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A B S T R A C T

Aims: Hyperoxic breathing might lead to redox imbalance and signaling changes that affect cerebral function.
Paradoxically, hypoxic breathing is also believed to cause oxidative stress. Our aim is to dissect the cerebral
tissue responses to altered O2 fractions in breathed air by assessing the redox imbalance and the recruitment of
the hypoxia signaling pathways.
Results: Mice were exposed to mild hypoxia (10%O2), normoxia (21%O2) or mild hyperoxia (30%O2) for 28
days, sacrificed and brain tissue excised and analyzed. Although one might expect linear responses to %O2, only
few of the examined variables exhibited this pattern, including neuroprotective phospho- protein kinase B and
the erythropoietin receptor. The major reactive oxygen species (ROS) source in brain, NADPH oxidase subunit 4
increased in hypoxia but not in hyperoxia, whereas neither affected nuclear factor (erythroid-derived 2)-like 2, a
transcription factor that regulates the expression of antioxidant proteins. As a result of the delicate equilibrium
between ROS generation and antioxidant defense, neuron apoptosis and cerebral tissue hydroperoxides
increased in both 10%O2 and 30%O2, as compared with 21%O2. Remarkably, the expression level of
hypoxia-inducible factor (HIF)−2α (but not HIF-1α) was higher in both 10%O2 and 30%O2 with respect to
21%O2

Innovation: Comparing the in vivo effects driven by mild hypoxia with those driven by mild hyperoxia helps
addressing whether clinically relevant situations of O2 excess and scarcity are toxic for the organism.
Conclusion: Prolonged mild hyperoxia leads to persistent cerebral damage, comparable to that inferred by
prolonged mild hypoxia. The underlying mechanism appears related to a model whereby the imbalance between
ROS generation and anti-ROS defense is similar, but occurs at higher levels in hypoxia than in hyperoxia.

1. Introduction

Despite its relatively small size (2% of total body weight), mammal
brain ranks second after the heart as the organ with the highest O2

consumption. As its function strictly depends on continuous oxygena-
tion, any decrease in the O2 supply results into potentially lethal
cerebral hypoxia. Brain hypoxia is a dangerous feature in hemorrhage,
anemia, trauma, stroke, perinatal encephalopathy, cardiopulmonary
failure and high altitude exposure. Hyperoxic oxygenation is therefore
a mandatory therapy for brain survival [1,2]. Although necessary to
guarantee life, however, excess O2 may become dangerous when the
body antioxidant properties become inadequate to deal with higher
than physiological levels of O2, a potentially toxic element [3,4]. Brain
cells, especially neurons, are known to be highly vulnerable to the

deleterious effects of the reactive O2 species (ROS) produced during
oxidative stress [5,6]. Because of its high O2 consumption and
relatively low antioxidant defense, brain is thus particularly sensitive
to ROS [7]. Therefore, although hyperoxia is often used therapeutically
in traumatic brain injury and ischemic stroke, it may imbalance the
redox status thereby inferring cerebral damage. Comparing the effects
driven by mild hypoxia with those driven by mild hyperoxia at the
cellular and molecular levels, a mandatory step to focus into the
mechanisms underlying the redox imbalance, may thus foster impor-
tant clinical implications.

The aim of this study is to test whether the molecular pathways of
brain adaptation to hypoxia and hyperoxia depend directly on the
percent O2 level (%O2). To this purpose, we compare the effects of
excess O2 and O2 scarcity on the redox imbalance, the O2-dependent
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molecular responses and damage in cerebral tissue. To get a clear
picture of the complex interrelationships among the variables in play,
we use a chronic (28 days) model that excludes the occurrence of
disturbing oxygenation and deoxygenation events to expose animals to
three experimental situations that differ only for %O2 in breathed air in
an regularly spaced progression (10–21–30%O2).

2. Materials and methods

2.1. Mice and treatments

Seven-week old Foxn1 mice (Harlan, n=19, 27–30 g) were cared in
accordance to the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health Publication No. 85-23, revised 1996).
The University of Milan Committee for the Use of Laboratory Animals
(OBPA) approved animal handling, training protocol and mode of
sacrifice. On day one, mice were randomly transferred into a gas
chamber flushed with one of the following mixtures (balance N2): 10%
O2 (hypoxia, n=7), 21%O2 (normoxia, n=6), or 30%O2 (hyperoxia,
n=6). The duration of the treatments was 28 days for all groups. Mice
had free access to water and diet until 24 h before sacrifice. A 12/12 h
light/dark cycle was maintained.

