.2013.06.007
Gamaleldin I. Harisa
a,b,*, Mohamed F. Ibrahim

a
, Fars Alanazi

a
,

Gamal A. Shazly a,c
a Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451,
Saudi Arabia
b Department of Biochemistry, College of Pharmacy, Al-Azhar University (Boys), Nasr City, Cairo, Egypt
c Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt

Received 26 May 2013; accepted 23 June 2013

Available online 1 July 2013
KEYWORDS

Paclitaxel;

Erythrocytes;

Preswelling;

Loaded erythrocytes;

Osmotic fragility;

Oxidative stress
Abstract Paclitaxel (PTX) is formulated in a mixture of Cremophor EL and dehydrated alcohol.

The intravenous administration of this formula is associated with a risk of infection and hypersen-

sitivity reactions. The presence of Cremophor EL as a pharmaceutical vehicle contributes to these

effects. Therefore, in this study, we used human erythrocytes, instead of Cremophor, as a pharma-

ceutical vehicle. PTX was loaded into erythrocytes using the preswelling method. Analysis of the

obtained data indicates that 148.8 lg of PTX was loaded/mL erythrocytes, with an entrapment effi-

ciency of 46.36% and a cell recovery of 75.94%. Furthermore, we observed a significant increase in

the mean cell volume values of the erythrocytes, whereas both the mean cell hemoglobin and the

mean cell hemoglobin concentration decreased following the loading of PTX. The turbulence fra-

gility index values for unloaded, sham-loaded and PTX-loaded erythrocytes were 3, 2, and 1 h,

respectively. Additionally, the erythrocyte glutathione level decreased after PTX loading, whereas

lipid peroxidation and protein oxidation increased. The release of PTX from loaded erythrocytes

followed first-order kinetics, and about 81% of the loaded drug was released into the plasma after

48 h. The results of the present study revealed that PTX was loaded successfully into human eryth-

rocytes with acceptable loading parameters and with some oxidative modification to the erythro-

cytes.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Paclitaxel (PTX) is an anticancer drug that is used against hu-

man solid tumors (e.g., for advanced breast, ovarian and non-
small-cell lung cancers) either alone or in combination with
other treatments. PTX stabilizes microtubule assembly
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through non-covalent interactions with the cytoskeleton,
thereby blocking cell division (Rowinsky et al., 1993).

PTX has a high molecular weight (MW; 854 Da) and a very

low aqueous solubility (Nicolaou et al., 1994). Moreover, PTX
does not contain any functional groups that can be ionized by
pH changes or that allow salt formation to increase its solubil-

ity. Therefore, the development of PTX formulations has been
challenging (Singla et al., 2002).

PTX has a low level of oral bioavailability owing to its poor

solubility, to the effects of intestinal and liver cytochrome
P450-metabolizing enzymes and to the effects of phosphory-
lated glycoprotein (PgP). Several studies have shown that the
oral bioavailability of PTX can be greatly improved when

the drug is administered in combination with PgP inhibitors
(Woo et al., 2003). PgP inhibitors improve the oral bioavail-
ability of PTX by enhancing PTX absorption and decreasing

its elimination (Van Asperen et al., 1998). However, the use
of PgP inhibitors is limited in humans because of the risk of
adverse cardiac and immunosuppressive effects (Woo et al.,

2003).
Therefore, lipid-based formulations, such as self-micro-

emulsifying drug delivery systems (SMEDDS), were developed

to increase PTX solubilization and absorption (Gao et al.,
2003). PTX SMEDDS formulations have greater bioavailabil-
ity than orally administered PTX formulations (Yang et al.,
2004). Furthermore, lipid nanocapsules were developed to al-

low the solubilization of PTX, increase its absorption (Heurta-
ult et al., 2002), inhibit PgP and reverse multidrug resistance
mechanisms (Coon et al., 1991).

PTX for intravenous infusion is formulated in a 1:1 v/v
mixture of Cremophor EL and dehydrated alcohol. The intra-
venous (IV) administration of this formula is associated with a

risk of catheter-related infection and hypersensitivity reac-
tions. It is well established that the use of Cremophor EL as
a pharmaceutical vehicle contributes to these effects (Van Zuy-

len et al., 2001). Thus, much research is being carried out to
identify alternative intravenous formulations that do not use
Cremophor EL (Wissing et al., 2004).

