View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Theoretical Computer Science 82 (1991) 35-49 35
Elsevier

An algorithm for distinguishing
efficiently bit-strings by their
subsequences

Jean-Jacques Hebrard
LIUC, Université de Caen, 14032 Caen Cedex, France

Communicated by D. Perrin
Received May 1988
Revised February 1989

Abstract

Hebrard, J.-J., An algorithr. for disunguishing efficiently bit-strings by their subsequences, Theo-
retical Computer Science 82 (1991) 35-49.

A linear on-L. algorithm for computing a shortest subsequence that distinguishes two different
bit-strings is presented. The method is based on a special way of factorizing strings.

0. Introduction

A string h divides a string u if it can be obtained from u by deleting zero or more
symbols. If a string h divides u (resp. v) and does not divide v (resp. u) we say
that h distinguishes u and v. The similarity of two strings u and v can be studied
by comparing the strings they are divided by. For example several similarity measures
are based on the computation of a longest string dividing u and v [2,4, 5, 6]. One
can also consider as a measure of similarity the greatest integer d(u, v) such that
no string of length< d(u, v) can distinguish « and v. This paper is devoted to the
computation of d(u, v).

Various algorithms have been proposed for this problem. Simon |7] presented
an algorithm with time and space complexity O(|A| |uv|), where A is the alphabet.
Unfortunately this algorithm is not on-line and requires a large pre-processing
needing a lot of space. Another method uses the finite automaton which accepts
the set of all the strings that divide a given string. This leads to an almost linear
algorithm [1].

We present a new method based on a special factorization of u and v which we
call the arch factorization. If u and v are bit-strings the arch factorization provides

0304-3975/91/%03.5¢ © 1991—Elsevier Science Publishers B.V.

https://core.ac.uk/display/82023616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

36 J.-J. Hebrard

an efficient linear algorithm to compute d(u, v). This algorithm is on-line and only
requires a constant amount of extra space. Moreover the method gives the construc-
tion of a shortest string that distinguishes u and v.

1. Basic definitions and notations

Given a finite set of symbols A, a string u is a finite sequence u(1)...u(n) of
elements of A; the length of u is denoted by |u|. The empty string is denoted by ¢
and the set of all strings over A by A*. By alph(u) we mean the set of symbols
which occur in u. The concatenation of two strings u and v is denoted by u.v.

Given a string u(1)...u(n), pref(u,i) and suf(u,i) denote respectively
u(1)...u(i) and u(i+1)...u(n). We have u = pref(u, i).suf(u, i).

A string h divides u if there exists a subsequence of u u(s(1))... u(s(m)) such
that h=u(s(1))... u(s(m)). s is said to be the first occurrence of h in u if for every
subsequence u(#(1))...u(t(m)) such that h=u(#(1))... u(t(m)), we have s(i) <
t(i) (1<i=<m). A string h distinguishes two strings u and v if it divides one of them
and does not divide the other. D(u, v) denotes the set of the shortest strings that
distinguish u and v.

Given a string u and an integer I let S(u, I)={h € A*|h divides u and |h|<1}.
Given two strings u and v, d(u, v) is defined by

max{l|S(u, 1)=S(v, 1)} ifu#uo,
o) otherwise.

d(u, v)={

d(u, v) is the greatest integer such that no string of length < d(u, v) can distinguish
u and v. One can show that 8(u, v) =27 " is an ultrametric distance [3]. If h is
member of D(u,v) then |h|=d(u, v)+1. The following sections deal with the
computation of d(u, v) and D(u, v).

2. Arch factorization

Our method is based on a special way of factorizing strings.

Definition. Let u be a string over A. u =ar,(1) ... ar,(n).r(u) is the arch factorization
of u if:

(i) for every Ie{l,...,n}, ar,(I)=c,(I).u(p,(I)) with c,(I)e A*, p.(I)e
{1,...,ul}, alph(c,(I)) # A and alph(ar,(I)) = A.

(ii) alph(r(u)) # A.

The strings ar,(I) will be called the archs of u and r(u) the rest. The string
u(pu(1)).u(p,(2))... u(p.(n)) will be called the model of u and denoted by m[u].

Distinguishing bit-strings by subsequences 37

Example
A={0,1,2}, u=1022011210010210,
=102.201.1210.0102.10,

ar,(1) =102, u(p.(1))=u(3)=2,
ar,(2) =201, u(p.(2))=u(6)=1,
ar,(3) =1210, u(p.(3))=u(10)=0,
ar,(4) =0102, u(p,(4))=u(14)=2,
r(u)=10 and m[u]=2102.

We show that every string shorter than |m[u]| divides u and that it is always
possible to construct a string of length [m[u]|+ 1 which does not divide u.

Proposition 1. Let u and h be two strings over A. If |h|<|m[u]| then h divides u.
Proof. Vie{l,...,|h|}, h(i) divides ar,(i). O

Proposition 2. Let u be a string over A and a € A\ alph(r(u)). Then m[u].a does
not divide u.