To measure the body weight and maintain the chambers, mice were
anaerobically transferred into the compensation chamber flushed with
the same gas mixture as the gas chamber [8]. At day 28, mice were
transferred one-by-one into the compensation chamber, anesthetized
by i.p. Na-thiopental (10 mg/100 g body weight) plus heparin (500
units), euthanized by cervical dislocation and taken out of the chamber.
Brains were quickly dissected, frozen in liquid nitrogen and stored at
−80 °C for analyses. Care was taken to exclude cerebellum tissue from
the dissection. Blood hemoglobin concentration was measured by the
Drabkin’s method, assuming ε=11.05 cm−1 mM−1.

2.2. Western blot

Cytosolic and nuclear extracts, and Western blots were performed
for each biopsy as described [9]. The primary antibodies and dilutions
were: anti-HIF-1α (Santa Cruz Biotechnology, 1:300), anti-HIF-2α
(Abcam, 1:300), anti-VEGF165 (Calbiochem, 1:200), anti-β-actin
(Sigma Aldrich, St Louis, MI 1:5000), anti-Akt (Cell Signaling
Technology, 1:1000), anti-phospho-Akt-Ser473 (Cell Signaling
Technology, 1:1000), anti-Nrf2 (Santa Cruz Biotechnology, 1:1000),
EPO (Santa Cruz Biotechnology, 1:200), EPO-R (Santa Cruz
Biotechnology, 1:200), GAPDH (Sigma Aldrich, 1:15000), NOX4
(Abcam, 1:5000), VEGF Receptor 2 (Cell Signaling technology,
1:100), CD34 (Santa Cruz Biotechnology, 1:500), PECAM-1 (Santa
Cruz Biotechnology, 1:600). The secondary antibodies were horse-
radish peroxidase-conjugated anti-mouse IgG (Jackson Immuno
Research, West Grove, PA, 1:10000) or anti-rabbit IgG (Jackson
Immuno Research, West Grove, PA, 1:10000). Chemiluminescence
was detected by incubating the membrane with LiteAblot
Chemiluminescent substrate (Lite Ablot, EuroClone, EMPO10004)
followed by x-ray film exposure (Kodak X-Omat Blue XB-1 Film,
Eastman Kodak Company, Rochester, NY). The image was acquired
and blots intensity quantified by Gel Doc (Bio-Rad quantitation soft-
ware Quantity One).

2.3. Immunofluorescence

Frozen specimens were treated as described [10] and a triple
labeling procedure was performed to distinguish apoptosis in neuronal
and non-neuronal cells. To detect apoptosis, we used the Terminal
deoxynucleotidyl transferase (TdT) nick end labeling test by the In Situ
Cell Death detection kit, TMR red (Roche, Mannheim, Germany),
where the 3’-OH DNA ends were labeled with TMR red-nucleotides by
TdT. After washing in PBS, slides were incubated in 10% normal goat

blocking serum for 10 min at room temperature. To identify neuronal
cells, we used as primary antibody NeuN [mouse monoclonal antibody
(Millipore, Temecula, CA) diluted 1:100 in 1.5% normal goat serum
+1.5% Tween20]; slides were incubated for 1 h. The green fluorescein-
conjugated secondary antibody was Alexa-Fluor 488 Goat Anti-Mouse
IgG (H+L) [(Thermo Fisher Scientific, Rodano, Italy) diluted 1:1000 in
PBS (2 h incubation)]. To identify nuclei, we used the blue karyophilic
dye Hoechst 33258 (Sigma). After merging the green, red and blue
channels (Photoshop v.7.0, Adobe Systems, San Jose, CA), white spots
were associated with apoptotic neurons (green+red+blue), while purple
spots identified apoptosis in non-neuronal cells (red+blue). Non-
neuronal apoptosis was quantified by subtracting TdT-positive neurons
from TdT-positive nuclei.