The available alternative delivery systems utilize multi-com-

ponent structures such as cells (Hamidi et al., 2007a). Erythro-
cytes represent one of the most promising biological drug
delivery systems (Millan, 2004). Erythrocytes are biodegrad-

able and biocompatible, and they are able to circulate through-
out the body. In addition, their degradation products are
reusable (Pierigè et al., 2008). According to the preferred ther-

apeutic approach, erythrocytes are used either as carriers for
the sustained release of the drugs or to target the drugs to spe-
cific organs (Hamidi et al., 2007b). The maintenance of the
normal oxidant/antioxidant balance in erythrocytes during

drug encapsulation may help to produce loaded cells with
characteristics similar to those of normal erythrocytes (Alanaz-
i, 2010). In this case, such drug-loaded cells can be used as

slow-release carriers for the entrapped drugs (Hamidi et al.,
2007b). In contrast, the modification of loaded erythrocytes re-
sults in their accelerated removal and targeting to the reticulo-

endothelial system (RES) (Alanazi et al., 2011).
Osmotic stress can alter erythrocyte morphology and there-

by accelerate their removal from the circulation by the RES

(Minetti et al., 2007). The major difficulty associated with
the use of erythrocytes as extended drug carriers thus involves
their uptake in vivo by the RES Hamidi et al., 2007a). This
accelerated uptake may be attributed to the oxidation of lipids
and proteins in the erythrocyte membrane (Zwaal and Schroit,
1997). An increase in protein oxidation is a feature of erythro-
cyte aging (Robaszkiewicz et al., 2008). The reported side ef-

fects of PTX include anemia, which may result from the
decreased formation of new erythrocytes or from the acceler-
ated clearance of circulating erythrocytes (Lang et al., 2006).

Accelerated clearance, in turn, may be the result of stress-in-
duced eryptosis, which is characterized by cellular shrinkage,
phosphatidylserine externalization and cellular protease acti-

vation (Lang et al., 2006).
Exposure of erythrocytes to a hypotonic solution creates

pores in the erythrocyte membrane, allowing drugs to pass
through the pores and become permanently entrapped after

the cells have been resealed with a specific isotonic buffer solu-
tion. Hypotonic dilution has been widely studied as a tech-
nique for the drug loading of erythrocytes. This method has

previously been used for the entrapment of anticancer drugs
(Mishra and Jain, 2002). The loading of anticancer drugs into
erythrocytes may increase the uptake of the drug by cancer

cells (Gaudreault et al., 1989).
Many approaches have been proposed to improve the ther-

apeutic effects of paclitaxel and to reduce its side effects,

including the use of micellar carriers, soluble polymers, PTX-
soluble prodrugs, and polymeric nanocapsules (Zhao et al.,
2010).

The objective of this study was to utilize human erythro-

cytes as a pharmaceutical vehicle for PTX delivery. PTX was
loaded into erythrocytes by the preswelling method. Addition-
ally, the effects of PTX on oxidative status, osmotic fragility

and hematological indices were determined.

2. Materials and methods

2.1. Materials

Paclitaxel was obtained from David Bull Laboratories, Victo-
ria, Australia. Hydrocortisone acetate was obtained from Flu-
ka AG, Buchs, Switzerland. Methanol and acetonitrile

(AnalaR� with 99.8% purity) were purchased from BDH,
Pool, England. The water used in this study was obtained from
a Milli-Q water purification system (Millipore, Bedford, MA).

Reduced glutathione (GSH), oxidized glutathione (GSSG),

and thiobarbituric acid (TBA) were purchased from Sigma
Chemical Co. (St. Louis, MO). Guanidine hydrochloride was
obtained from Winlab (UK). All other chemicals used were

of high analytical grade.
A stock solution of PTX was prepared by dissolving the

drug in methanol containing 0.1% acetic acid. This solution

was protected from light and stored at �20 �C prior to use.
Autologous plasma was used for drug dilution as required.