Proof. We have m[u]=u(p,(1)) ... u(p.(n)). The result follows from the fact that
D. is the first occurrence of m[u] in u. O

The two following propositions show that the arch factorization provides an easy
tool to compute d(u, v) when the models m[u] and m[v] have different lengths or
alph(r(u)) is different from alph(r(v)). In both cases we have d(u,v)=
min(|m[u],|m[v]]).

Proposition 3. Let u and v be two strings over A such that |m[ul|l<|m[v]| and let
ac A\alph(r(u)). Then d(u, v)=|m[u]| and m{ul.a € D(u, v).

Proof. Let h be a string over A. If |h|<|m[u]|, h divides u and v. The string m[u].a
does not divide u (Proposition 2), it divides v since |m{ul.a|<|m[v]|. CI

Proposition 4. Let u and v be two strings over A such that [m[u]|=|m[v]|=n and
alph(r(v))\alph(r(u))#9. Let acalph(r(v))\alph(r(u)). Then d(u,v)=n and
mlu].a € D(u, v).

Proof. Let h be a string over A. If |h|<|m[u]|, h divides u and v. The siring m[u].a
does not divide u, it divides v since m[u] divides ar,(1)...ar,(n) and a divides
r(v). O

38 J.-J. Hebrard

We must now show how to compute d (u, v) when |m[u]|=|m[v]| and alph(r(u)) =
alph(r(v)). This will only be done for bit-strings.

3. The case of bit-strings

In this section u and v are strings over {0, 1}. We first examine the situation where
|m[u]|=|m[v]|, alph(r(u)) = alph(r(v)) and m[u]# m[v]. The following proposi-
tion says that in this case d(u, v) =|m[u]| =|m[v]|. This result is proved by consider-
ing the greatest k such that u(p,(k)) # v(p,(k)). To make things more concrete let
us examine the following examples:

1) u=01011100010 and » = 10001010100

4u=01 011100010 _ m[u]l=1101,
p=13%001. 01 0100 mp]=0111

We have k = 3. The string w=m{[u].1 =11011 divides v and does not divide u. The
third arch enables w to run more quickly through u than through v.
(2) u=001100 and v =01010

u=00110.0_ mul=10,
v= 01.01.0 m[v]=11.

We have k =2=|m[u]| and m[u].1 =101 distinguishes u and v.

Proposition 5. Let u and v be tw. strings over {0, 1} such that |m[u]|=|m[v]|=n,
alph(r(u)) = alph(r(v)) = R and m[u] # m[v]). Then n>0 and d(u, v) = n. Moreover
if kK (1<k=<n) is the greatest integer such that u(p,(k))# v(p,(k)) we have:
(i) ifk<nand ac{0,1}\ R:
® either u(p,(k))# u(p.,(k+1)) and m[u].ae D(u, v),
@ or v(p,(k))# v(p,(k+1)) and m[v].a e D(u, v).
(ii) ifk=n:
® either v(p,(n))¢ R and m{ul.v(p,(n))e D(u, v),
® oru(p,(n))gR and m[v].u(p.(n))e D(u, v).

Proof. (i) k < n. We have u(p,(k)) # v(p,(k)) and u(p,(k+1))=v(p.(k+1)). Sup-
pose u(p,(k))=0, v(p,(k))=1, u(p,(k+1))=1 and v(p,(k+1))=1. The string
m{u].a distinguishes u and v. It does not divide u (Proposition 2). pref(m[u], k —1)
divides ar,(1)...ar,(k—1) (Proposition 1), u(p.(k)).u(p.(k+1)) divides ar,(k)
since ar,(k) =071(g > 0), and suf(m|u], k+1).a divides ar,(k+1) ... ar,(n) (Prop-
osition 1). Consequently m[u].a divides v.

(i) k=n. We may suppose u(p,(n))=0 and v(p,(n))=1. Either u(p.(n)) or
v(p.(n)) does not belong to . Suppose v(p.(n)) does not belong to %. The string
m[u].v(p.(n)) distinguishes u and v. It does not divide u (Proposition 2).

Distinguishing bit-strings by subsequences 39

pref(mlu],n—1) divides ar.(1)...ar,in—-1) (Proposition 1), and
u(p.(n)).v(p,(n)) divides ar,(n) since ar,(n)=0%1 (g>0). Therefore
ml[u].v(p,(n)) divides v. O

Remark. Note that Proposition 5 does not hold if card(A) > 2. For example when
A=1{0,1,2}, u=20101012 and v = 21010102 we have m[u]| =|m[v]| =2, m[u] =12,
m[v]=02, but d(u, v) =3 (S(u,3)=S(v,3) and 1110 distinguishes u and v).

