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Abstract

In this note, �rst there are established simple formulas enabling the calculation of feedback
functions that generate a cycle of given length over a given �nite �eld. A theorem communicated
in the appendix says that feedback functions producing cycles over a �nite �eld can also be uti-
lized for constructing general feedback functions yielding cycles (in particular, de Bruijn cycles)
over an arbitrarily given �nite alphabet. c© 2000 Elsevier Science B.V. All rights reserved.
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For the design of a shift register that is to produce a cycle of given length, the
determination of a feedback function generating a cycle of the desired length is of
some signi�cance. While there are numerous papers on cycles — in particular, on de
Bruijn cycles — (see the list of references in [1,2]) only little is known about the
calculation of feedback functions that generate such cycles. For the binary case, some
investigations have been carried out (see, e.g., [2,3,5]).
In this note, �rst general formulas are given which enable feedback functions gen-

erating cycles of any given length (over a given �nite �eld) to be calculated in a
particular simple way. The expressions obtained have an especially simple structure
for feedback functions yielding de Bruijn cycles (thus also de Bruijn sequences).
Let E be a (nonempty) �nite set and let Mn(E) denote the set of all words of length

n over the alphabet E. The �rst letter of a word W ∈Mn(E) is denoted by u(W ). Two
words V = a1a2 : : : an, W = b1b2 : : : bn ∈Mn(E) are said to be conjugate if and only if
aj = bj (j=2; 3; : : : ; n) and a1 6= b1. Let V = a1a2 : : : an, W = b1b2 : : : bn ∈Mn(E). The
fundamental shift relation V → W is de�ned by

V → W :⇔ a2a3 : : : an = b1b2 : : : bn−1:

A sequence C=V1; V2; : : : ; Vk of words from Mn(E) is called a k-cycle (cycle of length
k) in Mn(E) (or, alternatively, a k-cycle of order n over E), i� the Vj are pairwise
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distinct and the relations Vk → V1, Vj → Vj+1 (j=1; 2; : : : ; k−1) hold. Cycles C; C′ in
Mn(E) are said to be adjacent i� they are disjoint and there are words V ∈ C; W ∈ C′

that are conjugate. A cycle V1; V2; : : : ; VN in Mn(E), where N=(card E)n, is called a de
Bruijn cycle, the “corresponding ring sequence” u(V1); u(V2); : : : ; u(VN ) is called a
de Bruijn sequence. Because of their interesting properties and numerous applications,
de Bruijn sequences have been exhaustively investigated; in particular, there are re-
markable algorithms for generating such sequences (see Fredricksen’s [1] comprehen-
sive report). A mapping from Mn(E) into E is called a feedback function in Mn(E).
Let f be a feedback function in Mn(E) and assign to each word a1a2 : : : an ∈Mn(E) the
word a2a3 : : : anf(a1; a2; : : : ; an) to obtain a mapping F from Mn(E) into Mn(E). The
function f is said to be nonsingular i� F is injective. In what follows, we assume that
all feedback functions to be considered are nonsingular. Then, for every initial word
V ∈Mn(E), there is a k such that C = V; F(V ); F2(V ); : : : ; Fk−1(V ) is a cycle. The
cycle C and the corresponding ring sequence u(V ); u(F(V )); u(F2(V )); : : : ; u(Fk−1(V ))
are said to be generated by f.
The important operations of splitting a cycle into two cycles, and of joining two

cycles to form a single cycle, have e�ciently been utilized for a long time already.
Properties of certain feedback functions reected in these operations are described in
Lemmas 1 and 2 (for the binary case, see, e.g., [3,5]). These propositions are veri�ed
using the well-known fact that a∈GF(q) (q = pm where p is a prime) and a 6= 0
imply aq−1 = 1. In what follows, let Mn

q :=M
n(GF(q)).