2.4. Confocal microscopy

Immunofluorescence analysis was performed as previously re-
ported [11]. Briefly, cryostat coronal sections (15 µm) were collected
onto glass slides and processed for immunocytochemistry. Sections
were rinsed with PBS (Euroclone), treated with blocking solution (Life-
Technologies) and incubated with primary antibodies overnight at 4 °C.
After treatment with primary antibodies, sections were washed with
PBS and incubated with appropriate secondary antibodies (Alexa
Fluor® 488 and 546, Molecular Probes®, Life Technologies) for 2 h at
room temperature. After washing, nuclei were stained with DAPI
(1 µg/ml final concentration, 10 min at room temperature; Sigma-
Aldrich) and then sections were mounted using the FluorSave Reagent
(Calbiochem, Merck Chemical, Darmstadt, Germany) and analyzed by
confocal microscopy. The following primary antibodies were used:
Erythropoietin (1:200; Santa-Cruz), β-Tubulin III (1:150; Covance).
Images were acquired and immunofluorescence quantified by using
standardized confocal microscopy (Leica SP2 confocal microscope with
He/Kr and Ar lasers; Heidelberg, Germany). Images were obtained
using the laser same intensity, pinhole, wavelength, and thickness of
the acquisition. As a negative reference we used a consecutive section
that was stained by omitting primary antibody and replacing it with
equivalent concentrations of unrelated IgG of the same subclass. The
zero level was adjusted on this reference and used for all the further
analysis (we used a new zero reference for each new staining). The
fluorescence intensities of three consecutive sections (15 µm thick)
were averaged to obtain the mean relative optical density [12].

2.5. D-ROMs and Lipotiss tests

To evaluate the oxidative stress, we determined the overall level of
oxidant chemical species produced, including ROS, hydrogen peroxide,
hypochlorous acid. By attacking organic molecules, these species
generate stable Reactive Oxygen Metabolites (ROMs), primarily com-
posed by hydroperoxydes (ROOH). To determine oxidative stress in
plasma, we used the photometric D-ROMS test (Diacron International
srl, Grosseto, Italy) that evaluates the capacity of in vivo formed ROOH
to generate alkoxyl (•R-O) and peroxyl (•R-OO) radicals in the presence
of iron released from plasma by an acidic buffer [13]. Data are
expressed as Carratelli Units (U CARR). To determine oxidants in
brain tissue, we measuresd the lipoperoxide level by a method based on
the peroxide capacity to oxidize Fe2+ to Fe3+, which binds thiocyanate
developing a colored complex (Lipotiss test MC040, Diacron
International srl, Grosseto, Italy). Briefly, samples (200 mg) were
homogenized in 0.5 ml distilled water, centrifuged (5 min at 15000g)
and washed twice with distilled water. After removing the supernatant,
0.5 ml of the indicator mixture (R1) was added, mixed (5 min) and
centrifuged (5 min at 1400g). Then, 0.250 ml of supernatant or 2.5 µl
of standard (4000 µEq/L terbutilhydroperoxide) diluted in 0.250 ml
indicator mixture was added into the 96-well plate, followed by
addition of 10 µl Fe2+(R2 reagent, diluted 1:4 with R1). After incuba-
tion (5 min at 37 °C), the optical density was read at λ=505 nm and the
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concentration of lipoperoxides was calculated and expressed as nanoe-
quivalent hydroperoxydes/g tissue.

2.6. Statistics

Data are expressed as box plots indicating the 25th percentile, the

Table 1
Systemic changes after exposure to 10% O2, 21% O2 and 30% O2 for 28 days. Data expressed as mean ± SEM.

n Units 10%O2 21%O2 30%O2 ANOVA P
7 6 6

Initial body weight g 27.31 ± 0.95 28.80 ± 0.74 29.90 ± 0.79 ns
Final body weight g 26.12 ± 0.55b,a 29.50 ± 0.53 32.82 ± 1.40 0.0003
Blood hemoglobin concentration g/dL 11.48 ± 0.53b,a 7.91 ± 0.45 6.78 ± 0.17 < 0.0001

a P < 0.05 vs. 30%O2.
b P < 0.05 vs. 21%O2 (ANOVA and Tukey post test).

