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Focused metabolic profiling is a powerful tool for the determination of biomarkers. Here, a more global proton
nuclear magnetic resonance (1H NMR)-based metabolomic approach coupled with a relative simple ultra high
performance liquid chromatography (UHPLC)-based focused metabolomic approach was developed and com-
pared to characterize the systemic metabolic disturbances underlying esophageal cancer (EC) and identify pos-
sible early biomarkers for clinical prognosis. Serummetabolic profiling of patients with EC (n = 25) and healthy
controls (n = 25)was performed by using both 1H NMR and UHPLC, andmetabolite identificationwas achieved
bymultivariate statistical analysis. Using orthogonal projection to least squares discriminant analysis (OPLS-DA),
we could distinguish EC patients from healthy controls. The predictive power of the model derived from the
UHPLC-based focused metabolomics performed better in both sensitivity and specificity than the results from
the NMR-based metabolomics, suggesting that the focused metabolomic technique may be of advantage in the
future for the determination of biomarkers. Moreover, focused metabolic profiling is highly simple, accurate
and specific, and should prove equally valuable in metabolomic research applications. A total of nineteen signif-
icantly alteredmetabolites were identified as the potential disease associated biomarkers. Significant changes in
lipid metabolism, amino acid metabolism, glycolysis, ketogenesis, tricarboxylic acid (TCA) cycle and energy
metabolism were observed in EC patients compared with the healthy controls. These results demonstrated
that metabolic profiling of serum could be useful as a screening tool for early EC diagnosis and prognosis, and
might enhance our understanding of the mechanisms involved in the tumor progression.

Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

Worldwide, in 2008, an estimated 482,300 patients have been di-
agnosed with esophageal cancer (EC) and resulted in 406,800 deaths,
making this disease the eighth leading cause of cancer death in men
[1]. Higher incidence rates have been reported in South and East
Africa, Eastern Asia, North-Central China, and North Iran [2]. Despite
recent improvements in diagnosis, the prognosis and survival of the
patients remain universally poor, with overall 5-year survival rates of
only 5%–15% [3,4]. It is believed that detecting cancer at an early stage
would result in a decrease in mortality. To achieve this, various ap-
proaches such as upper gastrointestinal endoscopy, barium esophagram,
non-endoscopy-based balloon cytology, and serological tumor markers
(i.e., PTHrP and Cyfra 21-1) tests for cancer screening and surveillance
have been taken. However, each of them has specific limitations in
their own ways. For instance, the accuracy of endoscopic screening and
surveillance relies on taking adequate biopsies of the esophagealmucosa,
+86 931 8912582.
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although it remains to be themost commonly usedmethod; and serolog-
ical tumormarker testswere not useful as a screeningor surveillance test
for their low specificity and sensitivity [5,6].

Metabolomics, a relatively novel methodology arising from the
post-genomics era, has been increasingly recognized as a valuable
complementary approach to other well-established ‘omic’ sciences
(genomics and proteomics), to aid in the assessment of disease and
toxicity [7–9]. Metabolic profiling is the comprehensive studying of
large numbers of all endogenous low molecular weight metabolites
and their roles in various disease states in a global view [10,11]. An im-
portant goal of metabolomics is the identification of useful biomarkers
for disease diagnosis and prognosis. Metabolic profiling based onmainly
nuclear magnetic resonance (NMR) [12–14], chromatographic tech-
niques (liquid chromatography (LC), gas chromatography (GC)) or
their hyphenated techniques [15–18] can be used to monitor multiple
metabolic changes simultaneously in pathological processes and charac-
terize the dynamic metabolic response of key intermediary biochemical
pathways. Quantitative metabolic profiling may significantly improve
the chances for the discovery of disease-related biomarkers. With the
development of metabolomic technology in the past few years, large
hts reserved.
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improvements have beenmade in cancer diagnosis and prognosis based
on metabolomic analysis. Metabolic profiling has been used to assess
various cancer progressions and many studies have attempted to find
novel biomarkers for the early detection of these diseases [19–23].

