a finite alphabet

Max Landsberg

Emster Str. 74c, D-58093 Hagen, Germany
Received 4 February 1999; accepted 4 October 1999

Abstract

In this note, first there are established simple formulas enabling the calculation of feedback functions that generate a cycle of given length over a given finite field. A theorem communicated in the appendix says that feedback functions producing cycles over a finite field can also be utilized for constructing general feedback functions yielding cycles (in particular, de Bruijn cycles) over an arbitrarily given finite alphabet. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Feedback function; Shift register sequence; De Bruijn sequence

For the design of a shift register that is to produce a cycle of given length, the determination of a feedback function generating a cycle of the desired length is of some significance. While there are numerous papers on cycles - in particular, on de Bruijn cycles - (see the list of references in $[1,2]$) only little is known about the calculation of feedback functions that generate such cycles. For the binary case, some investigations have been carried out (see, e.g., $[2,3,5]$).

In this note, first general formulas are given which enable feedback functions generating cycles of any given length (over a given finite field) to be calculated in a particular simple way. The expressions obtained have an especially simple structure for feedback functions yielding de Bruijn cycles (thus also de Bruijn sequences).

Let E be a (nonempty) finite set and let $\mathrm{M}^{n}(E)$ denote the set of all words of length n over the alphabet E. The first letter of a word $W \in \mathrm{M}^{n}(E)$ is denoted by $u(W)$. Two words $V=a_{1} a_{2} \ldots a_{n}, W=b_{1} b_{2} \ldots b_{n} \in \mathrm{M}^{n}(E)$ are said to be conjugate if and only if $a_{j}=b_{j}(j=2,3, \ldots, n)$ and $a_{1} \neq b_{1}$. Let $V=a_{1} a_{2} \ldots a_{n}, W=b_{1} b_{2} \ldots b_{n} \in \mathbf{M}^{n}(E)$. The fundamental shift relation $V \rightarrow W$ is defined by

$$
V \rightarrow W: \Leftrightarrow a_{2} a_{3} \ldots a_{n}=b_{1} b_{2} \ldots b_{n-1} .
$$

A sequence $C=V_{1}, V_{2}, \ldots, V_{k}$ of words from $\mathrm{M}^{n}(E)$ is called a k-cycle (cycle of length k) in $\mathbf{M}^{n}(E)$ (or, alternatively, a k-cycle of order n over E), iff the V_{j} are pairwise
distinct and the relations $V_{k} \rightarrow V_{1}, V_{j} \rightarrow V_{j+1}(j=1,2, \ldots, k-1)$ hold. Cycles C, C^{\prime} in $\mathrm{M}^{n}(E)$ are said to be adjacent iff they are disjoint and there are words $V \in C, W \in C^{\prime}$ that are conjugate. A cycle $V_{1}, V_{2}, \ldots, V_{N}$ in $\mathrm{M}^{n}(E)$, where $N=(\operatorname{card} E)^{n}$, is called a de Bruijn cycle, the "corresponding ring sequence" $u\left(V_{1}\right), u\left(V_{2}\right), \ldots, u\left(V_{N}\right)$ is called a de Bruijn sequence. Because of their interesting properties and numerous applications, de Bruijn sequences have been exhaustively investigated; in particular, there are remarkable algorithms for generating such sequences (see Fredricksen's [1] comprehensive report). A mapping from $\mathrm{M}^{n}(E)$ into E is called a feedback function in $\mathrm{M}^{n}(E)$. Let f be a feedback function in $\mathrm{M}^{n}(E)$ and assign to each word $a_{1} a_{2} \ldots a_{n} \in \mathrm{M}^{n}(E)$ the word $a_{2} a_{3} \ldots a_{n} f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ to obtain a mapping F from $\mathrm{M}^{n}(E)$ into $\mathrm{M}^{n}(E)$. The function f is said to be nonsingular iff F is injective. In what follows, we assume that all feedback functions to be considered are nonsingular. Then, for every initial word $V \in \mathbf{M}^{n}(E)$, there is a k such that $C=V, F(V), F^{2}(V), \ldots, F^{k-1}(V)$ is a cycle. The cycle C and the corresponding ring sequence $u(V), u(F(V)), u\left(F^{2}(V)\right), \ldots, u\left(F^{k-1}(V)\right)$ are said to be generated by f.