Fig. 1. Redox imbalance at the end of the exposure to hypoxia (10%O2), normoxia (21%O2) and hyperoxia (30%O2) for 28 days (n=7, 6 and 6, respectively). Panel A. Expression level of
NADPH oxidase subunit 4 (NOX4). Panel B. D-ROMs test to estimate the pro-oxidant capacity of plasma samples towards a chromogenic indicator, expressed in U CARR units. Panel C.
Lipotiss test to estimate the hydroperoxide level in cerebral tissue. Data are expressed as box plots indicating the 25th percentile, the median and the 75th percentile, with whiskers
indicating the max and min values. The inset reports the ANOVA test. *, P < 0.05; **, P < 0.01; ***, P < 0.001 (Tukey multiple comparison post-test).
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median and the 75th percentile, with whiskers indicating the max and
min values. To assess the significance of the between-treatment
differences, we performed One-way ANOVA followed by the Tukey
multiple comparison post-test if P < 0.05. Statistics was performed
using Prism (GraphPad Software, Inc.), with the significance level set at
P=0.05 (two-tailed).

3. Results

3.1. Systemic changes

All mice survived the various treatments. The body weight de-
creased slightly in 10%O2 vs. a modest and a marked increase in 21%
O2 and 30%O2, respectively. Blood [Hb] was higher and lower,
respectively, in 10%O2 and 30%O2 than in 21%O2 (Table 1).

3.2. Pro-oxidant mechanisms

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
subunit 4 (NOX4) is one of the proteins responsible for the ROS
production in cerebral tissue [14]. The expression level of NOX4 in
10%O2 was twice that in 21%O2 (Fig. 1A), indicating greater pro-
oxidant potential in hypoxia. The NOX4 expression level was the same
in 30%O2 and 21%O2, indicating loss of O2-dependence in hyperoxia.

The D-ROM (reactive O2 metabolites) test addresses the level of
oxidant species in plasma [15]. The value found in 21%O2, which
reflects the situation typical of healthy humans [15], doubled in 10%O2

(P=0.001), showing that sustained mild hypoxia markedly impaired the
systemic redox balance (Fig. 1B). However, 30%O2 did not affect the
systemic pro-oxidant pool with respect to 21%O2.

To assess how ROS affects cerebral tissue integrity [16], we
measured the hydroperoxide level in brain tissue. It appeared that
21%O2 displayed the lowest hydroperoxide level, and that both 10%O2

and 30%O2 had higher level of hydroperoxides (Fig. 1C).

3.3. Hypoxia signaling

Fig. 2 reports the results related to the hypoxia-inducible factors
(HIFs) as measured by Western blot in both the cytosolic and the
nuclear fractions. The expression level of HIF-1α increased in 10%O2

in the cytosolic fraction (P=0.05), but not in the nuclear fraction
(P=NS) (Fig. 2A). By contrast, the expression level of HIF-2α in 10%O2

was markedly increased with respect to that in 21%O2 in both the
cytosolic (P=0.05) and nuclear (P=0.01) fractions (Fig. 2B).
Remarkably, the expression of HIF-2α in the nuclear fraction, where
the transcription factor is active was higher in 30%O2 with respect to
21%O2 (P=0.05).

3.4. Protective mechanisms

To assess the response of brain tissue to the redox imbalance, we
measured the expression level of the nuclear factor (erythroid-derived
2)-like 2 (Nrf2) protein, a transcription factor activated within the
molecular mechanisms aimed at compensating the redox imbalance
[17]. Fig. 3A shows that both the nuclear and cytosolic expression
levels of Nrf2 remained unchanged in either treatment.

Protein kinase B (Akt) is part of a relevant defense mechanism often
recruited by cells under stress [18]. The expression of total Akt
remained unchanged in the three groups (not shown), but the
phosphorylated form at Ser473 (p-Akt), which plays a critical role in
controlling survival and apoptosis [19], showed a monotonic decrease
from 10%O2 to 30%O2 (P=0.0004, linear regression test), thereby
displaying an O2-dependent pattern inversely related to %O2 (Fig. 3B).

The erythropoietin (EPO)/EPO receptor (EPO-R) axis represents
another defense mechanism particularly active in cerebral tissue [20–
22]. The tissue level of EPO remained unchanged (P=ns) in the three
situations (Fig. 3C), as confirmed by semi-quantitative confocal
microscopy analysis (Fig. 1S, supplementary data). However, the
expression level of EPO-R displayed a %O2-related decrease
(P=0.038), consistent with the decrease of p-Akt shown above
(Fig. 3C).