VWR vortex mixer was obtained from Scientific Industries

Inc. (Bohemia, NY). The Spectro UV–Vis Split Beam PC,
model UVS-2800 was obtained from Labomed, Inc. (Culver
City, CA).

2.2. Methods

2.2.1. Erythrocyte isolation and PTX loading

Blood samples from apparently healthy volunteers were col-
lected in heparinized tubes. Informed consent was obtained
from all volunteers. The plasma and buffy layer were detached



Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel 225
by aspiration. The erythrocytes were then washed three times
in cold isotonic phosphate-buffered saline (PBS) with centrifu-
gation for 5 min at 5000 rpm (MIKRO20 centrifuge, Hettich,

Germany). The isolated erythrocytes were collected until used
for the PTX loading (Alanazi et al., 2011).

2.2.2. Entrapment of PTX into erythrocytes

A hypotonic preswelling method was used for the loading of
human erythrocytes with PTX. For this purpose, 1 volume
of washed packed erythrocytes was transferred gently to a test

tube, and then 4 volumes of hypotonic 0.6% NaCl were added.
This mixture was incubated at 0 �C for 5 min and then centri-
fuged; then, 1 volume of plasma containing the required PTX

concentration was added to 1 volume of preswelled cells and
incubated for 10 min at 0 �C. Finally, the erythrocytes were re-
sealed by the addition of 0.06 volumes of KCl (1.5 M) and

incubated at 37 �C for 30 min (Humphreys et al., 1981).
Sham-encapsulated erythrocytes were prepared as described
but the PTX solution replaced by distilled water. Loaded
amount, the total amount of PTX encapsulated in the final

packed erythrocytes. Efficiency of entrapment, the percentage
ratio of the loaded amount of PTX to the amount added dur-
ing the entire loading process. Cell recovery, the percentage ra-

tio of the hematocrit value of the final loaded cells to that of
the initial packed cells, measured on equal volumes of two sus-
pensions (Hamidi et al., 2007b).

2.2.3. PTX analysis

PTX was extracted from the plasma samples by the addition of
an equal volume of acetonitrile, and the mixture was centri-

fuged for 15 min at 13,000 rpm. The supernatant was used
for PTX quantitation. The assay was performed using a l
Bondapak-C18 column (150 mm · 4.6 mm i.d.) with a mobile

phase consisting of acetonitrile and 20 mM phosphate buffer
(pH 5) (50:50 v/v), a flow rate of 1 ml/minute, and UV detec-
tion at 229 nm. The chromatography data were analyzed with
the Empower� Program (Waters, USA). Hydrocortisone ace-

tate was used as an internal standard. The detection limit of
PTX was in the range of 0.1–40 lg/ml (Mowafy et al., 2012).

2.2.4. In vitro characterization of PTX-loaded erythrocytes

A series of tests were carried out to characterize the nanopar-
ticle-loaded erythrocytes in comparison with the unloaded,
sham-encapsulated, and the free drug loaded ones.

2.2.5. Hematological indices

Control erythrocytes, sham-loaded erythrocytes, and PTX-

loaded erythrocytes were hematologically characterized. The
mean corpuscular volume (MCV), the mean corpuscular
hemoglobin (MCH), the mean corpuscular hemoglobin con-
centration (MCHC) and the hematocrit (Hct) were measured

using a hematology analyzer. To estimate the morphological
variation between normal and PTX-loaded erythrocytes, both
normal and PTX-loaded erythrocyte samples were examined

using a scanning electron microscope (Hamidi et al., 2007b).

2.2.6. In vitro release of hemoglobin and PTX from carrier

erythrocytes

The in vitro release of both hemoglobin and PTX from carrier
erythrocytes was evaluated as follows: packed PTX-loaded
erythrocytes were diluted 1:10 mL using autologous plasma
and then mixed by several gentle inversions. The mixture
was aliquoted into Eppendorf tubes. The samples were incu-

bated at 37 �C and rotated vertically. Samples were removed
at 0.5, 1, 2, 4, 8, 12, 24 and 48 h and then centrifuged at
3000 rpm for 5 min. One hundred microliters of the superna-

tant was separated for PTX assays, and the remaining portion
was centrifuged for 5 min. The supernatant was used for
hemoglobin analysis by measuring the absorbance at 540 nm.