The important operations of splitting a cycle into two cycles, and of joining two cycles to form a single cycle, have efficiently been utilized for a long time already. Properties of certain feedback functions reflected in these operations are described in Lemmas 1 and 2 (for the binary case, see, e.g., $[3,5]$). These propositions are verified using the well-known fact that $a \in G F(q)\left(q=p^{m}\right.$ where p is a prime) and $a \neq 0$ imply $a^{q-1}=1$. In what follows, let $\mathrm{M}_{q}^{n}:=\mathrm{M}^{n}(G F(q))$.

Lemma 1. Let f be a feedback function in \mathbf{M}_{q}^{n} that generates a cycle C_{1} of length L_{1} and a cycle C_{2} of length L_{2} such that C_{1} and C_{2} are adjacent, implying that there is a word $W=A a_{1} a_{2} \ldots a_{n-1}$ in C_{1} and a word $V=B a_{1} a_{2} \ldots a_{n-1}$ in C_{2}. Let $P=f\left(A, a_{1}, a_{2}, \ldots, a_{n-1}\right), Q=f\left(B, a_{1}, a_{2}, \ldots, a_{n-1}\right)$. Then the function f_{0} defined by

$$
\begin{align*}
f_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & f\left(x_{1}, x_{2}, \ldots, x_{n}\right)+(P-Q)\left(\left(x_{1}-A\right)^{q-1}-\left(x_{1}-B\right)^{q-1}\right) \\
& \times \prod_{j=2}^{n}\left(1-\left(x_{j}-a_{j-1}\right)^{q-1}\right) \tag{*}
\end{align*}
$$

is a feedback function in M_{q}^{n} which amalgamates cycles C_{1}, C_{2} into a single cycle of length $L_{1}+L_{2}$. Those cycles of f that are distinct from C_{1}, C_{2} are not changed by f_{0} (thus f_{0} is nonsingular).

Lemma 2. Let f be a feedback function in \mathbf{M}_{q}^{n} generating the cycle $C=W_{1}, W_{2}, \ldots, W_{N}$. Assume that there are a $j \in\{1,2, \ldots, N\}$ and a k satisfying $1 \leqslant k \leqslant N-1$ such that W_{j} and W_{j+k} are conjugate. Let $W_{j}=A a_{1} a_{2} \ldots a_{n-1}, W_{j+k}=B a_{1} a_{2} \ldots a_{n-1}$; set $P=f\left(A, a_{1}, a_{2}, \ldots, a_{n-1}\right), Q=f\left(B, a_{1}, a_{2}, \ldots, a_{n-1}\right)$. Then the function f_{0} from formula $(*)$ (Lemma 1) is a feedback function in \mathbf{M}_{q}^{n} generating the cycle $C_{1}=W_{j+1}, W_{j+2}, \ldots, W_{j+k}$ determined by the pair W_{j}, W_{j+k} (subscripts to be reduced $\bmod N)$. For the initial word W_{j}, the function f_{0} yields a cycle C_{2} of length $N-k$. Cycles C_{1}, C_{2} are adjacent, their amalgamation is the cycle C. Those cycles of f that are distinct from C are not changed by f_{0} (thus f_{0} is nonsingular).

Definition. Let $C=W_{1}, W_{2}, \ldots, W_{k}$ be a cycle in M_{q}^{n} and assume that, for some r and s satisfying $r \in\{1,2, \ldots, k\}$ and $0 \leqslant s \leqslant k-1, C^{\prime}=W_{r}, W_{r+1}, \ldots, W_{r+s}$ is also a cycle. Then C^{\prime} is called a subcycle of C.

A feedback function f in \mathbf{M}_{q}^{n} is called linear iff $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=A_{1} x_{1}+$ $A_{2} x_{2}+\cdots+A_{n} x_{n}$ with some coefficients A_{j} from $\operatorname{GF}(q)$.

Lemma 3. Let C be a cycle of length $q^{n}-1$ in M_{q}^{n} that can be generated by some linear feedback function. Then, for each k satisfying $1 \leqslant k \leqslant q^{n}-1, C$ has a subcycle of length k.