In order to study the only case that has not yet been considered, namely m[u] =
m[v] and alph(r(u)) = alph(r(v)), we need some new definitions and notations.

Definition. Given two bit-strings » and v such that [m[u]|=|m[v]|=n with n>0
and |ar,(I)|<|ar,(I)] for some Ie{l,...,n}, disting(J) is the string:
pref(m[u], I —1).c,(I).m{suf(u, p,(I)—1)).a with a € {0, 1}\ alph(u(|ul)).
Example
u=110.01.1110.1, m[u]=010, alph(r(u)) ={1},
v=1110.01.110.11, m[v] =010, alph(r(v))={1},
|ar, (1)| < |ar,(1)], pref(m[u],0)=¢, c,(1) =11,
m[suf(u, 2)]=m([00111101]=10,a =0,
disting(1) = 11100.
lar,(3)|<|ar,(3)|, pref(m{v],2)=01, c,(3) =11,
m[suf(v,9)]=m[011]=1,a =0,
disting(3) =011110.
We shall see (Proposition 9) that disting(/) distinguishes # and v. In order to
prove this result we must first thoroughly examine the string m[suf(y, p,(I)—-1)].

The following lemma shows that its properties depend on whether conditions
u(p.(I)—1) # u(p,(I+1)—1) and |ar, (I +1)|> 2 hold.

Lemma 6. Le! « ve a string over {0, 1} such that m[u]|=n and n>0. Let I <n.
(i) If u(p.(n)—1)¢alph(r(u)) then m[suf(u, p,(n)—1)]=¢.
(ii) If u(p.(n)—1)ealph(r(u)) then m[suf(u, p,(n)—1)]=u(p,(n)—1).
(iii) If u(p,(I)—1)# u(p,(I+1)—1) then

m([suf(u, p,(I) —1)]1= u(p,(I) = 1).m[suf(y, p,(I1 +1))].

(iv) If u(p.,(I)=1)=u(p,(I+1)—1) and lar,(I+1)|=2 then
m[suf(u, p,(I)-1)]=u(p,(I)—1).m[suf(u, p,(I+1)-1)].

v) Ifu(p.(I)=1)=u(p.(I+1)—1) and |ar, (I +1)|>2 then
m[suf(u, p,(I)—1)]1=u(p,(I)—1).u(p,(I)).m[suf(u, p,(I +1))].

40 J.-J. Hebrard

Proof. (i) Suppose u(p,(n)—1)=0.1f u(p,(n)—1) £ alph(r(u)) then suf(y, p,(n) —
1) =1%(k>0), and m[suf(u, p,(n)—1)]=¢.

(ii) Suppose u(p,(n)—1)=0. If u(p,(n)—1)ealph(~(u)) then suf(u, p,(n)—
1) =10*(k>0), and m[suf(u, p.(n)—1)]=0.

(iii) Suppose u(p,(I)—1)=0 and u(p,(I+1)-1)=1. We have u(p,(I))=1,
ar,(I+1)=1%0(k>0), and suf(u, p,(I)—1)=1*"0suf(u, p,(I+1)). Then
m[suf(u, p,(I)—1)]=0.m[suf(u, p,(I+1))].

(iv) Suppose u(p.(I)-1)=u(p,(I+1)—1)=0. Then ar,(I+1)=01,
suf(u, p,(I)—1)=10.suf(u, p,(I+1)—1) and

m[suf(u, p,(I)—1)]=0.m[suf(u, p,(I+1)—-1)].

(v) Suppose u(p.(I)=1)=u(p,(I+1)—1)=0. Then ar,(I +1) =001 (k>0),
suf(u, p.(I)—1) = 100" 1.suf(u, p,(I +1)) and

m{suf(u, p,(I)—1)]1=01.m[suf(u, p,(I+1)-1}). O

Examples. Here I =1, p,(I)-1=2, u(p,(I)-1)=0 and we{0, 1}*.
(i) u=001, m[suf(u, 2)]=m[1]=¢; u=001.1, m[suf(u, 2)]=m[11] =¢.
(i) u=001.0, m[suf(u,2)]=m[10]=0.
(iii) u=001.110.w, m[suf(u,2)]=m[1110.w]=0.m[w].
(iv) u=001.01.w, m[suf(u,2)]=m[101.w]=0.m[1.w].
(v) u=001.001.w, m[suf(u,2)]=m[1001.w]=01.m[w].

Notations. Given Ie{l,...,|m[u]l}, F,(I) (resp. G,(I)) denotes the smallest J
such that J>1T and u(p,(J)—1)# u(p,(I)—1) (resp. |ar,(J)|>2). For every I €
{L,....[m{ull}, let F(D)={I<J<|m[u]l/u(p.(J)-1)#u(p,(I)-1)} and
G.(D)={I<J<|m[u]|/lar,(J)|>2}.1f %,(I) # @then F,(I) = min F,(I) otherwise
F,(I)=o00, if 4,(I)#® then G,(I)=min ¥,(I) otherwise G,(I) = 0.