Althoughmetabolomic analysis is a promising approach in screen-
ing for diseases such as cancer, certain limitations including the re-
quirements to measure most endogenous metabolites existing, data-
redundancy problems, false discovery problems, and cost constraints
remain major challenges to metabolomic research [24,25]. To over-
come these problems, many excellent platforms known as focused
metabolomics which limit the objects of the analysis to a class of
the targeted metabolites that play important roles in general metab-
olism exist. Focused metabolomics that restrict their target analytes
to those measured well by the focused analytical technologies can
produce data with high quality that maximize sensitivity and minimize
the false discovery problem. The most developed focused metabolomic
fields include lipid profiling, amino acid profiling, amine profiling, sim-
ple sugars profiling, etc. [26–29]. In the present study, we also used a
focused metabolomics, ultra high performance liquid chromatography
(UHPLC) analysis of serum free amino acids (SFAA), for the develop-
ment of a more simple classificationmodel and insights into the altered
metabolic pathways in EC. As is well known, profiling of SFAA is also a
promising approach because amino acids link all organ systems and
play essential roles in metabolism. Furthermore, amino acid profiles
are known to be influenced by metabolic variations induced by specific
diseases, including cancers [30]. Therefore, a UHPLC method was used
to determine the characteristics of the amino acid profiles in EC patients
and the possibility of using this information for the early detection.
Metabolomics and focused metabolomics exhibit different analytical
strengths and weaknesses, and give complementary information.
Here, both of the two methods have been used for our metabolomic
analysis.

In the present study, using a more global NMR-based metabolic
profiling approach and a relative simple UHPLC-based focused meta-
bolic profiling approach, respectively, we investigated serum samples
from twenty-five subjects with primary EC, as well as serum from
twenty-five healthy individuals with the aids of multivariate statisti-
cal analysis. Following the recently reported studies [18,31,32] on
plasma or serum metabolic profiling, the present work aims to dis-
cover novel biomarkers for EC and determine if distinguished metab-
olites for the establishment of improved clinical biomarkers which
reflect the presence of the disease can be found and, thus, if the sim-
ple UHPLC-based amino acid profiling may be useful in EC detection.

2. Materials and methods

2.1. Volunteer recruitment and sample collection

The present work was approved by the Ethical Committee of First
Affiliated Hospital of Lanzhou University, and was carried out in ac-
cordance with The Code of Ethics of the World Medical Association
(Declaration of Helsinki) for experiments involving humans http://
www.wma.net/en/30publications/10policies/b3/index.html.

A total of twenty-five patients with primary esophageal tumors
(13 females, 12 males, mean age 56 ± 5 years) and twenty-five healthy
control subjects (10 females, 15 males, mean age 49 ± 8 years) were
enrolled in this study following informed consent. Only subjects who
had never received any antitumor therapy prior and without any other
complicating diseaseswere included as EC cases in this study. Volunteers
in the control group were included on the basis of a physicians' assess-
ment of their general health status (body mass index, normal values in
blood plasma and urine standard clinical tests, as well as absence of
major illness or chronic medication). Each subject had fasted overnight,
and blood sample was collected in the morning pre-prandial. Venous
blood samples were collected into plastic serum tubes (5 mL) and
allowed to clot by standing tubes vertically at room temperature for
60 min. Then, tubes were centrifuged at 3000 rpm for 10 min at room
temperature. The supernatant (serum)was transferred and immediately
frozen and stored at −80 °C until analysis. The collection and storage
conditions were identical for cases and controls.

2.2. 1H NMR spectroscopic analysis of blood serum

Serum samples were thawed at room temperature and homoge-
nized using a vortex mixer. Then 200 μL D2O was added to 400 μL
serum. After centrifugation at 12 000 rpm for 5 min at 4 °C, 550 μL of
the supernatants was transferred into 5-mm NMR tubes and stored at
4 °C until analysis. The 1H NMR spectra for all specimenswere acquired
in a random order at 298 K on a Bruker AVANCE 600 spectrometer
(Rheinstetten, Germany) equipped with a 5 mm TCI cryogenic probe.
One-dimensional (1D) spectra were recorded using the Carr–Purcell–
Meiboom–Gill (CPMG) spin echo pulse sequence with a fixed total
spin relaxation delay (2nτ) of 35 ms to attenuate broad resonances
from high molecular weight compounds such as proteins and retain
those from low-molecular weight compounds and some lipids. Water
resonances were suppressed with irradiation at the water frequency
during both the relaxation delay of 2 s and the mixing time of 100 ms.
For each sample, a total of 64 scans were collected into 32 000 data
points with a spectral width of 11999.4 Hz and an acquisition time of
1.36 s.

All 1H NMR free induction decays (FID) were imported into Mnova
NMR Suite Version 6.0.2 (Mestrelab Research, S.L, Registro Mercantil
de A Coruna, Spain) for processing and binning. The FID was zero
filled to 64 K and an exponential weighting function corresponding
to 0.3 Hz line broadening was applied prior to Fourier transformation.
Both phase correction and baseline correction were manually
performed carefully. The spectra were referenced to the methyl dou-
blet signal of lactate (δ = 1.33 ppm). Each spectrum (0–9.0 ppm)
was divided into 0.04 ppm bins excluding the residual water region
from 5.1 to 4.7 ppm. The remaining bins of each spectrum were nor-
malized to a total spectral area of unity prior to pattern recognition.