The proof of Lemma 3 is omitted since the remarkably brief and constructive proof for the binary case $q=2$ (see [2]) immediately - mutatis mutandis - extends to arbitrary sets M_{q}^{n} (however, see the following remark).

Remark. Let cycle C in Lemma 3 have the form $C=W_{1}, W_{2}, \ldots, W_{N}$ where $N=q^{n}-1$. Consider the corresponding ring sequence $g=u\left(W_{1}\right), u\left(W_{2}\right), \ldots, u\left(W_{N}\right)$ and perform a cyclic permutation such that $-u\left(W_{k+1}\right)$ occupies the first position $\left(1 \leqslant k \leqslant q^{n}-2\right)$. This operation results in the sequence $h=-u\left(W_{k+1}\right),-u\left(W_{k+2}\right), \ldots,-u\left(W_{k+N}\right)$, and by elementwise adding g and h we obtain $g+h=u\left(W_{1}\right)-u\left(W_{k+1}\right), u\left(W_{2}\right)-u\left(W_{k+2}\right)$, $\ldots, u\left(W_{N}\right)-u\left(W_{k+N}\right)$. In this sequence find the first nonzero element - say, $u\left(W_{r}\right)-$ $u\left(W_{k+r}\right)$ - followed by $n-1$ zeros. Then W_{r} and W_{k+r} are conjugate and W_{r+1}, W_{r+2}, \ldots, W_{r+k} is a cycle of length k. In addition, r is the smallest j such that W_{j} and W_{k+j} are conjugate. Let this number r be denoted by $m(k)$. Evidently, $m(k)$ can easily be computed (for large values of n or q, there exist simple computer programs, see [2] for the binary case $q=2$).

Lemmata 1 and 2 imply the following theorem.

Theorem 4. For given values n and $q=p^{m}$ let

$$
P(X)=X^{n}+K_{n-1} X^{n-1}+K_{n-2} X^{n-2}+\cdots+K_{1} X+K_{0}
$$

be a primitive polynomial of degree n with coefficients from $\operatorname{GF}(q)$. This polynomial determines the linear feedback function

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=-K_{0} x_{1}-K_{1} x_{2}-\cdots-K_{n-1} x_{n}
$$

in \mathbf{M}_{q}^{n}. Given an initial word $W_{1} \neq \underbrace{00 \ldots 0}_{n}$, the function L generates a cycle $C=W_{1}, W_{2}, \ldots, W_{N}$ of length $N=q^{n}-1$. Then the following propositions hold:
(a) If in C the word $\underbrace{00 \ldots 0}_{n}$ is inserted immediately after the word $1 \underbrace{0 \ldots \ldots 0}_{n-1}$
then, obviously, what results is a de Bruijn cycle. This cycle is generated by the feedback function

$$
f_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=L\left(x_{1}, x_{2}, \ldots, x_{n}\right)+K_{0}\left(x_{1}^{q-1}-\left(x_{1}-1\right)^{q-1}\right) \prod_{j=2}^{n}\left(1-x_{j}^{q-1}\right)
$$

(b) For a given k satisfying $1 \leqslant k \leqslant q^{n}-2$ let the words $W_{m(k)}$ and $W_{m(k)+k}$ in C have the forms

$$
\begin{aligned}
& W_{m(k)}=A^{(k)} a_{1}^{(k)} a_{2}^{(k)} \ldots a_{n-1}^{(k)}, \\
& W_{m(k)+k}=B^{(k)} a_{1}^{(k)} a_{2}^{(k)} \ldots a_{n-1}^{(k)}
\end{aligned}
$$

(see the above remark). Then $W_{m(k)+1}, W_{m(k)+2}, \ldots, W_{m(k)+k}$ is a cycle of length k generated by the feedback function

$$
\begin{aligned}
f_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & L\left(x_{1}, x_{2}, \ldots, x_{n}\right)+K_{0}\left(A^{(k)}-B^{(k)}\right)\left(\left(x_{1}-B^{(k)}\right)^{q-1}\right. \\
& \left.-\left(x_{1}-A^{(k)}\right)^{q-1}\right) \prod_{j=2}^{n}\left(1-\left(x_{j}-a_{j-1}^{(k)}\right)^{q-1}\right) .
\end{aligned}
$$

It is plausible that the formulas given in Theorem 4 will reduce to considerably simpler ones for the binary case $q=2$ (in this case, the feedback functions are Boole functions). In particular, the expressions obtained for feedback functions yielding de Bruijn cycles (thus also de Bruijn sequences) are extremely simple. The important case $q=2$ is explicitly treated in the following corollary.