3.5. Angiogenic potential

To assess the angiogenic potential, we measured some of the
proteins related to tissue vascularization. No appreciable changes were
observed in the expression of the vascular endothelial growth factor
(VEGF) (Fig. 4A). However, VEGF receptor (VEGFR-2, also known as
KDR/Flk-1), the hematopoietic progenitor cell antigen CD34, and the
platelet endothelial cell adhesion molecule (PECAM-1, also known as
CD31), increased only in 10%O2 and remained constant in 30%O2

compared to 21%O2 (Fig. 4B–D).

Fig. 2. Hypoxia signaling. Panel A. Expression level of cytosolic (left) and nuclear (right)
hypoxia-inducible factor (HIF)−1α. Panel B. Expression level of cytosolic (left) and
nuclear (right) HIF-2α. Data expressed as described in Fig. 1.
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3.6. Apoptosis

The triple labeling procedure described in Material and Methods
enabled distinguishing neuronal and non-neuronal apoptosis (Fig. 5A).
Apoptotic neurons (NeuN+ cells) accounted for 8.2 ± 1.8% of all
neuronal nuclei in 21%O2 (Fig. 5B). In 10%O2, the count rose to
25.6 ± 2.4% (P=0.001 vs 21%O2), indicating a pro-apoptotic effect of
hypoxia. In 30%O2, the count was 20.4 ± 1.9% (P=0.01 vs 21%O2),
indicating a pro-apoptotic effect of hyperoxia similar to that led by
hypoxia. By contrast, the degree of apoptosis attributable to non-
neuronal cells remained essentially unchanged in the three groups.

4. Discussion

In this study, we examined the cerebral tissue after 28-d normo-
baric hypoxia or hyperoxia, with normoxia as control. Confounding
phenomena related to reoxygenation or deoxygenation events were
excluded especially in the sacrifice phase to avoid uncontrolled ROS
bursts and rapid stabilization/destabilization of HIFs and downstream
proteins [23]. The gas chamber, where mice dwelled for the entire
study duration, and the compensation chamber, where mice were

handled and sacrificed, are designed to minimize the %O2 fluctuations
to < 1%O2 throughout, leaving %O2 in breathed air as the only
independent variable. The %O2 selected for hypoxia, comparable to
5000 m altitude, induces sub-lethal metabolic and signaling changes in
cerebral tissue [24–26]. The %O2 selected for hyperoxia mimics a
situation common in pulmonary patients who breath with the aid of
portable O2 concentrators [27]. Regular spacing of %O2 in an almost
linear progression (10−21-30) enables detecting linear correlations
with %O2. Whereas a few of them were linearly related with %O2, for
most the O2-dependence was lost. As a final outcome, both hypoxia and
hyperoxia worsened neuron apoptosis, yet through different mechan-
isms.

Among the mechanisms underlying the redox imbalance in hypoxic
cerebral tissue, the mitochondrial complex I may be relevant [28], but
NOX4, which nearly doubled from 21%O2 to 10%O2, is likely a pivotal
factor because it responds directly to hypoxia [29] and stands out as the
main enzyme family that is dedicated to forming ROS [30], thereby
constituting a major ROS source [14,31]. On the other hand, Nrf2, one
of the genes that are altered in rat brains after 12 h high altitude
exposure [32], may represent a major mechanism that regulates
antioxidant defenses [17]. Yet, we did not observe changes in Nrf2,

Fig. 3. Protective mechanisms. Panel A. Expression level of cytosolic (left) and nuclear (right) nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Panel B. Ratio between the expression
levels of total protein kinase B (Akt) and the phospho-Akt-Ser473 (p-Akt). Data expressed as described in Fig. 1. Panel C. Tissue expression level of erythropoietin (EPO, left) and of the
EPO receptor (EPO-R, right).
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possibly because Nrf2 might undergo normalization after sustained
exposure to altered %O2. By contrast, Akt, a serine/threonine-specific
protein kinase that plays a key role in neuroprotection by inhibiting
apoptosis [33,34], may represent a protective mechanism even in
chronic situations, possibly overriding that potentially elicited by
Nrf2. Despite unchanged total Akt expression, Ser473 phosphorylation
increased in 10%O2 and decreased in 30%O2 with respect to normoxia,
indicating that the Akt mechanism becomes progressively more
depressed with increasing %O2. Collectively, it appears that mild
hypoxia increases both ROS production and defense mechanisms, but
the latter is clearly insufficient with respect to the first, thereby