The results are expressed as percentages of the absorbance of
a completely hemolyzed sample (Hamidi et al., 2007b).

2.2.7. Osmotic fragility

The osmotic fragility test was used to assess the ability of
erythrocyte membranes to resist lysis caused by exposure to
solutions of NaCl ranging from 0.0 to 0.9 g%. A 25 lL eryth-

rocyte sample was added to each of a series of 2.5 mL saline
solutions containing 0.0–0.9 g% NaCl. After gentle mixing
and standing for 15 min at room temperature, the erythrocyte
suspensions were centrifuged at 5000 rpm for 5 min. The re-

leased hemoglobin was expressed as percentage absorbance
of each sample in reference to a completely lysed sample pre-
pared by diluting packed cells of each type with 1.5 mL of dis-

tilled water (Kraus et al., 1997).

2.2.8. Turbulence fragility

Aliquots of 0.5 mL of packed erythrocytes of each of the three

types were suspended in 10 ml of PBS in polypropylene test
tubes and shaken vigorously using a multiple test tube orbital
shaker at 2000 rpm for 4 h. To evaluate the time course of

hemoglobin release, 0.5 ml portions of each suspension were
withdrawn at 0, 1, 2, 3, 4 and 5 h. The samples were centri-
fuged at 1000g for 10 min, and the absorbance of each super-

natant was determined spectrophotometrically at 540 nm. The
percent hemoglobin release was determined relative to that of a
completely lysed suspension with the same cell fraction (i.e.,
0.5 ml packed cells added to 10 ml of distilled water). To com-

pare the turbulence fragilities of the different types of erythro-
cytes, the turbulence fragility index (TFI) was used. This value
is calculated as the shaking time required to produce 20%

hemoglobin release from erythrocytes (Hamidi et al., 2007b).

2.2.9. The effects of PTX on erythrocyte oxidative markers

2.2.9.1. Effect of PTX on glutathione. The effect of PTX on
glutathione (GSH) content was estimated according to the

method of Ellman, 1959. Briefly, 0.1 mL of 25% TCA was
added to 0.5 mL of lysate to precipitate the protein, and the
samples were centrifuged to obtain the supernatant. Then,
0.1 mL of supernatant was incubated with 2.0 mL of freshly

prepared 0.6 mmol/L 5, 5-dithiobis (2-nitrobenzoic acid)
(DTNB). The absorbance of the resulting yellow complex
was measured at 412 nm against a blank to which the hemol-

ysate had not been added. A standard curve for GSH was ob-
tained and used to calculate the GSH content in the samples.

2.2.9.2. Effect of PTX on erythrocyte lipid peroxidation. The ef-
fect of PTX on erythrocyte lipid peroxidation was demon-
strated by the spectrophotometric measurement of
malondialdehyde (MDA). A mixture of 200 lL of 8% sodium

dodecyl sulfate, 200 lL of 0.9% thiobarbituric acid, and
1.5 mL of 20% acetic acid was added to 200 lL erythrocyte
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lysate samples; then 1.9 mL of distilled water brought the vol-
ume to 4 mL. After boiling for 1 h, the mixture was cooled and
5 mL of an n-butanol and pyridine (15:1) solution was added.

The mixture was centrifuged at 5000 rpm for 15 min and the
absorbance was measured at 532 nm. Quantification of
MDA levels was performed using tetraethoxypropane as a

standard (Ohkawa et al., 1979).

2.2.9.3. Effect of PTX on erythrocyte protein oxidation. The ef-

fect of PTX on erythrocyte protein oxidation was determined
by measuring protein carbonyl (PCO) formation as described
by Levine et al. (1994). Erythrocytes were hemolysed, and pro-
teins were precipitated by the addition of 10% TCA. The pro-

teins were resuspended in 1.0 mL of 2 M HCl for the blank,
and 2 M HCl containing 2% 2,4-dinitrophenyl hydrazine for
test samples. After incubation for 1 h at 37 �C, protein samples

were washed with alcohol and ethyl acetate, and reprecipitated
by the addition of 10% TCA. The precipitated protein was dis-
solved in 6 M guanidine hydrochloride solution and absor-

bance was measured at 370 nm. Calculations were made
using the molar extinction coefficient of 22 · 103 M�1cm�1

and the results are expressed as nmol carbonyls formed per

mg protein. The total protein in the erythrocyte pellets was
measured according to the method of Lowry et al. (1951).