Lemma 1. Let f be a feedback function in Mn
q that generates a cycle C1 of length

L1 and a cycle C2 of length L2 such that C1 and C2 are adjacent; implying that
there is a word W = Aa1a2 : : : an−1 in C1 and a word V = Ba1a2 : : : an−1 in C2. Let
P = f(A; a1; a2; : : : ; an−1); Q = f(B; a1; a2; : : : ; an−1). Then the function f0 de�ned by

f0(x1; x2; : : : ; xn) =f(x1; x2; : : : ; xn) + (P − Q)((x1 − A)q−1 − (x1 − B)q−1)

×
n∏
j=2

(1− (xj − aj−1)q−1) (∗)

is a feedback function in Mn
q which amalgamates cycles C1, C2 into a single cycle of

length L1 + L2. Those cycles of f that are distinct from C1, C2 are not changed by
f0 (thus f0 is nonsingular):

Lemma 2. Let f be a feedback function in Mn
q generating the cycle C=W1; W2; : : : ; WN .

Assume that there are a j ∈ {1; 2; : : : ; N} and a k satisfying 16k6N − 1 such
that Wj and Wj+k are conjugate. Let Wj = Aa1a2 : : : an−1; Wj+k = Ba1a2 : : : an−1;
set P = f(A; a1; a2; : : : ; an−1); Q = f(B; a1; a2; : : : ; an−1). Then the function f0 from
formula (∗) (Lemma 1) is a feedback function in Mn

q generating the cycle
C1 =Wj+1; Wj+2; : : : ; Wj+k determined by the pair Wj; Wj+k (subscripts to be reduced
mod N ): For the initial word Wj; the function f0 yields a cycle C2 of length N − k.
Cycles C1; C2 are adjacent; their amalgamation is the cycle C. Those cycles of f
that are distinct from C are not changed by f0 (thus f0 is nonsingular):
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De�nition. Let C =W1; W2; : : : ; Wk be a cycle in Mn
q and assume that, for some r and

s satisfying r ∈ {1; 2; : : : ; k} and 06s6k − 1; C′ =Wr;Wr+1; : : : ; Wr+s is also a cycle.
Then C′ is called a subcycle of C.

A feedback function f in Mn
q is called linear i� f(x1; x2; : : : ; xn) = A1x1 +

A2x2 + · · ·+ Anxn with some coe�cients Aj from GF(q).

Lemma 3. Let C be a cycle of length qn − 1 in Mn
q that can be generated by some

linear feedback function. Then; for each k satisfying 16k6qn− 1; C has a subcycle
of length k.

The proof of Lemma 3 is omitted since the remarkably brief and constructive proof
for the binary case q = 2 (see [2]) immediately — mutatis mutandis — extends to
arbitrary sets Mn

q (however, see the following remark).

Remark. Let cycle C in Lemma 3 have the form C=W1; W2; : : : ; WN where N=qn−1.
Consider the corresponding ring sequence g= u(W1); u(W2); : : : ; u(WN ) and perform a
cyclic permutation such that −u(Wk+1) occupies the �rst position (16k6qn − 2).
This operation results in the sequence h = − u(Wk+1);− u(Wk+2); : : : ;− u(Wk+N ), and
by elementwise adding g and h we obtain g+ h= u(W1)− u(Wk+1); u(W2)− u(Wk+2);
: : : ; u(WN )− u(Wk+N ). In this sequence �nd the �rst nonzero element — say, u(Wr)−
u(Wk+r) — followed by n−1 zeros. Then Wr and Wk+r are conjugate and Wr+1; Wr+2;
: : : ; Wr+k is a cycle of length k. In addition, r is the smallest j such that Wj and Wk+j
are conjugate. Let this number r be denoted by m(k). Evidently, m(k) can easily be
computed (for large values of n or q, there exist simple computer programs, see [2]
for the binary case q= 2).

Lemmata 1 and 2 imply the following theorem.

Theorem 4. For given values n and q= pm let

P(X ) = X n + Kn−1X n−1 + Kn−2X n−2 + · · ·+ K1X + K0

be a primitive polynomial of degree n with coe�cients from GF(q). This polynomial
determines the linear feedback function

L(x1; x2; : : : ; xn) =−K0x1 − K1x2 − · · · − Kn−1xn

in Mn
q. Given an initial word W1 6= 0 0 : : : 0︸ ︷︷ ︸

n

; the function L generates a cycle

C =W1; W2; : : : ; WN of length N = qn − 1. Then the following propositions hold:
(a) If in C the word 0 0 : : : 0︸ ︷︷ ︸

n

is inserted immediately after the word 1 0 0 : : : 0︸ ︷︷ ︸
n−1
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then; obviously; what results is a de Bruijn cycle. This cycle is generated by the
feedback function

f0(x1; x2; : : : ; xn) = L(x1; x2; : : : ; xn) + K0(x
q−1
1 − (x1 − 1)q−1)

n∏
j=2

(1− xq−1j ):