2.3. UHPLC analysis of serum free amino acids

At the time of UHPLC analysis of SFAA, a UHPLC method coupled
with a diode array detector (DAD)was used for the simultaneous deter-
mination of 23 amino acids in serum samples after pre-column deriva-
tization with 2,4-dinitrofluorobenzene (DNFB). 600 μL of acetonitrile
was added to 200 μL of the serum sample and vortexed vigorously for
1 min. Then, the mixture was centrifuged at 13000 rpm for 10 min at
4 °C, and 600 μL of the supernatant was evaporated to dryness at
45 °C under a gentle stream of nitrogen. Then, to the residue, 200 μL
of 0.2 M sodium borate buffer (pH 9.0) and 100 μL of 72 mM DNFB in
acetonitrile were added and the derivatization reaction was carried
out on a water bath (60 °C) for 60 min in the dark. After cooling
in ice-cold water, 700 μL of phosphate buffer solution (pH 7.0) was
added to the reaction solution. The resulting solution of DNFB amino
acid derivatives was then briefly vortexed again and transferred
through a 0.45 μm nylon filter into autosampler vials for injection.

All the specimens were carried out in a random order on an
Agilent 1260 series rapid resolution liquid chromatography system
(Agilent Technologies, Waldbronn, Germany) which consisted of a
G1311B quaternary pump equipped with on-line vacuum degasser, a
G1329B refrigerated model SL autosampler, a G1316A column oven
and a G1315C diode array detector. Chromatographic separations were
performed on an Agilent ZORBAX Eclipse Plus C18 column (4.6 mm ×
50 mm, 1.8 μm; Agilent Technologies). Column temperature was
maintained at 45 °C. The mobile phase consisting of 10 mM (A) ammo-
nium acetate solution, (B) acetonitrile and (C) methanol was carried out
at a flow rate of 1.5 mL·min−1. The gradient program was as follows:
0–4 min, 90%–78% A and 5%–17% B; 4–5 min, 17%–22% B and 5%–0% C;
5–7 min, 7–9 min, and 9–10 min, linear gradient of 78%–67% A and
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Fig. 1. Representative 600 MHz one-dimensional Carr–Purcell–Meiboom–Gill (1D-CPMG) 1H NMR spectra of serum samples from a healthy control (A) and an EC patient (B) indicating
key metabolites (chemical shifts δ 6.6–8.8 ppm were expanded 8 times).
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22%–33% B; 67%–50% A and 33%–50% B; and 50%–90% A, 50%–5% B and
0%–5% C; respectively. UV detection was set at 360 nm. The filtration
was injected at 4 °C using a temperature controlled autosampling device,
and the injection volumewas 5 μL. The experimental programs and data
processes of quantification were both performed with the software
Agilent OpenLAB Control Panel Version A.01.02 (Agilent Technologies).
Areas under the peaks were integrated to calculate the concentration
of amino acids. Based on six-point (from 1 to 500 μmol·L−1) calibration
curves, the concentrations of SFAA were determined, expressed in
μmol·L−1 serum.

2.4. Multivariate statistical analysis

After mean-centering and scaling the 1H NMR and UHPLC data sets
to default unit variance, multivariate statistical analysis [33–35] was
conducted using SIMCA-P version 12.0 software package (Umetrics,
Umeå, Sweden). First, the unsupervised principal component analysis
(PCA) was performed to observe intrinsic clusters and find obvious
outliers. Then, the supervised orthogonal projection to least squares dis-
criminant analysis (OPLS-DA) was employed to visually discriminate
between EC patients and healthy controls. The OPLS-DAmodel removes
variability not relevant to class separation. Thus, normally only one pre-
dictive component is used for the discrimination between two classes
[36,37]. The quality and reliability of the models were assessed by the
parameters R2 and Q2. R2 represents the explained variation in the
data and indicates goodness of fit, and Q2 is the cross validation param-
eters and indicates predictability of themodel. The cumulative values of
total Y explained variance (R2) and the Y predictable variation (Q2) ap-
proaches 1 indicated proper modeling. The default 7-round cross-
validation procedure in SIMCA-P software package with one-seventh
of the samples being excluded from the mathematical model in each
round was applied to the OPLS-DA models in order to guard against
over fitting, and the reliabilities of the models were further rigorously
validated by the permutation tests (n = 100) [38]. Additionally,
CV-ANOVA (analysis of variance testing of cross-validated predictive
residuals) testswere performed to determine significant differences be-
tween groups in the OPLS-DA models. The Pearson product–moment
correlation coefficient and level of significance were determined as
described [39].