Corollary. For $q=2$ and a given value n let

$$
P(X)=X^{n}+K_{n-1} X^{n-1}+K_{n-2} X^{n-2}+\cdots+K_{1} X+1
$$

be a primitive polynomial of degree n with coefficients from $\operatorname{GF}(2)$. This polynomial determines the linear feedback function

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+K_{1} x_{2}+K_{2} x_{3}+\cdots+K_{n-1} x_{n}
$$

in M_{2}^{n}. Given an initial word $W_{1} \neq \underbrace{00 \ldots 0}_{n}$, the function L generates a cycle $C=W_{1}, W_{2}, \ldots, W_{N}$ of length $N=2^{n}-1$. Then the following propositions hold:
(a) If in C the word $\underbrace{00 \ldots 0}_{n}$ is inserted immediately after the word $1 \underbrace{00 \ldots 0}_{n-1}$ then what results is a de Bruijn cycle. This cycle is generated by the feedback function

$$
f_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=L\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\overline{x_{2}} \overline{x_{3}} \ldots \overline{x_{n}}
$$

(where $\overline{0}=1, \overline{1}=0$).
(b) For a given k satisfying $1 \leqslant k \leqslant 2^{n}-2$ let the words $W_{m(k)}$ and $W_{m(k)+k}$ in C have the forms

$$
W_{m(k)}=A^{(k)} a_{1}^{(k)} a_{2}^{(k)} \ldots a_{n-1}^{(k)}
$$

$$
W_{m(k)+k}=B^{(k)} a_{1}^{(k)} a_{2}^{(k)} \ldots a_{n-1}^{(k)} .
$$

Then $W_{m(k)+1}, W_{m(k)+2}, \ldots, W_{m(k)+k}$ is a cycle of length k generated by the feedback function

$$
f_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=L\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(\overline{x_{2}}+a_{1}^{(k)}\right)\left(\overline{x_{3}}+a_{2}^{(k)}\right) \ldots\left(\overline{x_{n}}+a_{n-1}^{(k)}\right) .
$$

Example 1. Find in \mathbf{M}_{3}^{3} a feedback function that generates a de Bruijn sequence.
For $n=3, q=3$, the tables in Lidl/Niederreiter [4] give the primitive polynomial $P(X)=X^{3}+2 X+1$ which yields the linear feedback function $L\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}+x_{2}$ in M_{3}^{3}. With the initial word 111 (inserting 000 after 100), L determines a de Bruijn cycle with corresponding ring sequence (de Bruijn sequence)

$$
111000202122102220010121120
$$

which, according to Theorem 4(a), is generated by the feedback function

$$
\begin{aligned}
f_{0}\left(x_{1}, x_{2}, x_{3}\right) & =2 x_{1}+x_{2}+\left(x_{1}^{2}-\left(x_{1}-1\right)^{2}\right)\left(1-x_{2}^{2}\right)\left(1-x_{3}^{2}\right) \\
& =2+x_{1}+x_{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+2 x_{2}^{2} x_{3}^{2}+2 x_{1} x_{2}^{2} x_{3}^{2} .
\end{aligned}
$$

Example 2. Find in M_{3}^{3} a feedback function that yields a ring sequence of length $k=20$.

