
Theoretical Computer Science 82 (1991) 35-49 
Elsevier 

35 

Jean-Jacques Hebrard 
LIUC, Universite’ de Caen, 14032 Caen Cedex, France 

Communicated by D. Perrin 
Received May 1988 
Revised February 1989 

Abstract 

Hebrard, J.-J., An algorithm for distrnguishing efficiently bit-strings by their subsequences, Theo- 
retical Computer Science 82 (1991) 35-G?. 

A linear on-h. algorithm for computing a shortest subsequence that distinguishes two different 

bit-strings is presented. The method is bastd on a special way of factorizing strings. 

0. Introduction 

A string h divides a string u if it can be obtained from u by deleting zero or more 
symbols. If a string h divides u (resp. v) and does not divide v (resp. u) we say 
that h distinguishes u and v. The similarity of two strings u and v can be studied 
by comparing the strings they are divided by. For example several similarity measures 
are based on the computation of a longest string dividing u and v [2,4,5,6]. One 
can also consider as a measure of similarity the greatest integer d( u, v) such that 
no string of length G d( u, v) can distinguish u and v. This paper is devoted to the 
computation of d (u, v). 

Various algorithms have been proposed for this problem. Simon [7] presented 
an algorithm with time and space complexity O(l 1 (uv~), where A is the alphabet. 

Unfortunately this algorithm is not on-line and requires a large pre-processing 
needing a lot of space. Another method uses the finite automaton which accepts 
the set of all the strings that divide a given string. This leads to an almost linear 
algorithm [ 11. 

We present a new method based on a special 
call the arch factorization. If u and v are bit-stri 

0304-3975/91/$03.50 @ 1991--Elsevier Science Publishers B.V. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82023616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


36 J.-J. Hebrard 

an efficient linear algorithm to compute d (u, v). This algorithm is on-line and only 
requires a constant amount of extra space. Moreover the method gives the construc- 
tion of a shortest string that distinguishes u and v. 

asic definitions and notations 

Given a finite set of symbols A, a string u is a finite sequence u( 1) . . . u(n) of 
elements of A; the length of u is denoted by lul. The empty string is denoted by E 
and the set of all strings over A by A*. By alph(u) we mean the set of symbols 
which occur in u. The concatenation of two strings u and v is denoted by U.V. 

Given a string u(1). . . u(n), pref( u, i) and suf( u, i) denote respectively 

u(1). . . u(i) and u(i+l). . . u(n). We have u = pref(u, i).suf( u, i). 
A string h divides u if there exists a subsequence of u u(s( 1)) . . . u(s( m)) such 

that h = u(s(1)). . . u(s(m)). s is said to be the first occurrence of h in u if for every 
subsequence u( t( 1)) . . . u(t(m)) such that h = u(t(1)). . . u(t(m)), we have p(i)d 
t(i) (1 s i 6 m). A string h distinguishes two strings u and v if it divides one of them 
and does not divide the other. D(u, v) denotes the set of the shortest strings that 
distinguish u and 2;. 

Given a string u and an integer I let S( u, i) = {h E A* 1 h divides u and lhl G I}. 
Given two strings u and v, d (u, v) is defined by 

d(u, v)= 
I 

max{ll S(u, I) = S(v, 1)) if u # v, 
00 otherwise. 

d (u, v) is the greatest integer such that no string of lengths d (u, v) can distinguish 
u and v. One can show that 6(u, v) = 2-d(“9 ‘) is an ultrametric distance 131. If h is 
member of D( u, v) then 1 hi = d (u, v) + 1. The following sections deal with the 
computation of d( u, v) and D(u, v). 

Our method is based on a special way of factorizing strings. 

. LetubeastringoverA.u=ar,(lj... ar,( n).r( u) is the arch factorization 
of u if: 

(i) for every Z E (1,. . . 9 4, ar,U) = ~Ub4p~U)) with ~(0 E A*, puW E 

(1 , l . . , IuI>, alph(c,(Z)) f A and alph(ar,(Z)) = A. 
(ii) alph( r( u)) # A. 

The strings arU(Z) will be called the archs of u and r(u) the rest. The string 

ll(l)).Q44(2)) ’ l l J n)) will be calle the model of u and denoted by m[u]. 



Distinguishing bit-strings by subsequences 37 

A = K4 La, u = 1022011210010210, 

u = 102.201.1210.0102.10, 

ar,( 1) = 102, u(plA(1)) = u(3) = 2, 

ar,(2) = 201, u( P,W = ~(6) = 1, 

ar,(3) = 1210, u( P,(3)) = u(W = 0, 

ar,(4) = 0102, U(Pll(W = wo = 2, 

Y( ?4) = IO and m[u] = 2102. 

We show that every string shorter than Im[u]l divides u and that it is always 
possible to construct a string of length 1 m[ u]l + 1 which does not divide u. 

roposition 1. Let u and h be two strings over A. If (ks G Im[ u]( then h divides u. 