Example
u=01.001.110.10.0
F,(1)=3, G,(1)=2, F(2)=3, G,(2)=3,
F,.3)=G,(3)=x, F,(4)=G,(4)=00.
The next lemma shows that m[suf(u, p,(I)—1)] can be written a’b%suf(m[u], K)
with a, b€ {0, 1} and a = u(p,(I)-1). The values of P, q and K depend on F,(I)
and G,(I). Let us see that first on examples.

Here I =1, p,(1)-~1=1 and u(p,(1)—1)=0:
(1) u=01.01.110.w, F,(1) = G,(1) =3. We have F.(1)<G,(1)and

ra[suf(u, p,(1) ~1)]=m[10.1110.w] = 0°.m[w] = 0%.suf(m[u], 3).
(2) u=01.01.00i.w, G,(1)=3, F,(1)>3. We have G.(1)<F,(1) and
m[suf(u, p,(1) ~ 1)1 = m[10.10.01.w] = 0*1.suf(m[u], 3).

Distinguishing bit-strings by subsequences 41

(3) u=01.01.111,
F,(1)=G,(1)=c and u(p,(1)—1)€alph(r(u)),
m[suf(u, p,(1)—1)]=m[10.1111]=0.
(4) u=01.01.000,
F,(1)=G,(1)=c and u(p,(1)—1)ealph(r(u)),
m[suf(u, p,(1) —1)]=m[10.10.00] = 0°.
Lemma 7. Let u be a string over {0, 1} such that |m[u]|=nandn>0. LetI {1, ..., n}

and a=u(p,(I)-1).
(i) If E,(I)# and F,(I)< G,(I) then

m[suf(u, p.(I)-1)]=a’ 'suf(m[u],J) whereJ = F,(I).
(i) If G,(I)<F,(I) then m[suf(u, p,(I)—1)]=a’"'b.suf(m[ul,J) where J=
G.(I) and b=u(p,(I)).
(iii) If F,(I)=G,(I) =0 and a ¢ alph(r(u)) then m[suf(u, p,(I)—1)]=a""".
(iv) If F(I)= G,(I)=0 and acalph{r(u)) then m[suf(u, p,(I)—1)]=a"""*'.
Proof
(i) m[suf(u, p,(I)-1)]=a’ " .m[suf(u, p.(J—1)—1] (Lemma 6(iv))
=a’ " .m[suf(u, p,(J))] (Lemma 6(iii))
=a’'suf(m[u], J),
(ii) m[suf(u, p,(I)—-1)]=a’""".m[suf(u, p,(J—1)—1)] (Lemma 6(iv))
=a’"b.m[suf(u, p.(J))] (Lemma 6(v))
=a’ 'bsuf(mlul, J),
(iii) m[suf(u, p.(I)-1)]=a"".m[suf(u, p,(n)—1)] (Lemma 6(iv))
=aq"!, (Lemma 6(i))
(iv) m[suf(u, p,(I)-1)]=a""".m[suf(u, p,(n)—1)] (Lemma 6(iv))
=q" ! (Lemma 6(ii)). O
Definition. Given two bit-strings # and v such that |[m[u]|=|m[v]|=n with n>0
and |ar,(I)|<|ar,(I)| for some I€{l,...,n}, we say that arch I satisfies P if

[F,(I)#% and F,(I)<G,I)] or [F,(I)=G,(I)=© and u(p,(I)—1)¢&
alph(r(u))].

4?2 J.-J. Hebrard

As a consequence of Lemma 7 the length of disting(I) can be easily calculated.

Proposition 8. Let u and v be two bit-strings such that |m[u]|=|m[v]|= n with n>0
and |ar,(I)|<|ar,(I)| for some I €{1,..., n}. Then

n+lar,(I)|-1 ifarch I satisfies 2,

|disting(1)| = {n +lar,(I)| otherwise.

Proof
|disting(I)| = [pref(m{u], I - 1)|+|c,(I)i+|m{suf(u, p,(I)—-1)]|+1
= I —1+lar,(I)|-1+|m[suf(u, p,(I)-1)]|+1.

It follows from Lemma 7 that |m[suf(u, p,(I)—1)]|=n—I if arch I satisfies ? and
|m[suf(u, p.(I)=1)]|=n—1+1 otherwise. [J

The next proposition shows that two bit-strings u and v such tnat m{u]= m[v]
and alph(r(u)) = alph(r(v)), are distinguished by disting(I). Consider the following
example:

u=110.01.1110.1, m[u] =010, alph(r(u)) ={1},

v=1110.01.110.11, m[v] =010, alph(r(v)) ={1},

|lar,(1)]<|ar,(1)], disting(1) =11100 divides » and does not divide u:
u=110.01.1110.1_
v=1110.01.110.11

lar,(3)|<|ar.(3)|, disting(3)=011110 divides u and does not divide v:
u=110.01.1110.1

Notice that u and v can also be distinguished by their rests provided that |r(u)| #
|r(v)]. In the above example we have |r{u}| <|r(v)| and the string m[u].r(u).1 = 01011
divides v but does not divide w.