2.2.10. Statistical analysis

The results are expressed as the mean ± S.D. of each group.
Data analysis was carried out by one-way ANOVA followed
by the Tukey–Kramer’s test for multiple comparisons. A

0.05 level of probability was used as the criterion for
significance.

3. Results and discussion

Table 1 shows the loaded amount, the entrapment efficiency
and the percent cell recovery. The HPLC method was used
to estimate the PTX content of the supernatants after the incu-

bation of erythrocytes with PTX. The obtained data indicate
that 148.8 lg of PTX was loaded, with an entrapment effi-
ciency of 46.36%. This amount is notable in comparison to

those values reported in the literature for a variety of drugs
Table 1 Loading parameter of PTX into human erythrocytes.

Parameters Mean S.D.

Loaded amount (lg) 148.8 10.1

Entrapment efficiency (%) 46.36 5.25

Cell recovery (%) 75.94 8.44

Data expressed as mean ± S.D. six sample /group.

Table 2 Hematological parameters of control erythrocytes, sham e

Parameters Control erythrocytes

MCV (fl) 84.5 ± 0.60

MCH (pg) 30.5 ± 0.48

MCHC (g/dl) 33.4 ± 0.14

Data expressed as mean ± S.D. six sample /group.
a Significant increase at P < 0.01.
b Significant increase at P < 0.01.
(Shavi et al., 2010; Hamidi et al., 2011). The observed cell
recovery of approximately 75.94% is comparable to the recov-
ery results for various drugs reported in other studies (Mag-

nani et al., 2002; Rossi et al., 2005).
The major hematological indices of the control, sham-

loaded and PTX-loaded erythrocytes are shown in Table 2.

These parameters, which are measured as part of routine clin-
ical hematology tests, may provide some useful estimates of the
biological state of the erythrocytes. The results of the present

study showed that significant changes in erythrocyte volume
were caused by the entrapment process in sham and PTX load-
ing, as indicated by the MCV values. However, both the MCH
and the MCHC decreased following the exposure of the eryth-

rocytes to the loading procedure, in sham and PTX loaded
erythrocytes. The overall loss of hemoglobin from the erythro-
cytes upon loading procedure was expected because the proce-

dure is destructive in nature. In similar studies (Kravtzoff
et al., 1990; Garin et al., 1996; Hamidi et al., 2001), all of these
parameters were found to be lower in carrier erythrocytes than

in normal unloaded cells. This finding is consistent with the re-
sults of Hamidi et al. (2001).

The osmotic fragility of the studied erythrocytes is shown in

Fig. 1. This test is a marker of possible changes in the integrity
of the cell membrane caused by the loading procedure. More-
over, the osmotic fragility test measures the resistance of these
cells to changes in the osmotic pressure of the surrounding

media. The entrapment of PTX in cells significantly increases
the osmotic fragility of the cells, as shown in Fig. 1. Likewise,
Hamidi et al., 2001 reported that the osmotic fragility curves

changed from an S-shape in the case of control erythrocytes
to nearly linear in the case of drug-loaded erythrocytes. This
indicates that the PTX-loaded cell population is more hetero-

geneous in terms of cell membrane resistance to changes in the
extracellular osmotic pressure than are normal unloaded eryth-
rocytes. Several studies have demonstrated that the osmotic

fragility of drug-loaded erythrocytes is greater than that of un-
loaded cells and that this change is accompanied by a change
in the fragility curves from sigmoidal to somewhat linear
(Hamidi et al., 2001; Garin et al., 1996; Jain and Jain, 1997).