On the basis of a variable importance in the projection (VIP) thresh-
old of 1 from the 7-fold cross-validated OPLS-DA model, metabolites
responsible for discriminating between the metabolic profiles of EC
patients and healthy controls could be obtained. Variables with high
VIP values (>1.0) were highlighted to be important for discrimination
in the model whereas those with values closer to 0 indicate minimal
discriminatory power [40,41]. In parallel, independent samples T-test
from SPSS, version 16.0, was used to determine if different biomarker
candidates obtained from the OPLS-DAmodels were statistically signif-
icant between the two groups at the univariate level. A p-value b 0.01
(confidence level 99%) was considered statistically significant.



Fig. 2. Multivariate statistical analysis from NMR-based metabolic profiling. (A) PCA
score plot with all variable unit variance scaled. (B) OPLS-DA score plot of EC group
versus healthy control. (C) Cross-validation plot with a permutation test repeated
100 times (◆, healthy controls; ◇, EC patients).
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3. Results

3.1. Discrimination between esophageal cancer patients and healthy
controls by NMR-based metabolic profiling

Representative1H NMR spectra from serum of healthy control and
EC patients were shown in Fig. 1, with metabolites indicated based on
their chemical shifts. Assignment of metabolites was achieved using
in-house databases and published literatures [42–44], and confirmed
by 2D 1H–1H correlation spectroscopy (COSY) and total correlation
spectroscopy (TOCSY) spectra. The 1D-CPMG 1H NMR spectra of
serum showed signals mainly from lipids, glucose, amino acids, glyco-
proteins, trimethyl-amine N-oxide (TMAO), betaine, ketone bodies
and cholinemetabolites. Major metabolites were labeled in the spectra.
A number of perturbations in endogenous metabolites were observed
in the 1HNMR spectra of serum fromEC patients.Most visual inspection
of the spectra suggested that prominent changes in the EC patient group
compared with the healthy control group were the increases in lactate,
ketonebodies (β-hydroxybutyrate and acetoacetate), and the decreases
in lipids, glucose, and amino acids.

The unsupervised PCA was initially utilized on the normalized 1H
NMR spectral data, and the PCA score plots (Fig. 2A) showed a clear
trend of group clustering between the EC patients and healthy con-
trols. To maximize the group separation and identify discriminating
metabolites, the supervised OPLS-DA classification model using one
PLS component and one orthogonal component was established,
and even clearer class discrimination was obtained. The OPLS-DA
method not only correctly separated the sera of healthy subjects
from the EC patients, but also was able to classify the samples into
EC and control groups in its score plot (Fig. 2B). Goodness of fit values
and predictive ability values (R2 X, R2Y, and Q2) were 0.461, 0.858,
and 0.736, respectively. These values indicated that the model pos-
sessed a satisfactory fit with good predictive power. A random per-
mutation test with 100 permutations was performed with OPLS-DA
to further evaluate the robustness of this method and statistically val-
idate the biomarkers. As shown in Fig. 2C, the validation plots strong-
ly assured that our original OPLS-DA models were not random and
over fitting because both the permuted R2 and Q2 values to the left
were significantly lower than the original points to the right and Q2 re-
gression lines have a negative intercepts (intercepts: R2 0.0, 0.528; Q2

0.0, −0.067). Furthermore, the CV-ANOVA test was performed to ex-
amine the statistical significance of the differences between the two
groups in the OPLS-DA model, this resulted in a score of p =
3.76 × 10−15, indicating that the differences between the groups with-
in the model were highly significant.

Top twenty five variables with high VIP values (VIP > 1.0) that
picked out from analysis of the OPLS-DA model were responsible for
the discrimination in the score plot. The T-test (p b 0.01) was then
applied to test the significance of these differential metabolites, and to
show that if these metabolites were also significant after controlling
for the false discovery rate. Finally, twelve metabolites were identified
as potential biomarkers for esophageal cancer (Table 1). As compared
with healthy controls, a number of metabolites showed increased
concentration in serum of EC patients, such as lactate, acetoacetate,
β-hydroxybutyrate, glutamine, glutamate, and histidine, while several
others such as tyrosine, lipids, acetate and glucose, were observed in
decreased levels in the EC patients.

3.2. Discrimination between esophageal cancer patients and healthy
controls by UHPLC-based focused metabolic profiling

Method validation and evaluation for measurement of 23 amino
acids were according to the published literature we have reported
[45]. Linearity, precision and recovery results of 23 amino acids in
serum of healthy controls were given in Supplementary Table S1.
Typical UHPLC chromatograms of a standard mixture of 23 amino
acids, serum samples obtained from a healthy control and an EC patient
were shown in Fig. 3. The concentration of amino acids in serum of EC
patients and healthy controls was given in Supplementary Table S2.