Proof. ViE{I,. . . , IhI}, h(i) divides aq,(i). Cl 

Proposition 2. Let u be a string over A and a E A\alph(r( u)). Then m[u].a does 
not divide u. 

Proof. We have m[ u] = u( p,( 1)) . . . u( p,( n)). The result follows from the fact that 
p,, is the first occurrence of m[u] in u. Cl 

The two following propositions show that the 
tool to compute d (u, v) when the models m[ u] 
alph( r(u)) is diRerent from alph(r( v)). In 

min(lm[4l,lm[~11)* 

arch factorization provides an easy 
and m[u] have different lengths or 

both cases we have d( u, v) = 

Proposition 3. Let u and v be two strings over A such that 1 m [ u]l < Im[ v]l and let 
a e A\alph(r(u)). Then d(u, v) = lm[u]l and m[u].a E D(u, v). 

roof. Let h be a string over A. If lhl s Im[ u]l, h divides u and v. The string m[u].a 
does not divide u (Proposition 2), it divides v since lm[u].als Im[v]l- Cl 

Let u and v be two strings over A such that im[u]l= Im[v]l= n and 
alph(r(v))\alph(r(u))#@. Let aEalph(r(v))\alph(r(u)). 55en d(u, v)= n and 
m[u].a E D(u, v). 

Let h be a string over A. If Ihi s Im[ u]l, h divi he string mb3.a 

does not divide u, it divides v since m[u] divides ar,( I) . I . ar,( n) an 

r(v). Cl 



J.-J. Hebrard 

We must now show how to compute d( u, v) when 
alph( r( v)). This will only be done for bit-strings. 

3. e case of bit-strings 

IMull = Im[ v]I and alph( r( u)) = 

In this section u and v pre strings over (0, 1). We first examine the situation where 

I+41 = ~MKll, alph(0)) = alph( r( v)) and m[ u] f m[ v]. The following proposi- 

tion says that in this case d(u, v) = Im[u]l= Im[v]l. Th is result is proved by consider- 

ing the greatest k such that u( pU( k)) # v( p,( k)). To make things more concrete let 
us examine the following examples: 

(1) u = 01011100010 and u = 10001010100 

ar=o 1. 0 _1. 1 1 0. 0 0 1. 0 _ m[u]=llOl, 

v=d 1. 0 0 1. Q 1. 0 1.0 0 m[v]=Olll. 

e have k = 3. The string w = m [ u]. 1= 11011 divides v and does not divide u. The 
third arch enables w to run more quickly through u than through v. 

(2) u = 001100 and v = 01010 

u=OO 1. 10. O_ m[u]=lO, 

V = 0 1. Q 1. 0 m[v]= 11. 

We have k = 2 = 1rn[u]I and m[u].l = 101 distinguishes u and v. 

osition 5. Let u and v be twcl strings over (0, 1) such that 1 m [ u]l = Im[ v]l = n, 
alph(W) = alph(r( v)) = 9 and m[u] # m[v]. Then n > 0 and d(u, v) = n. Moreover 
if k (1 s k s n) is the greatest integer such that u( p,( k)) f v( p,( k)) we have: 

(i) ifken and aE{O, 1}\9: 
either u(p”(k))# u(p,,(k+l)) and m[u].aE D(u, v), 
or v(p,(k)j St v(pJk+ 1)) and m[v].a E D(u, v). 
(ii) $k = n: 

either v( p,( n)) G 9 and m[ u].v( p,( n)) E D( u, v), 

or u( p&M 3 and m[v].u(p,(n)) E Wu, vh 

. (i)k<n.Wehaveu(p,(k))fv(p,(k))andu(p,(k+l))=v(~~.(k+l)).Sup- 
pose u(p,(k))=O, v(p,(k))= 1, u(p!,(k+l))= 1 and v(p,(k+l))= 1. The string 
m[u].a distinguishes u and v. It does not divide u (Proposition 2). pref( m[ u], k - 1) 
divides ar,( 1) . a . ar,( k - 1) (Proposition l), u( pU( k)).u( p,( k + 1)) divides ar,( k) 
since ar,(k) =O’l(q>O), and suf(miu], k+ l).a divides ar,(k+ 1). . . at-,(n) (Prop- 
osition 1). Consequently m[ u].a divides v. 

e may suppose u(p,,(n))=O and v(p,(nj)=l. ither u( p,,(n)) or 

,!( n)) does not belong 
m[u].v(p,,(n)) does not divide u ( 



Distinguishing bit-strings by subsequences 39 

pref(m[u], n - 1) divides ar,( 1) . . . ar,(n - 1 j (Proposition l), and 
u( pU( n)).v( pU( n)) divides ar,!n) since ar,( n) = Oy.l (q > 0). Therefore 
m[u].v( p,(n)) divides v. Cl 

. Note that Proposition 5 does not hold if card(A) > 2. For example when 

A = (0, 1,2}, u = 20101012 and v = 21010102 we have /m[ u]l = Im[ v]l = 2, m[ u] = 12, 
m[v]=02, but d(u, v)=3 (S(u,3)=S(v,3) and 1110 distinguishes u and v). 