As in Example 1, we obtain the linear feedback function $L\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}+x_{2}$. With the initial word $W_{1}=111, L$ defines a cycle $W_{1}, W_{2}, \ldots, W_{N}\left(N=3^{3}-1=26\right)$ in M_{3}^{3}. Using the procedure described in the above remark, it is easy to find $m(20)=12$, thus $W_{m(20)}=W_{12}=102, W_{m(20)+20}=W_{32}=W_{6}=202$. With the initial word $W_{m(20)+1}=$ $W_{13}=022$ we find a cycle of length $k=20$ with corresponding ring sequence

$$
02220010121120111002
$$

which, according to Theorem 4(b), is generated by the feedback function

$$
\begin{aligned}
f_{0}\left(x_{1}, x_{2}, x_{3}\right) & =2 x_{1}+x_{2}+\left(\left(x_{1}-1\right)^{2}-\left(x_{1}-2\right)^{2}\right)\left(1-x_{2}^{2}\right)\left(1-\left(x_{3}-2\right)^{2}\right) \\
& =2 x_{1}+x_{2}+x_{1} x_{3}^{2}+2 x_{1} x_{3}+2 x_{1} x_{2}^{2} x_{3}^{2}+x_{1} x_{2}^{2} x_{3} .
\end{aligned}
$$

Appendix

A theorem to be quoted (without proof) in this appendix (Theorem 7) says that feedback functions generating cycles over a finite field can be used to construct also feedback functions yielding cycles (in particular, de Bruijn cycles) over an arbitrary given finite alphabet. For the representation of such functions certain 'projections' are of some significance.

For any integer $m \geqslant 2$, set $E_{m}:=\{0,1, \ldots, m-1\}$ and (more generally than above) $\mathrm{M}_{m}^{n}:=\mathrm{M}^{n}\left(E_{m}\right)$. In what follows, z will always denote an integer greater than 1 .

We need a simple number-theoretical proposition (the proof of which is omitted).

Lemma 5. Let $z=q_{1} q_{2} \ldots q_{r}$ be the decomposition of z into powers of pairwise distinct primes. Then for every $a \in E_{z}$ there is precisely one r-tuple $a_{1} a_{2} \ldots a_{r}$ with $a_{j} \in E_{q_{j}}(j=1,2, \ldots, r)$ such that

$$
a=a_{1} q_{2} q_{3} \ldots q_{r}+a_{2} q_{3} q_{4} \ldots q_{r}+\cdots+a_{r-1} q_{r}+a_{r}
$$

By virtue of Lemma 5, we may set $P_{j}(a):=a_{j}$ thus defining the r 'projections' $P_{j}: E_{z} \rightarrow E_{q_{j}}$. These mappings can easily be computed, as shown by the following lemma.

Lemma 6. Let, as in Lemma 5, $z=q_{1} q_{2} \ldots q_{r}$ and $a \in E_{z}$. 'Division with remainders' yields

$$
\begin{array}{ll}
a=a_{1} q_{2} q_{3} \ldots q_{r}+b_{1} & \left(b_{1}<q_{2} q_{3} \ldots q_{r}\right), \\
b_{1}=a_{2} q_{3} q_{4} \ldots q_{r}+b_{2} & \left(b_{2}<q_{3} q_{4} \ldots q_{r}\right), \\
\vdots \\
b_{r-2}=a_{r-1} q_{r}+b_{r-1} & \left(b_{r-1}<q_{r}\right) .
\end{array}
$$

Then $P_{j}(a)=a_{j}$ for $j=1,2, \ldots, r-1$ and $P_{r}(a)=b_{r-1}$.
Theorem 7. Let $z=q_{1} q_{2} \ldots q_{r}$ be the decomposition of z into powers of pairwise distinct primes, further let $k_{j} \in\left\{1,2, \ldots, q_{j}^{n}\right\}$ for $j=1,2, \ldots, r$ and $k=\operatorname{lcm}\left(k_{1}, k_{2}, \ldots, k_{r}\right)$. For $j=1,2, \ldots, r$, let f_{j} denote a feedback function in $\mathbf{M}_{q_{j}}^{n}$ generating a cycle C_{j} of length k_{j} and let $a_{1}^{(j)}, a_{2}^{(j)}, \ldots, a_{k_{j}}^{(j)}$ be the ring sequence corresponding to C_{j}.