PCA and OPLS-DA were also performed on the SFAA profiles. The
score plots of PCA and OPLS-DA models and the validation of permuta-
tion tests were shown in Fig. 4. The PCA score plot from all the samples
using 3 components clearly showed trend of group clustering between
the EC patients and healthy control group (R2 X = 0.525, Q2 = 0.324).
The OPLS-DA score plots revealed that the EC patients were statistically
distinguishable from healthy controls (R2 X = 0.591, R2 Y = 0.973,
Q2 = 0.959), suggesting that the OPLS-DA model was robust. Model
validation using permutation test with 100 iterations assured that this
OPLS-DA model was not random and over fitting, and was reliable in
explaining and predicting the variations in X and Y matrices (Fig. 4C,
intercepts: R2 0.0, 0.258; Q2 0.0, −0.37). Similarly, a score of
p = 7.22 × 10−27 was obtained by the CV-ANOVA test, suggesting
that the differences between the EC group and the healthy control
group in the OPLS-DA model were highly significant.

Among the statistically significant variables identified using VIP
values (VIP > 1.0) in the OPLS-DA model and the T-test (p b 0.01)
(Table 2), a total of seven metabolites from UHPLC analysis of SFAA
were identified as potential biomarkers for esophageal cancer. Differ-
ential metabolites identified from the focused metabolomic analysis
suggested a significant reduction of methionine and tryptophan in

image of Fig.�2


Table 1
Marker metabolites found in OPLS-DA models of NMR-based metabolic profiling.

Chemical shift (ppm) VIPa p-Valueb Metabolites Variations versus healthy controlsc Related metabolic pathways

0.84–0.88 2.81 0.000 LDL/VLDL ↓ Lipid metabolism
0.88–0.92 2.67 0.000
1.28–1.32 1.98 0.000
5.30–5.34 2.62 0.000 Unsaturated lipids ↓
5.34–5.38 2.36 0.000
1.20–1.24 1.80 0.000 β-Hydroxybutyrate ↑ Ketogenesis, lipid metabolism
2.25–2.29 1.31 0.005 Acetoacetate ↑
1.93–1.97 1.58 0.000 Acetate ↓
3.05–3.09 1.70 0.000 Creatine ↑ Energy metabolism
3.05–3.09 1.70 0.000 Creatinine ↑
5.26–5.30 6.78 0.000 α-Glucose ↓ Glycolysis
4.66–4.70 4.06 0.009 β-Glucose ↓
1.32–1.37 3.04 0.002 Lactate ↑
4.12–4.16 3.35 0.000
2.29–2.33 1.31 0.001 Glutamate (Glu) ↑ Glutamine/glutamate metabolism
2.01–2.05 1.52 0.000
2.41–2.45 2.06 0.000 Glutamine (Gln) ↑
2.45–2.49 1.19 0.001
2.12–2.16 1.80 0.000
6.87–6.91 2.16 0.000 Tyrosine (Tyr) ↓ Phenylalanine and tyrosine metabolism
7.15–7.19 2.11 0.000
7.19–7.23 1.23 0.002
7.03–7.07 2.47 0.001 Histine (His) ↑ Histine metabolism
7.71–7.75 1.17 0.000

a Variable importance in the projection (VIP) was obtained from OPLS-DA with a threshold of 1.0.
b The p-value was calculated from independent samples T-test.
c The arrows ↑ and ↓ indicate increase and decrease of levels in the EC group compared with healthy control group, respectively.
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the serum of EC patients but elevation of aspartate, cysteine, leucine,
phenylalanine and lysine.

4. Discussion

4.1. Systemic metabolic changes in esophageal cancer patients

Identification of specific metabolites displaying altered levels and
their associative metabolic pathways can improve the understand-
ing of the biology and pathology in the process from normal to
esophageal disease and eventually cancer. Fig. 5 showed a more de-
tailed pathway map associated with marker metabolites identified
using both NMR-based metabolomics and UHPLC-based focused
metabolomics. Altered pathways include changes in glycolysis (glucose
and lactate), amino acid metabolism (down-regulation in methionine
and tryptophan, and up-regulation in aspartate, cysteine, leucine,
phenylalanine and lysine), ketone bodies (β-hydroxybutyrate and
acetoacetate) synthesis and degradation, tricarboxylic acid (TCA)
cycle, energy and lipid metabolism. Among these selected biomarker
metabolites, we found that some of them were worthy of further in-
vestigation. We would like to discuss their roles during the process
of tumor metabolism associated with EC.