In contrast, a decrease in osmotic fragility has been reported
in some cases, a result that has been explained by a reduction
in the average cell volume upon loading. This reduction in cell

volume leads to a decrease in the intracellular osmotic pressure
(Kravtzoff et al., 1990).

The turbulence fragility test is used to exploit the mechan-

ical strength of the erythrocyte membranes. In the present
study, this test was mainly carried out by shaking the cell sus-
pensions vigorously (Hamidi et al., 2001). The hemoglobin re-
leased was measured at different times. The results indicated

that the turbulence fragility of the PTX-loaded erythrocytes
rythrocytes and PTX loaded erythrocytes.

Sham- erythrocytes PTX- loaded erythrocytes

96.6 ± 1.30a 109 ± 1.50a

25.6 ± 0.15b 22.3 ± 0.18b

23.7 ± 0.55b 21.4 ± 0.49b



Figure 1 Hemolysis profile of unloaded erythrocytes, sham

erythrocytes and erythrocytes loaded with PTX. Data represent

the mean ± S.D. (n= 3).

Figure 2 Turbulence shock test of control sham and PTX-

loaded erythrocytes. Data represent the mean ± S.D. (n= 3).
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was greater than that of the control and sham-loaded erythro-
cytes. As shown in Fig. 2, the turbulence fragility index values
for unloaded, sham-loaded and PTX-loaded erythrocytes were
3, 2, and 1 h, respectively. Similarly, other studies have shown

that the turbulence fragility of the erythrocytes as drug vehicles
increases significantly relative to that of normal control cells
(Talwar and Jain, 1992; Jain and Jain, 1997). These results

indicate that the resistance of the erythrocytes to vigorous tur-
bulent flow shows a decreasing trend from control cells to
PTX-loaded erythrocytes. These results indicate that erythro-

cytes become more fragile during the loading process and that
this fragility is enhanced by PTX encapsulation.
Table 3 GSH, PCO and MDA of control erythrocytes, sham eryth

Parameters Studied groups

Control S

GSH 9.848 ± 2.66 8

PCO 2.602 ± 1.02 3

MDA 15.53 ± 3.84 2

Data expressed as mean ± S.D. six sample /group.
a Significant decrease at P< 0.01.
b Significant increase at P < 0.01.
An increase in erythrocyte hemolysis destabilizes the heme
structure in hemoglobin molecules, leading to a release of free
iron ions that generate more free radicals. Moreover, the pres-

ence of PTX in the media surrounding the erythrocytes pro-
motes the production of reactive oxygen species (ROS).
Furthermore, several studies have reported that PTX stimu-

lates ROS production. Varbiro et al., 2001 demonstrated that
PTX mediates ROS production and Ramanathan et al., 2005
demonstrated that PTX increases the levels of superoxide,

hydrogen peroxide and nitric oxide. Furthermore, antioxidants
attenuate the anticancer activity of PTX in vivo and in vitro
(Fukui et al., 2010). Accordingly, it is relevant to investigate
the susceptibility of erythrocytes to PTX-induced oxidative

damage. GSH is the main antioxidant in erythrocytes that pro-
tects proteins and lipids from oxidative damage. The oxidation
of such molecules can result in the loss of cell membrane integ-

rity (Jain, 1984). The present results showed that, relative to
native erythrocytes, PTX-loaded cells contain a significantly
less GSH (Table 3).

The high polyunsaturated fatty acid content of erythrocyte
membranes renders them more sensitive to ROS attack (Chiu,
1989). In the present study, the observed increase in MDA le-

vel was attributed to the peroxidation of PUFAs. These find-
ings are similar to those of Hadzic et al. (2010), who
demonstrated that PTX enhances lipid peroxidation. The oxi-
dative modification of proteins may be one of the factors

responsible for the altered membrane asymmetry of oxidized
erythrocytes (Dumaswala et al., 1997). Oxidative stress renders
membrane-bound proteinases unable to remove oxidatively

damaged proteins from the cell membrane (Beppu et al.,
1994). In the present work, a significant increase in protein car-
bonyl (PCO) content was found in erythrocytes loaded with

PTX. It has been demonstrated that PTX causes the accumu-
lation of H2O2 and that this accumulation is a crucial step in
PTX-induced cell death (Alexandre et al., 2007). Likewise, a

previous report showed that the exposure of erythrocytes to
ROS increases protein oxidation (Pandey et al., 2009).
Dumaswala et al. (1997) reported that antioxidant mem-
brane-bound proteinases are lost due to oxidative stress. Sim-

ilar effects were reported under oxidation conditions by
Bukowska et al. (2008).

