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An atomic representation of a Herbrand model (ARM) is a finite set of (not necessarily ground) atoms
over a given Herbrand universe. Each ARM represents a possibly infinite Herbrand interpretation. This
concept has emerged independently in different branches of computer science as a natural and useful
generalization of the concept of finite Herbrand interpretation. It was shown that several recursively
decidable problems on finite Herbrand models (or interpretations) remain decidable on ARMs.

The following problems are essential when working with ARMs: Deciding the equivalence of two
ARMs, deciding subsumption between ARMs, and evaluating clauses over ARMs. These problems
were shown to be decidable, but their computational complexity has remained obscure so far. The
previously published decision algorithms require exponential space. In this paper, we prove that all
mentioned problems are coNP-complete.C© 2001 Academic Press
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edge representation; logic programming.

1. INTRODUCTION AND OVERVIEW OF RESULTS

1.1. ARMs

The value of using models within the field of automated reasoning is widely acknowledged; e.g.,
models can be used to represent some domain specific knowledge which may help to speed up the
deduction process via semantic resolution. Moreover, the practical value of a theorem prover can be
improved by constructing a countermodel rather than just giving the answer “No” if some input formula
is found to be not a theorem. Consequently, automated model building has evolved as an important
discipline in automated deduction, as recent publications demonstrate (cf. [3, 4, 7, 25], etc.).

For actual work with models, two prerequisites are essential, namely, an appropriate representation
of models and the existence of (efficient) algorithms for certain decision problems like the evaluation
of clauses in such models (cf. Section 1.3 below). In [7] (and, similarly, in [3, 4]), so-called ARMs
(atomic representations of Herbrand models) were introduced as atom setsA = {A1, . . . , An} over
some Herbrand universeH with the intended meaning that a ground atom overH evaluates toT in the
model represented byA, iff it is an instance of some atomAi ∈ A.

By their capability of representing a large (possibly infinite) set of ground atoms by a small finite
atom setA, ARMs can also be considered as a useful generic knowledge representation tool. Hence,
problems related to the ones studied here also arise in database theory (cf. [27]). Independently, equiv-
alent notions have been developed in other fields of computer science, such as in machine learning,
where implicit generalizationsare studied as a formal basis of learning from counterexamples (cf.
[16]), or in the definition of a semantics-capturing negation in logic programming (cf. [9, 15]). In

1 This work was supported by the Austrian Science Fund (FWF) Project Z29-INF. A short version of this paper was presented
at LICS’99 (cf. [11]).
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fact, it is in this area where the idea of nonground models was first introduced (cf. works on thes-
semantics of logic programs, e.g.; [6]). In functional programming, the problem ofcompleteness of
definitionis studied (cf. [15]). In all these areas, decision problems similar to ours arise, even though
each area recurs to a different terminology. Hence, our results are applicable in all of the mentioned
areas.

The primary aim of this paper is a thorough complexity analysis of several problems which have to
be solved when one actually wants to work with ARMs. The algorithms provided for these problems
in [7] require exponential space and so does, in principle, the algorithm given in [16] for solving a
related problem on implicit generalizations. The same complexity bound also applies to the method of
[4], where these problems are solved via reduction to equational formulae over the term algebra. Our
membership proofs will show that these algorithms can be significantly improved. On the other hand,
our hardness results clearly point out the limit for such improvements.

1.2. Some Basic Terminology

For a background on terms, clauses, etc., see [2, 17]. We only recall the most relevant concepts in
this paper. Let6 be a finite set of constant symbols, function symbols, and predicate symbols. In this
paper, we identify constant symbols with function symbols of arity 0. TheHerbrand universe Hover
6 is the algebra of ground terms that can be constructed from the symbols in6. An arbitrary (i.e., not
necessarily ground) term over6 is called anH -term.

A substitutionis a mappingλ : V → T from a set of variablesV to a setT of terms, s.t.λ(v) 6= v
only for finitely manyv ∈ V . The set of variablesv ∈ V with λ(v) 6= v is referred to as thedomainof
λ. The termsλ(v) with λ(v) 6= v are called therangeof λ. λ is called aground substitution(on V) if
λ(v) is a ground term for allv ∈ V . A substitution can be extended homomorphically to a mapping on
terms or on clauses, respectively, in the obvious way; e.g., letλ : V → T be a substitution and letE
be a term or a clause. Then byEλ we denote the result of simultaneously replacing every variablex in
E by the termλ(x). E′ is aninstanceof E, iff there exists a substitutionσ with E′ = Eσ . Moreover,
an instanceE′ of E is calledground, if E′ contains no variables. An instanceEσ of E is called an
H-instanceof E, iff all terms in the range ofσ areH -terms.E′ is called anH-ground instanceof E,
if E′ is a ground instance and anH -instance ofE. Analogously to [7], we writeGH (E) to denote the
set of allH -ground instances ofE.