In order to study the only case that has not yet been considered, namely m[u] = 
m[v] and alph(r( u)) = alph( r( v)), we need some new definitions and notations. 

Definition. Given two bit-strings k and v such that 1 m[ u]l = Im[ v]l = n with n > 0 

and lar,( I)1 < lar,( I)/ for some I E { 1,. . . , n}, disting(1) is the string: 
pref(m[u], I-l).c,(l).m[suf(u,p,(l)-l)].a with aE{O, l}\alph(u((ul)). 

Example 

u = 110.01.1110.1, m[u]=O10,alph(r(u))={1}, 

v = 1110.01.110.11, m[v]=OlO,alph(r(v))={l}, 

lar,(l)l<: lar,(l)l, pref(mbl,O) = 6 cdl) = 11, 

m[suf( u,2)] = m[OOl 1 11011 = 10, a = 0, 

disting( 1) = 11100. 

lar,(3)1< larJ3)1, pref(m[v], 2) = 01, c,(3) = 11, 

m[suf( v, 9)] = m[Ol l] = 1, a = 0, 

disting(3) = 011110. 

We shall see (Proposition 9) that disting( I) distinguishes u and v. In order to 
prove this result we must first thoroughly examine the string m[suf(u, p,(I) - I)]. 
The following lemma shows that its properties depend on whether conditions 
u(pu(l)-l).fu(pU(Z+l)-1) and lar,(1+1)1>2 hold. 

Lettbeastringover{O,1}suchthat~m[u]~=nandn>0. LetMn. 
(i) iu(p,(n)--l)ealph(r(u)) then m[suf(u,p,(n)-l)]=&. 

(ii) Ifu(pJn)-l)Ealph(r(u)) then m[suf(u,p,(n)-l)]=u(p,(n)-1). 
(iii) If u(p,(I)-l)fu(p,(I+l)-1) then 

mbuf(u, P,Sl) - Ol= u~P”w-- lMsw4 puu+ WI* 

(iv) ljta(pJl)-1)= u(p,(1+1)-1) and lar,(1+1)1=2 then 

mbuf(u, P”(l) - Ul = a%,( 



J.-J. Hebrard 

roof. (i) Supposeu(p,(n)-l)=O.Ifu(p,(n)-l)~alph(r(u))thensuf(u,p,(n)- 
l)=lk(k>O), and m[suf(u,p,(n)-l)]=e. 

(ii) Suppose u(pu(n)-l)=O. If u(pll(n)-l)Ealph(a(u)) then suf(u,pU(n)- 
l)=lOk(k>O), and m[suf(u,p,(n)-l)]=O. 

(iii) Suppose u(p,,(I)-1)=0 and u(p,(I+l)-1)-l. We have u(p,(I))=l, 
nr,(I+l)=lkO(k~O), and suf(u,p,(Z)-l)=lk+‘O.suf(u,p,(l+l)). Then 

m[suf( u, p,(Z) - l)] = O.m[suf( u, pU( I + l))]. 
(iv) Suppose u(p,(I)-l)=u(p,(I+l)-l)=O. Then ar,(l+l)=Ol, 

suf(u,p,(l)-l)=lO.suf(u,p,(Z+l)-1) and 

m[suf(u,p,(I)-l)]=O.m[suf(u,p,(I+l)-l)]. 

(v) Suppose u(pti(Z)-l)=u(pU(Z+l)-l)=O. Then ar,(l+l)=OOkl (k>O), 
suf(u,pU(I)-l)=lOOkl.suf(u,p,(l+l)) and 

m[suf(u,p,(Z)-l)]=Ol.m[suf(u,p,(Z+l)-11. Cl 

les. Here I=l,p,(Z)-1=2, u(p,(Z)-l)=Oand w~{O,l}*. 
(i) u=OOl,m[suf(u,2)]=m[l]=~; u=OOl.l, m[suf(u,2)]=m[ll]=e. 

(ii) u=OOl.O, m[suf(u,2)]=m[lO]=O. 
(iii) u =001.llO.w, m[suf(u, 2)] = m[lllO.w] =O.m[w]. 
(iv) u =OOl.Ol.w, m[suf(u, 2)] = m[lOl.w] =O.m[l.w]. 