Proposition 9. Let u and v be strings over {0,1} such that m[u]=m[v] and
alph(r(u)) = alph(r(v)). Let n=|m[u]}= m|[v]|.

(i) If n>0 and there exists 1€{1,...,n} such thar |ar,(I)|<lar,(I)|, then
disting(I) divides v but does not divide u.

(ii) If |r(u)|<|r(v)| and a e alph(r(v)), then m[u].r(u).a divides v but does not
divide u.

Distinguishing bit-strings by subsequences 43

Proof. (i) disting(I) =pref(m[u], I —1).c,(I).m[suf(u, p,(I)—1)].a with asc
{0, 1}\ alph(u(|ul)). It follows from Proposition 2 that disting(I) does not divide u
since a € {0, 1}\ alph(r(suf(w, p,(I)—1))). Let us show that disting(I) divides v. We
can suppose c,(I)=0% ar,(I)=0%1 and ar,(I)=0%"'1 with I>0. We have
pref(v, p,(I-1)+k)=ar,(1)...ar,(I -1).c,(I) and therefore pref(m[u], I -
1).c,(I) divides pref(v, p,(I —1)+ k). We must now show that m[suf(u, p,(I)—1)].a
divides suf(v, p,(I —1)+ k). Three cases must be considered.
Case 1. arch I satisfies 2. It follows from Lemma 7(i) and (iii) that

|m[suf(u, p,(I)—1)].a| = n— I+ 1.|m[suf(v, p,(I — 1)+ k)]|
=|m[0'Lsuf(v, p,(1))]| = |1.m[suf(v, p,(I))]]
=|Lsuf(m[v], I)|=n—-I+1.

Then m[suf(u, p,(I)—1)].a divides suf(v, p,(I —1)+ k) (Proposition 1).
Case 2. G,(I)<F,(I). It follows from Lemma 7(ii) that

m[suf(u, p,(I)-1)].a=0"""1.suf(m[u], J).a
with
J =G, (I).suf(v, p,(I-1)+k)=0"1.ar,(I+1)...ar,(J —1).suf(v, p,(J —1)).

For every Ke{I+1,...,J—1}, ar,(K)=01 and ar,(K) has the form 071 (¢>0)
since m[u]= m[v]. Then 0’ ~'1 divides 0'l.ar,(I +1)...ar,(J —1). It follows from
Propos~ on 1 that suf(m[u], J).a divides suf(v, p,(J —1)) since |suf(m[u], J).a|=
n—J+1 and |=[suf(v, p,(J —1))]|=|suf(m[v],J—1)|=n-J +1.

Case3. F..I> =G,(I)=0o0and u(p,(I)—1)ealph(r(u)). It follows from Lemma
7(iv) that m[suf(u, p,(I)—1)].a=0""""".a. Since u(p,(I)—1) e alph(r(u)) we have

alph(r(u)) =alph(r(v))={0},
and
suf(v, p,(I —1)+k)=0"1.ar,(I+1)...ar,(n—1).0°17,

with ¢>0 and r> 0. The string 0"~'*' divides 0'1.ar,(I+1)...ar,(n—1).0? and a
divides 10"

(ii) We have r(v) = r(u).a* with k> 0. It is readily seen that m[u].r(u).a does
not divide u. It divides v since m[u]=m[v]. O

Given u and v (u # v) such that m[u]= m[v] and alph{r(u))=alph(r(v)) we
now prove that either there exists an arch I such that disting(I) belongs to D(u, v),
or D(u, v) contains a string which distinguishes u and v by their rests.

44 J.-J. Hebrard

Proposition 10. Let u and v be two different strings over {0, 1} such that m[u]= m[v]
and alph(r(u)) = alph(r(v)) = R. Let n = |m[u]| = |m[v]|. At least one of the following
conditions holds.

(i) n>0 and there exists I€{1,...,n} such that |ar,(I)|# |ar,(I)|, disting([)
belongs to D(u, v) and d(u, v) =|disting(I)| - 1.

(i) |r(u)|#|r(v)| and d(u,v)=n+min(|r(u)|,|r()]). If |r(u)|<|r(v)| then
m[u].r(u).a € D(u, v) otherwise m[v].r(v).a€ D(u, v), with ac R.