4.1.1. Glucose metabolism and related metabolites
In this study, one of themost obvious observations is themarked re-

duction of blood glucose level together with increased level of lactate in
EC patients in comparison with the healthy controls, which suggested
that the disturbance of glycolysis and the Cori cycle. The Cori cycle,
also known as lactic acid cycle, refers to the metabolic pathway in
which lactate produced by anaerobic glycolysis in the skeletal muscle
moves to the liver and is converted to glucose through gluconeogenesis,
which then returns to the skeletal muscle and is converted back to lac-
tate [46]. Since lactate is the endpoint product of glycolysis, its accumu-
lation implied an increased anaerobic glycolysis. Additionally, as the
well-known Warburg effect [47] describes, cancer cells result in an in-
crease of glycolysis, which eventually lead to an abnormal reduction
of glucose level and accumulation of lactate in the serum of EC patients.
4.1.2. Lipids metabolism and related metabolites
Several metabolites in lipid metabolism, such as apolipoproteins

(low density lipoprotein (LDL) and very low density lipoprotein
(VLDL)) and unsaturated lipid, were observed to be significantly de-
creased in the serum of EC patients, suggesting an altered lipid metabo-
lism associated with EC morbidity [48]. Furthermore, the levels of the
two main ketone bodies, acetoacetate and β-hydroxybutyrate, were
found to be significantly increased in the serumof cancer patients relative
to the healthy controls. The ketone bodies, including β-hydroxybutyrate,
acetoacetate and acetone, are formed via β-oxidation of fatty acids inmi-
tochondria and elevations of them suggested a promoted β-oxidation in
EC patients. The levels of ketone bodies could be raised when acetyl-CoA
derived from β-oxidation exceeds the capacity of the TCA cycle [49],
which explained higher levels of β-hydroxybutyrate and acetoacetate in
the serum of EC patients. Thus, both enhanced lipid β-oxidation andmal-
absorption could explain lower levels of lipids in serum, and the observed
increase in β-hydroxybutyrate and acetoacetate was an indication of
ketogenesis from EC patients. Since the liver is themain tissue for ketone
body production, liver dysfunction might also contribute to lipid metab-
olism disorders. Additionally, a reduction of acetate was observed in
the serum of EC patients relative to healthy controls. Acetate is the end
product of lipid metabolism, and its decrease also supports the prelimi-
nary hypothesis of lipid metabolism disorders.

4.1.3. Energy metabolism and related metabolites
Serum creatine and creatinine levels were significantly elevated in

EC patients comparedwith healthy controls. Creatine and its phosphor-
ylated form are well recognized as key intermediates in energy metab-
olism, and the increase in creatine is associated with energy demand.
Creatine is primarily synthesized mainly in the liver and kidney and
mostly stored in muscle as phosphocreatine. Phosphocreatine has a
direct function in cellular energy transport. With increased energy de-
mand, the muscle rapidly re-synthesizes ATP from ADP through the
phosphocreatine–creatine kinase system and creatine. Creatinine pro-
duction stems from creatine and creatine phosphate metabolism [50].
Many researchers have reported elevated creatine and creatinine levels
in cancer patients [20–22,32].



Fig. 3. Typical chromatograms of a standard mixture of 23 amino acids (A), serum sample obtained from a healthy control (B) and an EC patient (C). Peak identification: 1, Aspartic
acid; 2, Glutamic acid; 3, Hydroxyproline; 4, Asparagine; 5, Glutamine; 6, Serine; 7, Glycine; 8, Arginine; 9, Threonine; 10, Histidine; 11, Taurine; 12, Alanine; 13, Proline; 14, Valine;
15, Cysteine; 16, Methionine; 17, Ornithine; 18, Isoleucine; 19, Tryptophan; 20, Leucine; 21, Phenylalanine; 22, Lysine; and 23, Tyrosine.
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4.1.4. Amino acid metabolism and related metabolites
The levels of glutamine and glutamate were found to be signifi-

cantly increased in the serum of EC patients relative to healthy
controls. Glutamate and glutamine are a group of glucogenic amino
acids and have many biological functions. They are considered to be
very important for maintenance and promotion of cell function [51].
The demands of the body for glutamine and glutamate are enormous
during severe illness, and their blood concentration may significantly
decrease or increase, suggesting that they may become a conditionally
essential amino acid in EC patients.

An increased level of aspartate was detected in the serum of EC
patients as compared with the healthy controls. Aspartate is a nones-
sential amino acid which can be synthesized by glutamate through
aspartate aminotransferase using vitamin B6 or asparagine through
the action of asparaginase. Aspartate is a precursor of ornithine and
plays important roles in the urea cycle and DNA metabolism. In this
study, the increased level of aspartate corroborated that the urea
cycle is disrupted in EC patients and the degradation of amino acids
is decreased due to the down-regulation of the argininosuccinate
synthetase in the urea cycle.