( ) v‘ u = OOl.OOl.w, m[suf( u, 2)] = m[ 1001.w] = Ol.m[ w]. 

otations. Given I E { 1, . . . , (I) (resp. G,,(I)) denotes the smallest J 
such that J> I and u(p”(J)-l)fu(p,(Z)-1) (resp. lar,(J)1>2). For every IE 

(1 ,...,ImbllL let W~)=U~J~lm[ulllu(~~(J)-1)+u(~~(~)-l)~ and 
~~(Z)={I<J~~m[u]~/~ar,(J)~>2}.If~~(I)#OthenF,(I)=min~~(Z)otherwise 
FU( I) = a, if &(I) # 0 then G,(I) = min V&(I) otherwise G,(Z) = 00. 

u = 01.001.110.10.0 

F,(l)=3, Gll(l)=2, F”(2) = 3, G”(2) = 3, 

F,(3) = G,,(3) = 00, F,(4) = G,(4) = 00. 

The next lemma shows that m[suf( u, pU( I) - l)] can be written aPbq.suf(m[riJ, K) 
with a, 6 E (0, 1) and a = u( p,( I) - 1). The values of p, q and K depend on F,(I) 
and G,(I). Let us see that first on examples. 

ere I=l,p,(l)-1=1 and u(p,(l)-l)=O: 
(1) u=Ol.O1.11O.w, F,(l)=G,(1)=3. We have F,(l)sG,(l)and 

M.suf(u, P,(l) - VI =m[10.1110.w]=02.m[w]=02.suf(m[u],3). 

(2) u = 01.01.OOl.w, G,,(l) =3, F,(1)> 3. We have G,,(l)< 

~b~f(~,P”w-1#= .Ol.w] ==O*l.suf(m[u], 3). 



Distinguishing bit-strings by subsequences 41 

(3) u =01.01.111, 

F,(l)=G,,(l)=~ and u(p,(l)-l)@alph(r(u)), 

m[suf(u,p,(l)-1)]=m[10.1111]=0. 

(4) u = 01.01.000, 

F,(l)=G,,(l)=o~ and u(p,(l)-l)calph(r(u)), 

m[suf(u, pU( 1) - 1)] = m[ lO.lO.OO] = 02. 

Lemlrma7. I,etubeastringover{0,l)suchthat~m[u]~=nandn>O.LetI~{l,...,n} 
and a = u(p,(I) - 1). 

(i) IfF,(I)#a and F,(I)sG,((I) then 

m[suf(u,p,(I)-l)]=aJ-’ suf(m[u], J) where J = F,(I). 

(ii) If G,,(I)<F,(I) then m[suf(u,p,((I)-l)]=aJ-‘b.suf(m[u], J) where J= 
G,,(I) and b = u( pU( I)). 

(iii) IfF,(I)= G,,(I)=00 and aealph(r(u)) then m[suf(u,p,((I)-l)]=a”-‘. 
(iv) If 6;;(I) = G,,(I) = 00 and aEal@h(r(u)) then m[suf(u,p,(I)-1)] = a”-‘+‘. 

Proof 

(i) m[suf(u,p,(l)-l)]=aJ-r-l .m[suf(u,p,(J-1)-l] (Lemma6(iv)) 

= aJ-‘.m[suf( u, p,(J))] (Lemma 6( iii)) 

= a J-‘.suf( m[ u], J), 

(ii) m[suf(u, pU( I) - 1)] = aJ-?m[suf(u, p,(J - 1) - l)] (Lemma 6(iv)) 

= aJ-tb.m[suf( u, p,(J))] (Lemma 6(v)) 

= aJ-‘b.suf( m[u], J), 

(iii) m[suf(u, p,( I) - l)] = a”-‘.ln[suf(u, p,(n) - 01 (Lemma 6( iv)) 

= n-P 
Q 9 (Lemma 6(i)) 

( ) iv m[suf(u,p,(I)-l)]=a”-‘.m[suf(u,p,(n)-1)] (Lemma 6( iv)) 

a n-I+1 = (Lemma 6(ii)). Cl 

Given two bit-strings u and v such that Im[u]l = Im[v]l = n with n > 0 



42 J.-J. Hebrard 

As a consequence of Lemma 7 the length of disting(Z) can be easily calculated. 

Let u and v be twt, bit-strings such that Im[u]l = Im[ v]l = n with n > 0 

and lar,( I)1 < lar,(Z)l for some I E (1,. . . , n). Then 

n + lar,( Zjl - 1 
Idismda = In + lar”(z)l 

if arch Z satisjes 9, 

otherwise. 

=Z-l+(ar,(Z)(-l+Im[suf(u,p,(Z)-ljl[+l. 