Proof. Let he D(u, v). Necessarily |h|=2. The string h(1) ... h(|h|—1) divides u
and v. Let s (resp. t) be the first occurrence of h(1)...h(|h|—1) in u (resp. v);
h(1)...h(|h|-1)=u(s(1)) ... u(s(|h|-1))=v(£(1)) ... v(t(Jn]—1)). For every I e
{1,...,n}let N(u, I, h), N(v, I, h), R(u, h) and R(v, h) denote the following sets:

N(u, L h)={s(1),...,s(|h|-1)}n{p.(I-1)+1,..., p.(D)},
N(v, L h)={t(1), ..., t(|h|- D} {p,(I-1)+1,..., p,(D},
R(u, h)={s(1),...,s(|h|= D}~ {p.(n)+1,...,|ul},

R(v, h)={t(1),..., (|- D} {p,(n)+1,...,|v]}.

Card(N(u, I, h)) (resp. Card(R(u, h))) indicates how many times k(1) ... h(|h|-1)
“touches™ the Ith arch (resp. the rest) of u.

Casel. n=0or[n>0andVIe{l,...,n}, Card(N(yu, I, h)) =Card(N(v, I, h))].
We have card(R(u, h)) = card(R(v, h)). R(u, h) and R(v, h) are not empty, other-
wise h would not distinguish u and v. Let R(u, h)={s(r),...,s(|h|-1)} and
R(v, h) ={t(r),..., t(|n]| - 1)}. The string h(1) ... h(r—1) divides pref(u, p,(n)) and
pref(v, p,(n)). The string h(1)...h(r) divides neither pref(u, p,(n)) nor
pref(v, p,(n)) because s and ¢ are first occurrences. Suppose h divides v and does
not divide u. Then h(r) ... h(|h|) divides r(v). If we had |r(u)|=|r(v)|, h(r) ... h(|h|)
would divide r(u) and h would divide u. Hence |r(u)| <|r(v)|. Let a € &. We have
r(v)=r(u).a’(9>0) and h(r) ... h(|h|) = r(u).a. Since h(1) ... h(r) does not divide
pref(u, p,(n)) we have r>|m[pref(u, p,(n))]| (Proposition 1). Now
m[pref(u, p,(n))]= m[u], then r>|m[u]| and |h|=|m{u).r(u).al. It follows from
Proposition 9(ii) that m(u).r(u).a distinguishes u and v. Then m(u).r(u).a € D(u, v)
since h € D(u, v), and condition (ii) holds.

Case 2. n>0 and {I€{l,...,n}|Card(N(u, I, h))# Card(N(v, I, h))} #0.
Let J=min{I€{1,....n}|Card(N(u, I, h))# Card(N(y, I, h))}, NuJ, h)=
{s(r),...,s(r+p)} and N(v,J, h)={t(r),..., t(r+q)}. The string h(1)...h(r—1)
divides pref(u, p,(J—1)) and pref(v, p,(J—1)); h(1)...h(r) divides neither
pref(u, p,(J —1)) nor pref(v, p,(J — 1)) since s and ¢ are first occurrences. Suppose
p<gq. Then h(r)... h(r+p+1) divides ar,(J) but does not divide ar,(J) since s is
the first occurreiice of h(1) ... h(|h|-1) in u. Therefore we have |ar,(J)|<|ar,(J)|,
h(r)...h(r+p)=c,(J), s(r+p)=p,(J)-1 and t(r+p)<p,(J)-2.

disting(J) = pref(m[ul, J - 1).c,(J).m[suf(u, pu.(J)—1)].a

Distinguishing bit-strings by subsequences 45

with a €{0, 1}\ alph(u({u()). It follows from Proposition 9 that disting(J) distin-
guishes u and v. We show that |h|= |disting(J)|.

(a) The string h(1)...h(r) does not divide pref{u, p,(J—1)). Now
|m{pref(u, p,(J —1))1| = |pref(m[u], —1){=J ~ 1. Therefore r—1=J —1 (Proposi-
tion 1).

(b) Let us show now that |h(r+p+1)... h(|k])|> |m[suf(u, p.(J)~1)]:

If h does not divide u then h(r+p+1)...h(|h]) does not divide suf(u, p,(J)-1),
and therefore |h(r+p+1) ... h(|h|)|> |m[suf(u, p.(J)—1)]| (Proposition 1).

If h divides u then it does not divide v and h(r+p+1)... h(|h|) does not divide
suf(v, t(r+p)). Then |h(r+p+1)...h(|h))|>|m[suf(v, t(r+p))]| (Proposition 1).
We have

m[suf(v, t(r+p))]=m[suf(v, p,(J —1))]

since

t(rtp)=p,(J)-2.

m{suf(v, p,(J —1))]= m[suf(y, p.(J - 1))]
since

mlu]=m[v].
Now

Imlsuf(u, p,(J — 1)1} = [m[suf(y, p.(J) - 1)]],
thus

[h(r+p+1)...h(|0])| > |m[suf(u, p,(J) - D]}.