(b) For a given k satisfying 16k6qn − 2 let the words Wm(k) and Wm(k)+k in C
have the forms

Wm(k) = A(k)a
(k)
1 a

(k)
2 : : : a(k)n−1;

Wm(k)+k = B(k)a
(k)
1 a

(k)
2 : : : a(k)n−1

(see the above remark). Then Wm(k)+1; Wm(k)+2; : : : ; Wm(k)+k is a cycle of length k
generated by the feedback function

f0(x1; x2; : : : ; xn) = L(x1; x2; : : : ; xn) + K0(A(k) − B(k))((x1 − B(k))q−1

− (x1 − A(k))q−1)
n∏
j=2

(1− (xj − a(k)j−1)q−1):

It is plausible that the formulas given in Theorem 4 will reduce to considerably
simpler ones for the binary case q= 2 (in this case, the feedback functions are Boole
functions). In particular, the expressions obtained for feedback functions yielding de
Bruijn cycles (thus also de Bruijn sequences) are extremely simple. The important case
q= 2 is explicitly treated in the following corollary.

Corollary. For q= 2 and a given value n let

P(X ) = X n + Kn−1X n−1 + Kn−2X n−2 + · · ·+ K1X + 1
be a primitive polynomial of degree n with coe�cients from GF(2). This polynomial
determines the linear feedback function

L(x1; x2; : : : ; xn) = x1 + K1x2 + K2x3 + · · ·+ Kn−1xn
in Mn

2. Given an initial word W1 6= 0 0 : : : 0︸ ︷︷ ︸
n

; the function L generates a cycle

C =W1; W2; : : : ; WN of length N = 2n − 1. Then the following propositions hold:
(a) If in C the word 0 0 : : : 0︸ ︷︷ ︸

n

is inserted immediately after the word 1 0 0 : : : 0︸ ︷︷ ︸
n−1

then what results is a de Bruijn cycle. This cycle is generated by the feedback function

f0(x1; x2; : : : ; xn) = L(x1; x2; : : : ; xn) + x2 x3 : : : xn

(where �0 = 1; �1 = 0).
(b) For a given k satisfying 16k62n − 2 let the words Wm(k) and Wm(k)+k in C

have the forms

Wm(k) = A(k)a
(k)
1 a

(k)
2 : : : a(k)n−1;
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Wm(k)+k = B(k)a
(k)
1 a

(k)
2 : : : a(k)n−1:

Then Wm(k)+1; Wm(k)+2; : : : ; Wm(k)+k is a cycle of length k generated by the feedback
function

f0(x1; x2; : : : ; xn) = L(x1; x2; : : : ; xn) + (x2 + a
(k)
1 )(x3 + a

(k)
2 ) : : : (xn + a

(k)
n−1):

Example 1. Find in M3
3 a feedback function that generates a de Bruijn sequence.

For n = 3; q = 3, the tables in Lidl=Niederreiter [4] give the primitive polynomial
P(X )=X 3 +2X +1 which yields the linear feedback function L(x1; x2; x3)=2x1 +x2 in
M3
3. With the initial word 1 1 1 (inserting 0 0 0 after 1 0 0), L determines a de Bruijn

cycle with corresponding ring sequence (de Bruijn sequence)

1 1 1 0 0 0 2 0 2 1 2 2 1 0 2 2 2 0 0 1 0 1 2 1 1 2 0

which, according to Theorem 4(a), is generated by the feedback function

f0(x1; x2; x3) = 2x1 + x2 + (x21 − (x1 − 1)2)(1− x22)(1− x23)
= 2 + x1 + x2 + x22 + x

2
3 + x1x

2
2 + x1x

2
3 + 2x

2
2x
2
3 + 2x1x

2
2x
2
3 :

Example 2. Find in M3
3 a feedback function that yields a ring sequence of length

k = 20.