It has also been reported that the increase in protein oxida-

tion is due to the oxidation of thiol groups and their subse-
quent formation of disulfide bonds (Robaszkiewicz et al.,
2008). Thus, the induction of oxidative stress by PTX in carrier

erythrocytes by increasing ROS formation decreases the GSH
content and consequently increases lipid and protein oxida-
tion. The oxidative stress alters the asymmetry within the
erythrocyte membrane, and the rapid elimination of oxidized
rocytes and PTX loaded erythrocytes.

ham-Erythrocytes PTX-Loaded Erythrocytes

.690 ± 2.32 5.368 ± 1.43a

.947 ± 1.39 8.572 ± 3.22b

0.44 ± 3.77 38.85 ± 10.24b



Figure 3 Scanning electron microscope graphing of (a) unloaded erythrocytes (b) erythrocytes loaded with PTX, Magnification X 5000.

Note spherocytes formation with PTX loading.

Figure 4 Percent of released hemoglobin(Hb) and PTX in

plasma from loaded erythrocytes at 37 �C. Data represent the

mean ± S.D. (n= 3).
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erythrocytes from the circulation is accelerated by the alter-
ation of this asymmetry (Jain, 1984). Another report stated
that oxidatively modified erythrocytes are flagged for phagocy-

tosis (Tyurina et al., 2000). Moreover; oxidative modification
accelerates erythrocyte clearance from the circulation by mac-
rophage (Mandal et al., 2002). This may accelerate the target-

ing of PTX loaded erythrocytes to RES.
The primary morphological change in PTX-loaded cells re-

vealed by SEM was the transformation of loaded cells from

biconcave to spherocyte shape, as illustrated in Fig. 3. The
spherical shape of loaded cells makes them more fragile, and
fragile cells are destroyed and rapidly cleared from the circula-
tion by macrophages (Talwar and Jain, 1992).

Approximately 81% of the loaded PTX was released from
the erythrocytes into the plasma within 48 h as observed in
Fig. 4. The factors that determine drug release from carrier

erythrocytes are size and the ionization of the drug molecule
(Eichler et al., 1985). PTX release from the loaded erythrocytes
is an important factor that affects the plasma concentration

profile of this drug upon the re-injection of these carrier cells.
The efflux of PTX from carrier cells followed zero-order kinet-
ics during the entire experimental period. In addition, the re-
lease profile of PTX is remarkably consistent with that of
hemoglobin. These findings are consistent with the results pub-
lished by Hamidi and Tajerzadeh (2003) and Shavi et al.

(2010).
Thus, carrier erythrocytes may be a good candidate for tar-

geted delivery to the RES. In fact, it is possible to retain the

PTX inside the carrier erythrocytes until the carriers are
trapped in the RES. Therefore, controlling the life-span of car-
rier erythrocytes can be an effective method to achieve the de-

sired profile of delivery, i.e., to obtain a suitable RES-targeting
delivery system. PTX diffused through the lipid bilayer into the
plasma, as observed for lipophilic drugs (Lewis and Alpar,
1984). The drug apparently diffused readily because cell mem-

brane lysis was not essential for the release of PTX from
loaded erythrocytes.

4. Conclusions

The results of the present study revealed that PTX was loaded
successfully in human erythrocytes with acceptable loading

parameters. Approximately 81% of the loaded PTX was re-
leased from the erythrocytes into the plasma within 48 h.
PTX loading decreased the GSH level and increased lipid

and protein oxidation. Further studies are required to demon-
strate erythrophagocytosis of PTX-loaded erythrocytes. The
relative impacts of the various in vitro findings on the overall

in vivo drug delivery efficacy of these cellular carriers remain to
be evaluated in future studies.
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