A decreased level of methionine has been observed in EC group.
Methionine is an essential amino acid and a precursor of cysteine, a
metabolite shown higher levels in the serum of EC patients. Because
regulation of the methionine metabolic pathway is based on the
availability of methionine and cysteine, the reduced levels of methio-
nine and increased levels of cysteine observed in EC patients could be
explained by altered homocysteine–methionine conversion as well
[52]. In addition, the results from the previous study suggested that
methionine enhanced the in vivo catabolism of histidine by stimulat-
ing one-carbon metabolism. In our study, the decreased level of
methionine might lead to a down-regulation of histidine catabolism
which eventually resulted in the increased level of histidine in the
serum of EC patients [53].

One interesting finding from our experiment was that the level of
leucine was significantly higher in patients with EC than in healthy
controls. Leucine, one of the branched chain amino acids (BCAA),
along with isoleucine and valine are indispensable amino acids and
essential nutrients in the synthesis of body proteins and represent
the major nitrogen source for glutamine and alanine syntheses in
the muscle. Our hypothesis is that the tumors have activated proteol-
ysis of the skeletal muscle and enhanced BCAA oxidation [54].

Another interesting finding from our studywas that the serum tryp-
tophan levels were significantly lower in patients with EC than in
healthy controls. Tryptophan is an essential amino acid required not
only for the synthesis of proteins but also for important biological
functions such as mood, stress response, sleep and appetite regulation,
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Fig. 4. Multivariate statistical analysis from UHPLC-based targeted metabolic profiling.
(A) PCA score plot with all variable unit variance scaled. (B) OPLS-DA score plot of EC
group versus healthy control. (C) Cross-validation plot with a permutation test repeat-
ed 100 times (◆, healthy controls; ◇, EC patients).
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glucose homeostasis and immune function, and most of them being as-
sociated with metabolic pathways involved in tryptophan catabolism.
Some previous studies have investigated the role of tryptophan and
its metabolites involving in cancer progression [55]. The obvious reduc-
tion of tryptophan revealed a disordered tryptophan metabolism in EC
patients.

Serum phenylalanine was significantly increased in EC patients,
while tyrosinewas decreased in comparisonwith healthy controls. Phe-
nylalanine is an essential aromatic amino acid which must be supplied
in the dietary proteins. Once in the body, most of the phenylalanine is
Table 2
Marker metabolites found in OPLS-DA models of UHPLC-based metabolic profiling.

Retention time
(tR, min)

Metabolites VIPa p-Valueb Variatio

0.52 Aspartate (Asp) 4.18 0.000 ↑
6.41 Cysteine (Cys) 1.33 0.000 ↑
6.71 Methionine (Met) 3.32 0.000 ↓
7.44 Leucine (Leu) 2.49 0.000 ↑
7.35 Tryptophan (Trp) 3.35 0.000 ↓
8.20 Phenylalanine (Phe) 1.77 0.004 ↑
8.69 Lysine (Lys) 1.97 0.000 ↑

a Variable importance in the projection (VIP) was obtained from OPLS-DA with a thresho
b The p-value was calculated from independent samples T-test.
c The arrows ↑ and ↓ indicate increase and decrease of levels in the EC group compared w
usually converted to tyrosine which in turn is degraded to acetoacetate
and fumarate [56]. The obvious increase in phenylalanine and decrease
in tyrosinemight reveal disorders of phenylalanine and tyrosinemetab-
olism and reduced phenylalanine hydroxylation in patients with EC.

One more metabolite of interest, lysine, increased in serum of EC
patients as compared with healthy controls. Lysine, another essential
amino acid, is metabolized in mammals via an initial transamination
with α-ketoglutarate. The ultimate end-product of lysine catabolism
is acetoacetyl-CoA. That is, the elevation of lysine concentration in
serum of EC patients may also be a perturbation of TCA cycle and
energy metabolism.

4.2. Comparison of metabolomics and focused metabolomics

In the current study, we have shown that the metabolic profiling
of serum using a combination of 1H NMR-based metabolomics and
UHPLC-based focused metabolomics along with multivariate statisti-
cal methods allowed a detailed picture of metabolic changes in EC
patients compared with healthy controls. In order to evaluate the per-
formance of the two different profiling methods, the goodness of fit
values (R2Y) and predictive ability (Q2) values obtained from the
OPLS-DA models and numbers of biomarkers were compared. Both
R2Y and Q2 values in OPLS-DA score plots of the UHPLC-based focused
metabolic profiling were larger than those of NMR-based metabolic
profiling, indicating that the focused metabolic profiling technique
can provide a better classification and predictive ability for EC. For
the biomarker discovery, twelve marker metabolites were identified
from NMR-based metabolomics, and seven were from UHPLC-based
focused metabolomics. Glutamine, glutamate, tyrosine, and histidine
were detected as marker metabolites in NMR-based metabolomics
but not in UHPLC-based focused metabolomics owing to a VIP b 1
or a p value > 0.01, although they were indeed detected altered
levels by both the NMR-and UHPLC-based metabolomics. This result
is likely due to the relatively poor sensitivity of the NMR detected
markers in the challenging task of distinguishing EC from healthy
controls.