As in Example 1, we obtain the linear feedback function L(x1; x2; x3)=2x1+x2. With
the initial word W1 =1 1 1; L de�nes a cycle W1; W2; : : : ; WN (N =33−1=26) in M3

3.
Using the procedure described in the above remark, it is easy to �nd m(20)= 12, thus
Wm(20) =W12 = 1 0 2; Wm(20)+20 =W32 =W6 = 2 0 2. With the initial word Wm(20)+1 =
W13 = 0 2 2 we �nd a cycle of length k = 20 with corresponding ring sequence

0 2 2 2 0 0 1 0 1 2 1 1 2 0 1 1 1 0 0 2

which, according to Theorem 4(b), is generated by the feedback function

f0(x1; x2; x3) = 2x1 + x2 + ((x1 − 1)2 − (x1 − 2)2)(1− x22)(1− (x3 − 2)2)
= 2x1 + x2 + x1x23 + 2x1x3 + 2x1x

2
2x
2
3 + x1x

2
2x3:

Appendix

A theorem to be quoted (without proof) in this appendix (Theorem 7) says that
feedback functions generating cycles over a �nite �eld can be used to construct also
feedback functions yielding cycles (in particular, de Bruijn cycles) over an arbitrary
given �nite alphabet. For the representation of such functions certain ‘projections’ are
of some signi�cance.
For any integer m¿2, set Em:={0; 1; : : : ; m − 1} and (more generally than above)

Mn
m:=M

n(Em). In what follows, z will always denote an integer greater than 1.
We need a simple number-theoretical proposition (the proof of which is omitted).
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Lemma 5. Let z = q1q2 : : : qr be the decomposition of z into powers of pairwise
distinct primes. Then for every a ∈ Ez there is precisely one r-tuple a1a2 : : : ar with
aj ∈Eqj (j = 1; 2; : : : ; r) such that

a= a1q2q3 : : : qr + a2q3q4 : : : qr + · · ·+ ar−1qr + ar:

By virtue of Lemma 5, we may set Pj(a) := aj thus de�ning the r ‘projections’
Pj :Ez → Eqj . These mappings can easily be computed, as shown by the following
lemma.

Lemma 6. Let; as in Lemma 5; z= q1q2 : : : qr and a ∈ Ez. ‘Division with remainders’
yields

a= a1q2q3 : : : qr + b1 (b1¡q2q3 : : : qr);

b1 = a2q3q4 : : : qr + b2 (b2¡q3q4 : : : qr);
...

br−2 = ar−1qr + br−1 (br−1¡qr):

Then Pj(a) = aj for j = 1; 2; : : : ; r − 1 and Pr(a) = br−1.

Theorem 7. Let z = q1q2 : : : qr be the decomposition of z into powers of pairwise
distinct primes; further let kj ∈ {1; 2; : : : ; qnj} for j=1; 2; : : : ; r and k=lcm(k1; k2; : : : ; kr).
For j = 1; 2; : : : ; r; let fj denote a feedback function in Mn

qj generating a cycle Cj of

length kj and let a
( j)
1 ; a

( j)
2 ; : : : ; a

( j)
kj be the ring sequence corresponding to Cj.

Then the function

F(z1; z2; : : : ; zn) =f1(P1(z1); P1(z2); : : : ; P1(zn))q2q3 : : : qr

+f2(P2(z1); P2(z2); : : : ; P2(zn))q3q4 : : : qr + · · ·
+fr−1(Pr−1(z1); Pr−1(z2); : : : ; Pr−1(zn))qr
+fr(Pr(z1); Pr(z2); : : : ; Pr(zn)) (1)

is a feedback function in Mn
z that produces a cycle of length k. The ring sequence

s1; s2; : : : ; sk corresponding to this cycle is given by

sj = a
(1)
j q2q3 : : : qr + a

(2)
j q3q4 : : : qr + · · ·+ a(r−1)j qr + a

(r)
j (2)

for j = 1; 2; : : : ; k.

Evidently, also in sets Mn
z that are not derived from a �eld GF(z) (i.e., if z is not a

prime power), feedback functions can be represented by means of a function equation.