It follows from Lemma 7 that Im[suf( u, pU( I) - l)]( = n - Z if arch Z satisfies 9 and 
lnz[suf(u,p,(Z)-l)]I=n-I+1 otherwise. El 

The next proposition shows that two bit-strings u and v such tir,at m[ u] = m[ v] 
and alph( r( u)) = alph( r(v)), are distinguished by disting( I). Consider the following 
example: 

u = 110.01.1110.1, m[u]=OlO,alph(r(u))={11, 

vu= 1110.01.110.11, m[v]=010,alph(r(v))={1}, 

larJOl< lar,Wl, disting( 1) = 11100 divides 2) and does not divide u: 

u=i 1; 0.0 1 . 111 Q. l_ 

v=l11Q.Q 1 . 110.11 

larJ3)1< b-,(3)1, disting(3) = 011110 divides u and does not divide v: 

u=l 1 Q . 0 1 .I1 IQ.1 

v=111~.0~.~~0.~1_ 

Notice that u and v can also be distinguished by their rests provided that Ir(u)l # 
~r(v)~.Intheaboveexamplewehavc~r(~~~~~r(v)~andthestringm[u].r(u).l =OlOll 
divides v but does not divide u. 

ositio Let u and v be strings over (0,1) such that m[u]= m[v] and 
alph(r(u))=a&h(r(v)). Let n=Im[u]\=ml[v]l. 

(i) If n>O and there exists Ze{l,..., n} such that lar,(Z)l c lar,(Z)l, then 
disting( I) divides v but does not divide u. 

(ii) If Ir(u)l<lr(v)l d an a E alph(r( v)), then m[u].r(u).a divides v but does not 
divide u. 



Distinguishing bit-strings by subsequences 43 

(i) disting(I)=pref(m[u], I-l).c,(I).m[suf(u,p,(I)-l)].a with aE 
(0, l}\alph( u&l)). It follows from Proposition 2 that disting(I) does not divide u 

since a E (0, 1) \ alph( r(suf( u, p,(I) - 1))). Let us show that disting( I) divides v. We 
can suppose c,(I) = Ok, ar,(I) = Ok1 and ar,(J) = Ok? with I> 0. We have 
pref(v,p,(I-l)+k)=ar,(l)... ar,( I - l).c,( I) and therefore pref(m[u], I - 
l).c,(( I) divides pref( v, po( I - 1) + k). We must now show that m[suf( u, p,,(I) - l)].a 
divides suf( v, p,( I - 1) + k). Three cases must be considered. 

Case 1. arch I satisfies 9? It follows from Lemma 7(i) and (iii) that 

Im[sufb, p,(I) - l)l=al =n-I+l.lm[suf(v,p,(I-l)+k)]l 

= ImW’l.suf(v, p,(l))ll = Il.mbuf(v, p,(Wll 

= Il.suf(m[v], I)1 = n -I+ 1. 

Then m[suf( u, pU( I) - l)].a divides suf( v, pU( I - 1) + k) (Proposition 1). 
Case 2. G,(I) c F,(I). It follows from Lemma ‘/(ii) that 

m[suf( 14, pU( I) - l)].a = 0’~‘l.suf( m[ u], J).a 

with 

J=G,(l).suf(v,p,(l-l)+k)=O’l.ar,(l+l)...ar,(J-l).suf(v,p,(J-I)). 

For every Ke{I+l,... , J-l}, ar,(K)=Ol and ar,(K) has the form 041 (q>O) 
since m[u] = m[v]. Then O’-‘1 divides O’l.ar,(l+ 1) . . . ar,(J - 1). It follows from 

that suf( m[ u], J).a divides suf( v, p,( J - 1)) since Isuf( m[ u], J).al = 
Ip+uf(v,p,(J-1))]1=Isuf(m[v], J-l)(=n-J+l. 

G,(I) = 00 and u( p,( I) - 1) E alph( r( u)). It follows from Lemma 
7(iv) that m[suf( u, p,(I) - l)].a = O”-l+l.a. Since u( p,( I) - 1) E alph( r( u)) we have 

alph( r( u)) = alph( r( v)) = {0}, 

with q > 0 and r > 0. The string On-‘+’ divides O’l.ar,( H + 1) . r . ar,( n - l).04 and a 
divides l(2’. 

(ii) We have r(v) = r(u).ak with k > 0. It is readily seen that m[u].r(u).a does 
not divide u. It divides v since m[u] = m[v]. Cl 

Given u and v (u # v) such that alph( 
now prove that either there exists an isting( 

(2.4, v) contains a string w istinguishes u and v by their rests. 



44 J.-J. Hebrard 

roposition 10. Let u and v be two different strings over (0, 1) such that m[ u] = m[ v] 
and alph( r( u)) = alph( r( v)) = 92. Let n = Im[ u]) = Im[ v]l. At least one of thefollowing 
conditions holds. 

(i) n>O and there exists ZE(~,. . ., n} such that lar,( Z)I # lar,( I)(, disting( I) 

belongs to D( u, v) and d (u, v) = Idisting( Z>I - 1. 

(ii) 144 # I44 and d(u, v) = n +min(lr(u)l, [r(v)l). Zf Ir(u)l< Ir(v)l then 
m[u].r(u).a E D(u, v) otherwise m[v].r(v).a E D(u, v), with a E 9. 