Then the function

$$
\begin{align*}
F\left(z_{1}, z_{2}, \ldots, z_{n}\right)= & f_{1}\left(P_{1}\left(z_{1}\right), P_{1}\left(z_{2}\right), \ldots, P_{1}\left(z_{n}\right)\right) q_{2} q_{3} \ldots q_{r} \\
& +f_{2}\left(P_{2}\left(z_{1}\right), P_{2}\left(z_{2}\right), \ldots, P_{2}\left(z_{n}\right)\right) q_{3} q_{4} \ldots q_{r}+\cdots \\
& +f_{r-1}\left(P_{r-1}\left(z_{1}\right), P_{r-1}\left(z_{2}\right), \ldots, P_{r-1}\left(z_{n}\right)\right) q_{r} \\
& +f_{r}\left(P_{r}\left(z_{1}\right), P_{r}\left(z_{2}\right), \ldots, P_{r}\left(z_{n}\right)\right) \tag{1}
\end{align*}
$$

is a feedback function in \mathbf{M}_{z}^{n} that produces a cycle of length k. The ring sequence $s_{1}, s_{2}, \ldots, s_{k}$ corresponding to this cycle is given by

$$
\begin{equation*}
s_{j}=a_{j}^{(1)} q_{2} q_{3} \ldots q_{r}+a_{j}^{(2)} q_{3} q_{4} \ldots q_{r}+\cdots+a_{j}^{(r-1)} q_{r}+a_{j}^{(r)} \tag{2}
\end{equation*}
$$

for $j=1,2, \ldots, k$.
Evidently, also in sets M_{z}^{n} that are not derived from a field $\mathrm{GF}(z)$ (i.e., if z is not a prime power), feedback functions can be represented by means of a function equation.

Example 3. Let $n=3$ and $z=12$; find in M_{12}^{3} a feedback function that generates a de Bruijn sequence.

With $z=q_{1} q_{2}, q_{1}=2^{2}, q_{2}=3$, first the task reduces to finding in $\mathrm{M}_{2^{2}}^{3}$ and in M_{3}^{3} feedback functions that generate de Bruijn sequences. For $\mathrm{M}_{2^{2}}^{3}$, the primitive polynomial
$P(X)=X^{3}+X^{2}+3 X+2$ (with coefficients from $\operatorname{GF}\left(2^{2}\right)$) yields the linear feedback function $L\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}+3 x_{2}+x_{3}$ which - using the initial word 111 and inserting 000 after 100 - produces the de Bruijn sequence

$$
B_{1}=111013001 \ldots 232332
$$

of length $k_{1}=64$. By Theorem $4, B_{1}$ is generated by

$$
\begin{equation*}
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}+3 x_{2}+x_{3}+2\left(x_{1}^{3}+\left(x_{1}+1\right)^{3}\right)\left(1+x_{2}^{3}\right)\left(1+x_{3}^{3}\right) . \tag{3}
\end{equation*}
$$

According to Example 1, in M_{3}^{3} the feedback function

$$
\begin{equation*}
f_{2}\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}+x_{2}+\left(x_{1}^{2}-\left(x_{1}-1\right)^{2}\right)\left(1-x_{2}^{2}\right)\left(1-x_{3}^{2}\right) \tag{4}
\end{equation*}
$$

generates the de Bruijn sequence

$$
B_{2}=111000202 \ldots 121120
$$

of length $k_{2}=27$. By (2), from sequences B_{1}, B_{2} in M_{12}^{3} the de Bruijn sequence

$$
B_{3}=4440311024 \ldots 711710116
$$

(consisting of $12^{3}=1728$ terms) is obtained. According to (1), B_{3} is generated by the feedback function

$$
F\left(z_{1}, z_{2}, z_{3}\right)=3 f_{1}\left(P_{1}\left(z_{1}\right), P_{1}\left(z_{2}\right), P_{1}\left(z_{3}\right)\right)+f_{2}\left(P_{2}\left(z_{1}\right), P_{2}\left(z_{2}\right), P_{2}\left(z_{3}\right)\right),
$$

where f_{1}, f_{2} are given by (3) and (4).
The values of the function F given in formula (1) can easily be computed, e.g., calculate the value $F(9,8,11)$ for the function F of Example 3. From

$$
\begin{aligned}
& 9=P_{1}(9) q_{2}+P_{2}(9)=3 \cdot 3+0 \\
& 8=P_{1}(8) q_{2}+P_{2}(8)=2 \cdot 3+2 \\
& 11=P_{1}(11) q_{2}+P_{2}(11)=3 \cdot 3+2
\end{aligned}
$$

we obtain $F(9,8,11)=3 f_{1}(3,2,3)+f_{2}(0,2,2)=11$.
In many cases, a feedback function F in a set M_{z}^{n} can be constructed by means of formula (1) from linear feedback functions only. This means that, in these cases, F provides the scheme of a simple circuit consisting of linear shift registers.