Finallywehave r—1=J—1, h(r)... h(r+p)=c,(J)and |h(r+p+1)... h(|h))|=
[m[suf(u, p,(J)—1)1.a]. Thus |h|= disting(J)|, disting(J) € D(u, v) and condition (i)
holds. [J

4. Algorithm

In this section u and v are bit-strings. From the above propositions we obtain a
linear on-line algorithm which computes d(u, v). It only requires one reading of u
and v and a constant amount of extra space. Let

n=min(|m[u],|m[v]), r=min(r(u)],|r(v)]),

Diff={Ie{1,..., n}||ar,(I)|# |ar, ()]},

M ={I e Diff|VJ € Diff, min(|ar, (I)],Jar,(I)]) < min(lar, (J)||ar,(J)D},
Imin = min([ar, (I)|,jar,(1)]) with Ie M,

P ={I e M |arch I satisfies P}.

46 . wvrard

We can summarize the results of the pre-.-iing sections by the following functional
statement:

d(u,v)=
if (m[u]# m[v] or alph(r(u)) # alph(r(v))) themn (Propositions 3, 4, 5)
else if Dift = @ then (if |r(u)| = |r(v)| then c else n+r) (Proposition 10)

else if (|r(u)| # |r(v)| and r <1min—2) then n+r (Propositions 8, 10)
else if P # @ then n+Imin—2 (Propositions 8, 10)
else n+1min—1. (Propositions 8, 10)

Examples. (i) u =110.01.1110.1, v =1110.01.110.11, m[u] = m[v] = 010, alph(r(u)) =
alph(r(v))={1},n=3,r=1,Diff={1,3}, M ={1, 3}, Imin =3, r<Imin—2,d(u, v) =
n+r=4, m{ul].7x(u).1=01011€ D(u, v).

(i) ©u=110.01.1110.11, »=1110.01.110.111, m[u]=m[v] =010, alph(r(u))=
alph(r(v))={1}, n=3, r=2, Difi={1,3}, M ={1, 3}, Imin=3, r>Imin-2, P= {1},
d(u, v) =n+Imin—2=4, disting(1) =11100€ D(u, v).

(iii) ¥ =10.01.001.10.00, v =10.001.0001.10.0, m[u]= m[v] =0110, alph(r(u))=
alph(r(v))={0}, n=4, r=1, Diff={2,3}, M={2}, Imin=2, r>1Imin—-2, P=0),
d(u, v)=n+Imin—-1=35, disting(2) =000101 € D(u, v).

In order to compute d(u, v) we must merely calculate n, r, Imin, and determine
whether m[u]=m[v], alph(r(u))=alph(r{v)), |r(u)|=|r(v)|, Diff#@ and P#0.
This is done by the following algorithm.

The algorithm uses the procedure NEXTARCH. When NEXTARCH(u) is called
it reads the next arch of w. If a*b (k> 0) is read, the variables bit-arch[u], length-
arch[u] and bool-arch[u] are respectively bound to a, k+1 and true. If the rest a*
(k =0) is read the variables bit-arch[u], length-arch{u] and bool-arch[u] are respec-
tively bound to a, k and false (if k =0 the value of bit-arch[u] is indeterminate).
Notice that procedure NEXTARCH can be implemented in such a way that it only
needs a constant memory. The algorithm runs through u and v using NEXTARCH.

The variable Imin is initially bound to co. If immediately after arch I has been
read the conditions min(length-arch[u],length-arch[v]) <1min and length-arch[u] #
length-arch[v] hold, the value of Imin is changed by the assignment Imin:=
min(length-arch[u],length-arch[v]). In order to determine whether arch I satisfies
P we use the variables inf, bit and p which are updated by calling procedure
UPDATE. Each time UPDATE is called the following assignments are performed:
if length-arch[u] <length-arch[v] then inf:= u else inf:= v, bit:= bit-arch[inf] and
p=ind (indeterminate). The value of p remains “ind” until it can be decided
whether arch I satisfies 2, “true” (resp. “false”) is then assigned to p if arch I does
satisfy & (resp. does not satisfy). This is done by procedure COMPUTE_P which
compares for each arch J > I the current value of bit-arch[inf] with that of bit, and
tests whether length-arch[inf]> 2.

Distinguishing bit-strings by subsequences 47

The procedure UPDATE is also called when the value of p is false and conditio:s
min(length-arch[u],length-arch[v]) =Imin and length-arch[u # length-arch{ o]
hold, because even if Imin is not changed, the values of inf and bit might be different
and p might become true.