Recall that in a Herbrand modelM, the interpretation of constant symbols and function symbols
is fixed; i.e., they are interpreted “by themselves,” so to speak. Hence,M is fully determined by the
interpretation of the predicate symbols. In other words, there is a one-to-one correspondence between
a Herbrand modelM and the set ofH -ground atoms that evaluate toT inM. In the case of an ARM
A = {A1, . . . , An}, this set ofH -ground atoms, which evaluate toT in the model represented byA,
corresponds to theH -ground instances of the atoms inA. We writeMA to denote this model, which
is uniquely determined by the atom setA.

In automated model building, the so-called H-subsumption plays an important role both in the model
construction process itself and for the actual work with an already constructed model. The concept
of H-subsumption was introduced in [7]. A related version of subsumption (namely, the so-called c-
dissubsumption) can be found in the works of Caferraet al. (cf. [3, 4]). The definitions of (first-order)
subsumption and H-subsumption are recalled below. Note that in these definitions clauses are considered
as sets of atoms.

DEFINITION 1.1 (First-Order Subsumption). LetC andD be clauses and letE andF be clause sets.
We say thatC subsumes D(written asC ≤s D) iff there exists a substitutionϑ s.t.Cϑ ⊆ D.

Moreover,E subsumes D(written asE ≤s D) iff there exists a clauseE ∈ E s.t.E ≤s D). Likewise,
E ≤s F iff every clauseF ∈ F is subsumed byE .

DEFINITION 1.2 (H-Subsumption). LetC andD be clauses and letE andF be clause sets. Moreover,
let H be a Herbrand universe. We say thatC H-subsumes D(written asC ≤sH D) iff every H -ground
instance ofD is subsumed byC.

Moreover,E H-subsumes D(written asE ≤sH D) iff every H -ground instance ofD is subsumed
by some clauseE ∈ E . Likewise,E ≤sH F iff E ≤sH F for everyF ∈ F . By E =sH F we denote that
both relationsE ≤sH F andF ≤sH E hold.
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The following example from [23] illustrates the difference between these two concepts of sub-
sumption.

EXAMPLE 1.1 (First-Order Subsumption vs H-Subsumption). LetC = P(x, y) ∨ Q(x) ∨ Q(y) and
D = P(x, y) ∨ Q(a) ∨ Q(b). Then we have:

• C 6≤s D, since there is no substitutionϑ with domain{x, y}, s.t., on the one hand,P(x, y)ϑ ∈ D
and, on the other hand,Q(x)ϑ ∈ D andQ(y)ϑ ∈ D.

• For H = {a, b}, C ≤sH D: Let Dϑ be an H-ground instance ofD; i.e., xϑ ∈ {a, b} and
yϑ ∈ {a, b}. ThenCϑ ≤s Dϑ.

• For H = {a, b, c}, C 6≤sH D: Consider the H-ground substitutionϑ = {x← c, y← c}. Then the
H-ground instanceDϑ of D is not subsumed byC.

Remark. Apart from the predicate symbols, there is a one-to-one correspondence between a signa-
ture6 and the resulting Herbrand universeH . Hence, it is justified to refer to the terms that are built
up from the function symbols and constant symbols of6 asH -terms. Likewise, if the set of predicate
symbols is clear from the context, then we may talk about aclause over Hin order to refer to a clause that
is built up from the symbols in6. Talking about “H -subsumption” rather than, e.g., “6-subsumption”
may look a bit inaccurate. However, such is the standard terminology in the automated model building
literature and we have decided to use this (slightly inaccurate) terminology, too.

1.3. The Problems Studied Here

When working with ARMs, efficient algorithms for the following problems are essential.

DEFINITION 1.3. TheMODEL-EQUIVALENCEproblem over a Herbrand universeH is defined as
follows: Given two atom setsA = {A1, . . . , An} andB = {B1, . . . , Bm} over H , doA andB represent
the same model; i.e., do they have the same set ofH -ground instances? In this case we say thatA and
B areequivalent.

DEFINITION 1.4. TheCLAUSE-EVALUATIONproblem over a Herbrand universeH is defined as
follows: Given an atom setA = {A1, . . . , An} and a clauseC overH , doesC evaluate toT in the model
MA represented byA?

The TOTAL-COVER problem defined below will be useful for our complexity analysis. It is also
interesting by itself since it corresponds to the completeness of definition problem in functional pro-
gramming (cf. [15]). Slightly more general than TOTAL-COVER is the ATOM-H-SUBSUMPTION
problem defined in [7], which also captures the emptiness problem of implicit generalizations given in
[16]; i.e., given a termt and instancestϑ1, . . . , tϑn of t , is everyH -ground instance oft an instance
of sometϑi ? Note that this kind of question as to whether allH -ground instances of an expression are
covered by a set of expressions arises quite naturally in the field of knowledge representation. Formal
definitions of TOTAL-COVER and ATOM-H-SUBSUMPTION are given below:

DEFINITION 1.5. The TOTAL-COVER problem over a Herbrand universeH is defined as follows:
Given an atom setA = {P(Et1), . . . , P(Etn)} over H , is everyH -ground atomP(Es) over H an instance
of someP(Et i ) ∈ A?