Proof. Let h E D( u, v). Necessarily lhla 2. The string h( 1) . . . h(l h( - 1) divides u 
and v. Let s (resp. t) be the first occurrence of h(1). . . h(lhl- 1) in u (resp. v); 
h(1). . . h(lhl-l)=u(s(l)). . . u(s(lhl-1))= v(t(1)) . . . v(t(lhl-1)). For every ZE 

11 V***V n} let N(u, I, h), N( v, Z, h), R(u, h) and R(v, h) denote the following sets: 

N(u, I, h)={s(l) ,..., s((h]-l))n{p,(I-l)+l,...,p,(Z)}, 

N(v, I, h)={t(l) ,..., t(lhl- 1)) n {p,(Z - 1) + 1,. l l 9 bob, 

R(u, h) ={s(l), . . . , s(lhl- l)Mp,(n)+ 1,. l .v lull, 

R(v,h)={t(l),..., t(l+-l)~n{P,(n)+1, l l l 9 lvl>- 
Card(N(u, I, h)) (resp. Card(R(u, h))) indicates how many times h(1). . . h((hl-1) 
“touches” the Zth arch (resp. the rest) of u. 

Casel. n=Oor[n>OandVZE{l,..., n}, Card( N( u, I, h)) = Card( N( v, I, h))]. 
We have card( R( u, h)) = card( R(v, h)). R(u, h) and R(v, h) are not empty, other- 
wise h would not distinguish u and v. Let R( u, h) = {s(r), . . . , s( 1 hi - 1)) and 
R(v,h)={t(r),..., t(lhl - 1)). The string h( 1) . . . h(r-1) divides pref(u,p,,(n)) and 
pref( v, pV( n)). The string h( 1) . . . h(r) divides neither pref( u, pU ( n )) nor 
pref( v, p,(n)) be-nue= ba 3b s and t are first occurrences. Suppose h divides v and does 
not divide u. Then h(r) . . . h(lhl) divides r(v). If we had Ir(u)la Ir(v)l, h(r). . . h(lhl) 
would divide r(u) and h would divide u. Hence Ir(u)l c ir(v)l. Let a E 9. We have 
r(v) = r(u).a9(q>0) and h(r). . . h(lhl) = r(u).a. Since h(1). . . h(r) does not divide 

pref(u, ZM)) we have r > Im[pref( u, p,(n))]1 (Proposition 1). Now 

m[pref(u, p,(n))1 = m[u], then r> lm[u]l and Ihlalm[u].r(u).al. It follows from 
Proposition 9(ii) that m( u).r( u).a distinguishes u and v. Then m( u).r( u).a E D( u, v) 
since h E D( u, v), and condition (ii) holds. 

Case 2. n>O and {ZE{~,..., n}lCard(N(u, I, h))#Card(N(v, I, h))}#0. 
Let J=min{ZE(l,.... n}lCard(N(u, I, h))fCard(N(v, I, h))}, N(u,J, h)= 

{s(r), ‘. l ,s(r+p)) and N(v,J, h)={t(r),.. ., t(r+q)}. The string h(l)... h(r-1) 
divides pref( u, p,(J - 1)) and pref( v, p&Z - 1)); h (1) . . . h(r) divides neither 
pref(u, p,(J - 1)) nor pref( v, p,(.Z - 1)) since s and t are first occurrences. Suppose 
p < q. Then h(r) l . . h(r+p+ 1) divides ar,(J) but does not divide at&Z) since s is 
the first occurrerrct of h(1). . . h((hl- 1) in 2. Therefore we have lar,(J)I<lar,(.Z)I, 
h(r). . .h(r+pb=c,(J), s(r+p)=p,(J)-1 and t(r+p)spJ.Z)-2. 

disting(.Z) = pref( m[ u], .Z - l).c,(.Z).m[suf( u, p,(J) - 1)l.a 



Distinguishing bit-strings by subsequences 45 

with a E (0, 1) \ aiph( u( lul>). It follows from Proposition 9 that disting(J) distin- 
guishes u and v. We show that lhl a ldisting(J)I. 

(a) The string h(1) . . . h(r) does not divide pref(u,p,(J - 1)). NOW 

Im[plef(u,p,(J-l))](=(pref(m[z&?-l)I=J-1. Therefore r-laJ-1 (Proposi- 
tion 1). 

(b) Let us show now that Ih(r+p+l). . e h(lhl)l>lm[suf(u,p,(J)-l)]l: 
If h does not divide u then h(r+p+l). . . h(lhl) does not divide suf(u, p,(J) - 1), 
and therefore Ih(r+p+l) . . . h(lhl)l> lm[suf(u, p,(J) - l)]( (Proposition 1). 
If h divides u then it does not divide v and h( r + p + 1) . . , h( 1 hl) does not divide 
suf(u, t(r+p)). Then Ih(r+p+ 1) . . . h(lhf)l> Im[suf(v, t(r+p))]j (Proposition 1). 
We have 

since 

since 

Now 

thus 

m[suf( v, t(r +p))] = m[suf( v, p,(J - l))] 

t(r+p)sp,(J)-2. 

em4 PLU - WI = mCsm4 PlAJ - 1))l 

m[u] = m[v]. 