When the algorithm terminates we obtain the following bindings-

@ n is bound to min(|m[u]|,|m[v]]),

® bool-m is bound to the boolean value of m[u]= m[v].
If m{u]= m[v] then:

@ r is bound to min(|r(u)|,|r(v)}),

@ bool-rl is bound to the value of |r(u)|=|r(v)|,

® bool-r is bound to the value of alph(r(u))=alph(r(v)),

@ bool-Diff is bound to the value of Diff #0,

If m[u]= m[v] and Difl # 0 then:
® Imin is bound to min(|ar,(I)],)ar,(I)]) with I M,

@ p is bound to the value of P # 0.

procedure UPDATE;

begin
if length-arch[u] <length-arch[v] then inf:= u else inf:= v,
bit := bit-arch[inf]; p:=ind

end; {UPDATE}

procedure COMPUTE_P;
begin

if bit-arch[inf] # bit then p = true

else if length-arch[inf]> 2 then p = false;
end; {COMPUTE_P}

Algorithm
begin
n:=0; lmin:= co; p:=false; NEXTARCH(u); NEXTARCH(v);

while bocl-arch[«] and bool-arch[v] and bit-arch[u] = bit-arch[v] do begin
n=n+1l;
if p =ind then COMPUTE_P;
(1) if length-arch[u] # length-arch[v] then
if min(length-arch[«], length-arch[v]) <Imin then
begin Imin := min(length-arch[u], iength-arch[v]);
UPDATE
end
else if min(length-arch{u], length-arch[v]) =Imin and p = false
then UPDATE;
NEXTARCH(u);NEXTARCH(v)
end: {while}

48 J.-J. Hebrard

if not bool-arch[u] and not bool-arch[v] then {here m[u]=m[v]}
begin
bool-m = true;
r:= min(length-arch{ u], length-arch[v]);
if length-arch{u] = length-arch[v]
then bool-rl == true else bool-rl:= false;
if (r=0 and bool-r!) or (r #0 and bit-arch[u] = bit-arch[v])
then bool-r:= true else bool-r = false;
if Imin # o then bool-Diff = true 2lse bool-Diff := false;
if p = ind then
if length-arch[inf]=0 or bit # bit-arch[in{] then p = true else p :=false
end

else
begin {here m[{u]# m[v]}
bool-m = false;
while bool-arch{u] and bool-arch[v] do
begin n:=n+1; NEXTARCH(u); NEXTARCH(v) end
end
end.{algorithm}

Remark. Line (1): if the value of p is still “ind” necessarily bit-arch[inf] = bit and
length-arch[inf]=2 (otherwise CCMPUTE_P would have assigned ‘“true” or
“false” to p). Thereforc if length-arch[u]# length-arch[v], min(length-
arch[ul,length-arch{v}) =Imin and p =ind it is useless to call UPDATE (inf, bit
and p would not be changed).

It foliows from Propositions 3, 4, 5, 10 and Lemma 7 that the above algorithm
can be straigktforwardly adapted to compute a string of D{u, v). The main difference
is that the models m[u] and m[v] must be explicitly computed and the required
amount of extra space becomes O(d(u, v)).

8. Conclusion

The arch factorization provides an efficient method to compute d(u, v) when u
and v are bit-strings. One may ask whether this method could be generalized to any
pair of strings. We first notice that Propositions 3 and 4 hold even if u and v are
not bit-strings, thus d(u,v) can always be computed if |m[u]|#|m[v]| or
alph(r(u)) # alph(r(v)). Difficulties arise when |m[u]|=|m[v]| and alph(r(u))=
alph(r(v)). For example let us merely consider the case |m[ull=|m[v]|=n,
alph(r(u)) =alph(r(v)) and m[u]# m[v]. If u and v are bit-strings we can prove

Distinguishing bit-strings by subsequences 49

that d(u, v) =n (Proposition 5), but this result does not hold if card(A)>>2 (see
the remark following Proposition 5). In fact the proof of Proposition 5 strongly
depends on the cardinality of A. In order to compute d(u, v) when card(A)> 2,
the analysi. of u and v must be less coarse than the one provided by the mere
application of arch factorization. The way for future work could be to compute the
arch factorization of u and v, and then of every arch of u and v, and so on.

References

[1] 3.J. Hebrard and M. Crochemore, Calcu! de la distance par les sous-mots, RAIKO Inform Théor.
Appl. 20(4) (1986) 441-456.

[2] S.K. Kumar and C.P. Rangan, A linear space algorithm for the LCS problem, Acta Inform. 24 (1987)
353-362.

[3] Lothaire, Combinatorics on Words (Cambridge University Press, 1983).

[4] W.J. Masek and M.S. Paterson, A faster algorithm computing string edit distances, J. Comput. System
Sci. 20 (1980) 18-31.

{5] N. Nakatsu, Y. Kambayashi and S. Yajima, A longest common subsequence algorithm suitable for
similar test strings, Acta Inform. 18 (1982) 171-179.

[6] D. Sankoff and J.B. Kruskal, Time Warps, String Edits and Macromolecules: the Theory and Practice
of Sequence Comparison (Addison-Wesley, Reading, MA, 1983).

[7] 1. Simon, An algorithm to distinguish words efficiently by their subwords, 1984, unpublished.