Example 4. Let $n=4$ and $z=60$; find a feedback function F in M_{60}^{4} that generates a cycle of length $k=280$ (note that M_{60}^{4} consists of $60^{4}=12960000$ quadruples).

We have $z=q_{1} q_{2} q_{3}$ where $q_{1}=2^{2}, q_{2}=3, q_{3}=5$.
Let $Q_{1}(X)=X^{4}+X^{2}+X+1 \in F_{2^{2}}[X]$ (where F_{q} stands for $\mathrm{GF}(q)$). In $\mathrm{M}_{2^{2}}^{4}, Q_{1}$ generates the linear feedback function $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+x_{2}+x_{3}$ which, starting from the initial word 2233 , yields a cycle C_{1} of length $k_{1}=7$ with corresponding ring sequence 2233323 .

Let $Q_{2}(X)=X^{4}+X^{3}+X^{2}+X+1 \in F_{3}[X]$. In $\mathrm{M}_{3}^{4}, Q_{2}$ generates the linear feedback function $f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2 x_{1}+2 x_{2}+2 x_{3}+2 x_{4}$ which, with the initial word 1111 , yields a cycle C_{2} of length $k_{2}=5$ with corresponding ring sequence 11112.

Eventually, let $Q_{3}(X)=X^{4}+1 \in F_{5}[X]$. In $\mathrm{M}_{5}^{4}, Q_{3}$ generates the linear feedback function $f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=4 x_{1}$ which, with the initial word 1111 , yields a cycle C_{3} of length $k_{3}=8$ with corresponding ring sequence 11114444 .

Using the above results we obtain the feedback function

$$
\begin{aligned}
F\left(z_{1}, z_{2}, z_{3}, z_{4}\right)= & 15 f_{1}\left(P_{1}\left(z_{1}\right), P_{1}\left(z_{2}\right), P_{1}\left(z_{3}\right), P_{1}\left(z_{4}\right)\right) \\
& +5 f_{2}\left(P_{2}\left(z_{1}\right), P_{2}\left(z_{2}\right), P_{2}\left(z_{3}\right), P_{2}\left(z_{4}\right)\right) \\
& +f_{3}\left(P_{3}\left(z_{1}\right), P_{3}\left(z_{2}\right), P_{3}\left(z_{3}\right), P_{3}\left(z_{4}\right)\right) \\
= & 15\left(P_{1}\left(z_{1}\right)+P_{1}\left(z_{2}\right)+P_{1}\left(z_{3}\right)\right) \\
& +5\left(2 P_{2}\left(z_{1}\right)+2 P_{2}\left(z_{2}\right)+2 P_{2}\left(z_{3}\right)+2 P_{2}\left(z_{4}\right)\right) \\
& +4 P_{3}\left(z_{1}\right)
\end{aligned}
$$

in M_{60}^{4} which, with the initial word 36365151 , yields a cycle C of length $k=$ $\operatorname{lcm}(7,5,8)=280$ with corresponding ring sequence
$36365151593954 \ldots 5154543959$.

References

[1] H. Fredricksen, A survey of full length nonlinear shift register cycle algorithms, SIAM Rev. 24 (1982) 195-221.
[2] S.W. Golomb, Shift Register Sequences, Revised Edition, Aegean Park Press, Laguna Hills, CA, 1982.
[3] A. Lempel, On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers, IEEE Trans. Comput. C-19 (1970) 1204-1209.
[4] R. Lidl, H. Niederreiter, Introduction to Finite Fields and their Applications Cambridge University Press, Cambridge, 1986.
[5] M. Yoeli, Counting with nonlinear binary feedback shift registers, IEEE Trans.Electronic Comput. EC-12 (1963) 357-361.