Imbf(u, p,(J - 1))ll~ Ids&4 p,(J) - VII, 

(W-r-p+ 0.. . h(lhl)l> Imbuflu, p,(J)- Oli. 

Finallywehaver-l~J-l,h(r)...h(r+p)=c,(J)and~h(r+p+l)...h(~h~)~~ 
Im[suf(u, p,(J) - I)].u~. Thus lhl a disting(l)l, disting(J) E D(u, v) and condition (i) 
holds. El 

4. Algorit 

In this section u and v are bit-strings. From the above propositions we obtain a 
linear on-line algorithm which computes d(u, v). It onIy requires one reading of u 
and v and a constant amount of extra space. Let 

fl = min(l~bll,l~bll~, r = min#Wl,lrWlh 
Diff={IE{l,..., n1 I lar,Wl # lardOIL 

={kDifflVJE iff, min(lar,(l)l,lar,(l)l) s min(lar,(J)l,larV(J)[)), 

lmin = min( lar,( I)l,iar,( Z)l) with I E M, 

= (1 E 



46 i’ orard 

We can summarize the results of the pre Ti. Gng sections by the following functional 
statement: 

d(u, v)= 

if(m[u]#m[v]oralph(r(u))falph(v(v)))thenn (Propositions 3,4,5) 

elseifDiti=(IIthen(ifIr(u)(=Ir(v)lthen~elsen+r) (Proposition 10) 

elseif (Ir(u)(# Ir(v)l and rslmin-2) then n+r (Propositions 8, 10) 

elseif P#oOhen n+lmin-2 (Propositions 8, 10) 

else n+lmin- 1. (Propositions 8, 10) 

Examples. (i) u = 110.01.1110.1, v= 1110.01.110.11,m[u]= m[v]=OlO,alph(r(u))= 

alph(r(v)) = {I), n =3,r=1,Diff={1,3},M={1,3},lmin=3,r~lmin-2,d(u,v)= 
n+r=4, m[u].r(u).l =OlOlle D(u, v). 

(ii) u = 110.01.1110.11, v = 1110.01.110.111, m[u]= m[v] =OlO, alph(r(u)) = 
alph(r(v)) = {l}, n =3, r=2, Diff={1,3}, M ={1,3},lmin=3, r>lmin-2, P=(l), 
d(u, v)=n+lmin-2=4, disting(l)=lllOOE D(u, v). 

(iii) u = 10.01.001.10.00, v = 10.001.0001.10.0, m[u] = m[v] =OllO, alph(r(u)) = 
alph(r(v))={O}, n=4, r=l, Diff={2,3), M=(2), lmin=2, r>lmin-2, P=0, 
d (u, v) = n + lmin - I= 5, disting(2) = 000101 E D( u, v). 

In order to compute d (u, v) we must merely calculate n, r, lmin, and determine 
whether m[u]=m[v], alph(r(u))=alph(r(v)), Ir(u)l=lr(v)l, ‘DifW0 and P#0. 
This is done by the following algorithm. 

The algorithm uses the procedure NEXTARCH. When NEXTARCH( u) is called 
it reads the next arch of u. If a”6 (k > 0) is read, the variables bit-arch[ u], length- 
arch[ u] and bool-arch[ u] are respectively bound to a, k + 1 and true. !f the rest ak 
(k 3 0) is read the variables bit-arch[ u], length-arch[ u] and bool-arch[ u] are respec- 
tively bound to a, k and false (if k = 0 the value of bit-arch[ u] is indeterminate). 
Notice that procedure NEXTARCH can be implemented in such a way that it only 
needs a constant memory. The algorithm runs through u and v using NEXTARCH. 

The variable lmin is initially bound to 00. If immediately after arch I has been 
read the conditions min( length-arch[ u],length-arch[ v]) < lmin and length-arch[ u] # 
length-arch[ v] hold, the value of lmin is changed by the assignment lmin:= 
min( length-arch[ u],length-arch[ v]). In order to determine whether arch I satisfies 
9 we use the variables inf, bit and p which are updated by calling procedure 
UPDATE. Each time UPDATE is called the following assignments are performed: 
if length-arch[ u] < length-arch[ v] then inf := u else inf := v, bit := bit-arch[inf] and 

P := ind (indeterminate). The value of p remains “ind” until it can be decided 
whether arch I satisfies 9, “true” (resp. “false”) is then assigned to p if arch I does 

9 (resp. does n fy 9). This is done 
res for each arc the current value 

tests whether length-arch[inf] > 2. 



The procedure UPDATE is also called when the value ofp is fat 

min(length-arch[ u],length-arch[ v]) = 1 in and length-arch[ uj + 
hold, because even if lmin is not changed, the values of inf and bit mi 
and p might become true. 