worsening the redox imbalance.
In hyperoxia, the major ROS source (NOX4) was not up-regulated,

but high %O2 is expected to augment non-enzymatic ROS production
[35]. This is the main reason for which life-saving O2 therapies are
sometimes considered noxious. In some studies, it appeared that
normobaric hyperoxia does not induce appreciable redox imbalance,
at least if applied for a short duration [1], and another study in a rat
model of subdural hematoma failed to document a clear increase in free
radicals with 100% O2 hyperoxia [36]. In qualitative agreement with
the above studies, despite possible interferences with serum compo-
nents [37], the D-ROM test shows that the systemic redox imbalance

Fig. 4. Markers of vascularization. Panel A. Expression level of tissue vascular endothelial growth factor (VEGF). Panel B. Expression level of tissue VEGF receptor 2. Panel C.
Expression level of hematopoietic progenitor cell antigen (CD34). Panel D. Expression level of platelet endothelial cell adhesion molecule (PECAM-1). Data expressed as described in
Fig. 1.
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was not appreciable in 30%O2. It is relevant to note that the D-ROMs
test is designed to measure the level of all the hydroperoxides
generated from the oxidation of biological molecules, and that the
contribution of chloramines and ceruloplasmin can’t be ruled out.
Although unspecific, this test enables evaluating collectively the effects
driven by an array of oxidizing agents thereby providing a global
assessment of the redox imbalance in serum and reinforcing the
potential clinical significance of the present approach.

Accurate comparison of the above findings with literature is difficult
due to profound differences in the O2 level, the duration of the
exposure and the target organ or system. The observations gathered
in the present investigation converge in attributing a marginal role for
the systemic redox imbalance in sustained exposure to mild 30%O2

hyperoxia, but the situation in cerebral tissue is different. The Lipotiss
test shows almost the same degree of cerebral tissue redox imbalance in
10%O2 and 30%O2. Likewise, neuronal apoptosis was elevated in either
situation. Remarkably, the Nrf2 antioxidant response was similar, yet
Akt phosphorylation followed an O2-dependent fashion. These findings
converge into the schematic representation proposed in the graphical
abstract, whereby ROS production was higher in hypoxia than in
hyperoxia, but the anti-oxidant defenses were also proportionally
greater in hypoxia than in hyperoxia. The final outcome is similar
tissue damage, because it does not strictly depend on ROS production
per se, but rather on the imbalance between ROS production and anti-
oxidant defenses.

To get an insight into the underlying mechanisms, we tested the
roles of the O2-dependent transcription factors. Although HIF-1α is the
most established member of the HIF family, stabilized by different
extents in various organs [24], HIF-2α (endothelial Pas domain protein
1) is today recognized as a major player in hypoxia adaptation [38–40].
Perhaps, whereas HIF-1α is more active during short, intense hypoxia,
HIF-2α may become preponderant during prolonged, mild hypoxia
[41]. As O2 destabilizes both isoforms by activating prolyl hydroxylases,
HIF-2α accumulation in hyperoxia seems paradoxical, but similar
patterns were observed in prostate tumors [42], brain tissue [5],
hepatocytes and liver hemopoietic cells in newborn rats [43], as well
as in embryonic myocardium [44]. The molecular mechanisms under-
lying HIF-1α activation independently of hydroxylation are being
elucidated [45]. Remarkably, the redox imbalance in the sympathetic
nervous system is caused by the disruption of the balance between
HIF-1α-dependent pro-oxidant and HIF-2α-dependent antioxidant
enzymes [46]. Irrespectively of the cause, HIFs up-regulation is
expected to trigger an array of downstream events through up-
regulation of specific proteins. For example, Akt activation is both a
consequence [47] and a trigger of HIF’s signaling [48]. HIF-1α
downregulation after 28-d mild hypoxia is not surprising because it
quickly normalizes in vivo after 21 h hypoxia [49]. The observed
increase in cytosolic HIF-1α and HIF-2α in 10% O2 might be secondary
to increased mitochondrial ROS that are released to the cytosol and
inhibit prolyl hydroxylases, which stabilize HIF’s [50].