Because of the chemical and physical diversity of the compounds
present in the complex biofluid, subtle differences in pH, ionic strength,
temperature, etc., will hamper the NMR analysis. Furthermore, eachme-
tabolite is differentially sensitive to these effects, which finally leads to a
different sensitivity in NMR analysis. While UHPLC analysis can provide
good chromatographic resolution, high sensitivity and high efficiency.
That is, the global metabolic NMR profiling is advantageous in the iden-
tification of more metabolites while the focused UHPLC profiling pro-
vides good selectivity, quantification and identification of metabolites.
Thus, reliance on focused platforms that produce quantitative data on
knownmetabolites is a logical and efficient route forward. Focusedmet-
abolic profiling is highly simple, accurate and specific, and should prove
equally valuable in metabolomic research applications. Also, the accura-
cy and sensitivity of ‘omics’ platforms oftenmust be sacrificed to gain the
required breadth, while the need for such sacrifices is not present in
ns versus healthy controls c Related metabolic pathways

Asparagine/aspartate metabolism
Glutathione metabolism

Branched chain amino acid (BCAA) degradation
Tryptophan metabolism
Phenylalanine metabolism
Lysine metabolism

ld of 1.0.

ith healthy control group, respectively.
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Fig. 5. Map illustrating the most predominant disturbed metabolic pathways and the biochemical linkages among the biomarker metabolites identified in EC group.
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focused metabolomics. Herein, focused metabolic profiling is routine to
get high throughput, accurate and highly parallel data. Progress in
these areas that enables different sets of focused metabolomic data to
be integrated and compared will go far toward enhancing the value of
metabolomics.

4.3. Comparison with previous studies

In concurrence with our results, previous metabolomic analysis of
serum samples from EC patients also found significant increase in
glutamine, phenylalanine, and leucine levels along with decreases in
methionine, tyrosine and tryptophan levels in EC patients [32]. Fur-
thermore, there are also many similarities between our results and
those of previous studies. We noticed that alterations in the glucose,
lactate, creatinine, and ketone body levels in our present study were
consistent with the results of the previous studies [18,32].

On the other hand, as known to all, cancer is expected to become
the leading cause of death worldwide within a few years. Therefore, it
is very important that the methods used for the prevention and early
detection should be implemented to reduce mortality. An important
goal of our study is focused on identifying and distinguishing metab-
olites for the establishment of improved clinical biomarkers for EC,
and it would also be of interest to find discover novel biomarkers
for EC diagnosis and prognosis. Many previous reports have identified
many biomarkers for EC, and the two metabolomic methods described
in the present study involved a relatively simple serum assay and iden-
tified a few more novel marker metabolites for EC, that is cysteine de-
rived from the UHPLC-based focused metabolomic profiles, and lipids
(LDL, VLDL, and the unsaturated lipid) derived from the NMR-based
metabolic profiles.
5. Conclusion

The present study investigated metabolic variations in patients
with EC using NMR-based metabolomics and UHPLC-based focused
metabolomics. Clear metabolic differences were observed between
EC patients and healthy controls. These variations involved significant
perturbations in lipids, glucose, energy and amino acid metabolism,
and the TCA cycle. This work has shown that both metabolomics
and focused metabolomics were reliable and predictive, and could
be used to discriminate between healthy and diseased subjects. The
predictive power of the UHPLC-based focused metabolomic methods
performed better in both sensitivity and specificity when compared
with the results from the NMR-based metabolomic methods, suggesting
that the focused metabolomics technique may be of advantage in the
future for the determination of biomarkers. In summary, our study indi-
cated that focusedmetabolic profiling is also a powerful tool in providing
valuable biochemical insights into metabolic alterations in EC.

It is important to note that the current study was exploratory and
laboratory due to the limited number of samples, and the mechanism
of metabolic changes in human blood serum of EC should be further
studied and validated on larger patient cohorts. The differential me-
tabolites addressed in this work and changes in their metabolic path-
ways could also guide further studies on biomarker discovery for EC
diagnosis and prognosis and also on the pathophysiology of EC.
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