Example 3. Let n=3 and z=12; �nd in M3
12 a feedback function that generates a de

Bruijn sequence.
With z = q1q2; q1 = 22; q2 = 3, �rst the task reduces to �nding in M3

22 and in M
3
3

feedback functions that generate de Bruijn sequences. For M3
22 , the primitive polynomial
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P(X ) = X 3 + X 2 + 3X + 2 (with coe�cients from GF(22)) yields the linear feedback
function L(x1; x2; x3)=2x1+3x2+x3 which — using the initial word 1 1 1 and inserting
0 0 0 after 1 0 0 — produces the de Bruijn sequence

B1 = 1 1 1 0 1 3 0 0 1 : : : 2 3 2 3 3 2

of length k1 = 64. By Theorem 4, B1 is generated by

f1(x1; x2; x3) = 2x1 + 3x2 + x3 + 2(x31 + (x1 + 1)
3)(1 + x32)(1 + x

3
3): (3)

According to Example 1, in M3
3 the feedback function

f2(x1; x2; x3) = 2x1 + x2 + (x21 − (x1 − 1)2)(1− x22)(1− x23) (4)

generates the de Bruijn sequence

B2 = 1 1 1 0 0 0 2 0 2 : : : 1 2 1 1 2 0

of length k2 = 27. By (2), from sequences B1; B2 in M3
12 the de Bruijn sequence

B3 = 4 4 4 0 3 11 0 2 4 : : : 7 11 7 10 11 6

(consisting of 123 = 1728 terms) is obtained. According to (1), B3 is generated by the
feedback function

F(z1; z2; z3) = 3f1(P1(z1); P1(z2); P1(z3)) + f2(P2(z1); P2(z2); P2(z3));

where f1, f2 are given by (3) and (4).
The values of the function F given in formula (1) can easily be computed, e.g.,

calculate the value F(9; 8; 11) for the function F of Example 3. From

9 = P1(9)q2 + P2(9) = 3 · 3 + 0;

8 = P1(8)q2 + P2(8) = 2 · 3 + 2;

11 = P1(11)q2 + P2(11) = 3 · 3 + 2;

we obtain F(9; 8; 11) = 3f1(3; 2; 3) + f2(0; 2; 2) = 11.
In many cases, a feedback function F in a set Mn

z can be constructed by means of
formula (1) from linear feedback functions only. This means that, in these cases, F
provides the scheme of a simple circuit consisting of linear shift registers.

Example 4. Let n= 4 and z= 60; �nd a feedback function F in M4
60 that generates a

cycle of length k = 280 (note that M4
60 consists of 60

4 = 12 960 000 quadruples).

We have z = q1q2q3 where q1 = 22, q2 = 3, q3 = 5.
Let Q1(X ) = X 4 + X 2 + X + 1 ∈ F22 [X ] (where Fq stands for GF(q)). In M4

22 ; Q1
generates the linear feedback function f1(x1; x2; x3; x4) = x1 + x2 + x3 which, starting
from the initial word 2 2 3 3, yields a cycle C1 of length k1 = 7 with corresponding
ring sequence 2 2 3 3 3 2 3.
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Let Q2(X )=X 4 +X 3 +X 2 +X +1 ∈ F3[X ]. In M4
3, Q2 generates the linear feedback

function f2(x1; x2; x3; x4) = 2x1 + 2x2 + 2x3 + 2x4 which, with the initial word 1 1 1 1,
yields a cycle C2 of length k2 = 5 with corresponding ring sequence 1 1 1 1 2.
Eventually, let Q3(X ) = X 4 + 1 ∈ F5[X ]. In M4

5, Q3 generates the linear feedback
function f3(x1; x2; x3; x4) = 4x1 which, with the initial word 1 1 1 1, yields a cycle C3
of length k3 = 8 with corresponding ring sequence 1 1 1 1 4 4 4 4.
Using the above results we obtain the feedback function

F(z1; z2; z3; z4) = 15f1(P1(z1); P1(z2); P1(z3); P1(z4))

+5f2(P2(z1); P2(z2); P2(z3); P2(z4))

+f3(P3(z1); P3(z2); P3(z3); P3(z4))

= 15(P1(z1) + P1(z2) + P1(z3))

+5(2P2(z1) + 2P2(z2) + 2P2(z3) + 2P2(z4))

+4P3(z1)

in M4
60 which, with the initial word 36 36 51 51, yields a cycle C of length k =

lcm(7; 5; 8) = 280 with corresponding ring sequence

36 36 51 51 59 39 54 : : : 51 54 54 39 59:
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