When the algorithm terminates we obtain the follow;ng bindings* 

p1 is bound to min(lm[ u]l,lm[ v]l), 
bool-m is bound to the boolean value of m[ u] = nz[ v]. 
If nl[u] = m[v] then: 
r is bound to min( Ir(u)l,lr( v)l), 
boo14 is bound to the value of Ir(u)l = Ir(v)[, 
bool-r is bound to the value of alph( v( u)) = alph( r( v)), 
bool-Diff is bound to the value of Difi f 0, 
If m[u] = m[ v] and Dif # 0 then: 
lmin is bound to min((ar,( I)l,lar,( ])I) with I E 
p is bound to the value of P # 0. 

procedure UPDATE; 
begin 

if length-arch[ u] < length-arch[ v] t en inf:= u else inf := v; 
bit := bit-arch[infj; p := ind 

end; {UPDATE} 

procedure COMPUTE-P; 
begin 

if bit-arch[inf] # bit then p := true 
else if length-arch[inf] > 2 then p := false; 

end; {COMPUTE-P) 

Algorithm 
begin 
n := 0; lmin := CO; p := false; NEXTARCH( u); NEXTARCH( v); 

hile boul-arch[ u] and bool-arch[ v] an bit-arch[ ul = bit-arch1 vl 
n :=n+l; 

u] # length-arch[ v] 
I-arch[ u], length-arch[ v]) < lmin t 

lmin := min( length-arch[ u], length-arch[ v]); 

in( length-arch[ u], lengt 



48 J. -J. Hebrard 

ool-arch[u] and not bool-arch[ v] t {here mb3 = mb3) 

bool-m := true; 
r := min(length-arch[ u], length-arch[ v]); 

th-arch[ u] = length-arch[ v] 
bool-rl := true else bool-rl := false; 
0 and bool-rl) or (r # 0 and bit-arch[u] = bit-arch[ v]) 

err bool-r := true else bool-r := false; 
f 00 then bool-Diff := true ZIse bool-Diff :- false; 

length-arch[inf] = 0 or bit # bit-arch[inf] then p := true else p := false 
e 

else 
egin {here m[ u] # m[ v]} 
bool-m := false; 

e bool-arch[ u] and bool-arch[ v] dcr 
egin II := n + 1; NEXTARCH( u); NEXTARCH end 

erPd.{algorithm} 

ine (1): if the value of p is still “ind” necessarily bit-arch[inf] = bit and 
length-arch[inf] = 2 (otherwise COMPIJTEJ would have assigned “true” or 
“false” to pt. Therefort if length-arch[ u] # length-arch[ v], min(length- 
arch[ r-&length-arch[ vj) = lmin and p = ind it is useless to call UPDATE (inf, bit 
and p would not be changed). 

It follows from Propositions 3, 4, 5, 10 and Lemma 7 that the above algorithm 
e straightforwardly adapted to compute a string of D( u, v). The main difference 

is that the models m[ u] and m[v] must be explicitly computed and the required 
amount of extra space becomes 0( d( u, v)). 

The arch factorization provides an efficient method to compute d(u, v) when u 
and v are bit-strings. One may ask whether this method could be generalized to any 
pair of strings. We first notice that Propositions 3 and 4 hold even if u and v are 

trings, thus d(u, v) can always be computed if lm[u]l Z Im[v]l or 
Im[ v]I and alph( r( u)) = 

e Imbll= Im[vlI= *, 
-strings we can 



Distinguishing bit-strings by subsequences 49 

that d (u, v) = n (Proposition S), but this result does not hold if card(A) > 2 (see 
the remark following Proposition 5). In fact the proof of Proposition 5 strongly 
depends on the cardinality of A. In order to compute d( 2, v) when card(A) > 2, 
the analysL of u and v must be less coarse than the one provided by the mere 
application of arch factorization. ‘Ihe way for future work could be to compute the 
arch factorization of u and v, and then of every arch of u and v, and so on. 

HI 

PI 

[31 
WI 

PI 

WI 

171 

J.J. Hebrard and M. Crochemore, Calcul de la distance par les sous-mots, RAIIZO Inform 7Gor. 
Appl. 20(4) (1986) 441-456. 
SK. Kumar and C.P. Rangan, A linear space algorithm for the LCS problem, Acta Inform. 24 (1987) 

353-362. 
Lothaire, Combinatorics on Words (Cambridge University Press, 1983). 
W.J. Masek and M.S. Paterson, A faster algorithm computing string edit distances, J. Comput. System 
Sci. 20 (1980) 18-31. 
N. Nakatsu, Y. Kambayashi and S. Yajima, A longest common subsequence algorithm suitable for 
similar test strings, Actu Inform. 18 ( 1982) 17 l- 179. 
D. Sankoff and J.B. Kruskal, Time Warps, String Edits and Macromolecules: the Theory and Practice 
of Sequence Comparison (Addison-Wesley, Reading, MA, 1983). 
I. Simon, An algorithm to distinguish words efficiently by their subwords, 1984, unpublished. 