EPO, a cytokine produced in large part by kidneys, is the main
regulator of erythropoiesis, but in the central nervous system it also
exerts an important protective role mediated by EPO-R on neuron
membrane [20,51–53]. This mechanism is particularly relevant in
hypoxia [26] and has been proposed to contribute to endogenous
neuroprotection during carotid endarterectomy [54]. The mechanism
whereby EPO exerts its neuroprotective action might involve activation
of the anti-apoptotic STAT3 pathway [21,51], increase of the antiox-
idant enzyme expression and reduction of ROS production [55,56].
Despite the reported up-regulation of EPO expression in astrocytes by
HIF-2α [57], we were unable to observe elevated EPO as that observed
in rats exposed to 50%O2 for 3 weeks [5]. By contrast, we found linear
dependency on %O2 in the expression of EPO-R. These findings,
together with the confocal microscopy observation that EPO appears
to be expressed mostly in non-neuronal cells (Fig. 1S, supplementary
data), indicate that mild hypoxia improves the recruitment of the EPO/

Fig. 5. Brain damage. Panel A. Representative immunofluorescence pictures obtained in
cerebral tissue samples from hypoxia (10%O2), normoxia (21%O2) and hyperoxia (30%
O2) for 28 days. The green (neurons), red (TdT positive) and blue (nuclei) channels are
displayed. The white arrows identify spots associated with apoptosis in neurons (green
+red+blue), while purple arrows identify spots associated with apoptosis in non-neuronal
cells (red+blue). The bar represents 50 µm. Panel B. Percent of neuronal (left) and glial
(right) cells that are positive for TdT as counted in 5 sections from each specimen. Data
expressed as described in Fig. 1. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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EPO-R signaling neuroprotective pathway, whereas mild hyperoxia has
the opposite effect.

Brain may react to hypoxia by preserving O2 and nutrients supply
through angiogenic changes downstream HIFs up-regulation [58].
Although we did not observe VEGF up-regulation, other components
of vascularization as VEGF-R2, CD34 and PECAM-1 were markedly
increased by hypoxia, but were not affected by hyperoxia. This is in
agreement with reports showing that chronic hypoxia doubles capillary
density [59], but is in contrast with the decreased capillary density
observed in mice exposed to 50%O2 for 3 weeks [5]. Although
differences in experimental conditions may account for this discre-
pancy, it remains to be clarified whether changes in the angiogenic
potential turn out to be physiologically relevant in terms of cerebral
blood flow.

Sustained exposure to hypoxia is well known to induce brain
damage [25] and cognitive impairment [60–64]. Remarkably, the
processes associated to cell death and cognitive impairment are
beginning to be appreciated in hyperoxia too [65,66]. If the concept
that the redox imbalance is the expression of the equilibrium between
ROS formation and the anti-oxidant defense is valid, the case of
hypoxia vs. hyperoxia may represent a noticeable paradigm that needs
further investigation to understand the molecular mechanisms of HIFs
and their differential effects on cerebral blood flow, O2 delivery, NO-
driven modulation [67] and cerebral metabolic rate auto-regulation
[68].

5. Conclusions

We assessed whether the molecular pathways of cerebral tissue
adaptation to different %O2 in breathed air depend on %O2 only or if
other factors are involved. We show that, whereas HIFs display a
biphasic pattern of adaptation to altered %O2, only the p-Akt response
was directly linked to %O2. By contrast, neuron apoptosis worsened
both in hypoxia and hyperoxia compared to normoxia. Thus, mild
hyperoxia represents a condition as challenging as mild hypoxia with
respect to redox imbalance and brain damage. This suggests that,
despite profound fluctuations in Earth atmosphere %O2 in the past
geological eras [69], terrestrial mammals are now adapted to live in an
atmosphere containing 20.96%O2, and that any deviation from this
value, irrespectively if higher or lower, might trigger the occurrence of a
potentially lethal situation. This may have important clinical implica-
tions for the 800,000 individuals that need supplemental oxygen at a
cost of 1.8 billion dollars/year in the US [70].
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