DEFINITION 1.6. The ATOM-H-SUBSUMPTION problem over a Herbrand universeH is defined
as follows: Given atom setsA = {A1, . . . , An} andB = {B1, . . . , Bm} over H , is everyH -ground
instanceBiϑ of everyBi ∈ B an instance of some atomAi ∈ A (which is written asA ≤sH B)?

The following example from [7] will help to illustrate these decision problems:

EXAMPLE 1.2. Denote byH the Herbrand universe built from constanta and function symbolf ,
i.e., H ={ f i (a) | i ≥ 0} (here f 0(a) denotesa). Define the ARMsA={P(x,a)} andB={P(a,a),
P( f (x),a)} over H .
A andB have the same set ofH -ground instances, namely,{P( f i (a),a) | i ≥ 0}. We thus say that

A andB are equivalent (cf. Definition 1.3). By Definition 1.2 on H-subsumption, we may also write
A= sHB.
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In the modelMA represented byA (or, equivalently, in the modelMB represented byB), the
clause¬P(a,a) ∨ ¬P( f (a),a) ∨ P( f ( f ( f (a))),a) evaluates toT, while ¬P(a, x) ∨ P( f (x), y)
evaluates toF, since, e.g., the ground instance¬P(a,a) ∨ P( f (a), f (a)) does. This can be seen as
follows: P(a,a) evaluates toT, since it is an H-ground instance of the atomP(x,a) ∈ A. Hence,
¬P(a,a) evaluates toF. Likewise, sP( f (a), f (a)) evaluates toF, since it is not an instance of
the ARM.

Now let H ′ be the Herbrand universe built from constants{a, b} and function symbolf , and define
ARMs A′ = {P(x,a)} andB′ = {P(a,a), P( f (x),a)} in the same way asA andB, but over the
Herbrand universeH ′. ThenA′ contains theH ′-ground instances{P( f i (a),a) | i ≥ 0}∪{P( f i (b),a) |
i ≥ 0}. Note thatP(b,a) is not anH ′-ground instance ofB′. HenceA andB are not equivalent. In
particular,A′ H ′-subsumesB′, while B′ does notH ′-subsumeA′. We thus writeA ≤sH′ B and
B 6≤sH′ A, respectively (cf. Definition 1.6).

LetQ ¹P R denote that the decision problemQ can be reduced in polynomial time to the problemR
(i.e.,Q is “easier” thanR). The following theorem on the reducibility of the above-mentioned problems
is not particularly deep. However, it is very convenient for the complexity analysis in the subsequent
sections.

THEOREM 1.1. Over any Herbrand universe H, the following chain of reducibility relations holds:
TOTAL-COVER ¹P MODEL-EQUIVALENCE ¹P ATOM-H-SUBSUMPTION¹P CLAUSE-
EVALUATION.

Proof. For a reduction from TOTAL-COVER to MODEL-EQUIVALENCE, consider an arbitrary
instanceA = {P(Et1), . . . , P(Etn)} of TOTAL-COVER. LetB = {P(Ez)} be another atom set, where
Ez consists of pairwise distinct variables. Then everyH -ground atomP(Es) is an instance of some
P(Eti ) ∈ A, iff A andB have the same set of ground instances. MODEL-EQUIVALENCE can be easily
reduced to ATOM-H-SUBSUMPTION; namely,A andB have the same set of ground instances, iff both
relationsA ≤sH B andB ≤sH A hold. Finally, for a reduction from ATOM-H-SUBSUMPTION to
CLAUSE-EVALUATION note thatA ≤sH B holds, iff all unit clausesBj ∈ B evaluate toT inMA. j

Recall from Definition 1.2 that H-subsumption is not necessarily restricted to atoms. We thus get the
following decision problem:

DEFINITION 1.7. The CLAUSE-H-SUBSUMPTION problem over a Herbrand universeH is de-
fined as follows: Given clause setsC = {C1, . . . ,Cn} andD = {D1, . . . , Dm} over H , is everyH -
ground instanceD jϑ of every clauseDj ∈ D subsumed by some clauseCi ∈ C (which is written as
C ≤sH D)?

In [23] it is shown that clausal H-subsumption is a very strong redundancy criterion, which may
help to significantly speed up an automated theorem prover. Apart from the complexity of atomic H-
subsumption, the general case of clausal H-subsumption has the number of permutations of literals as an
additional source of complexity. Hence, the5p

2 -hardness of this problem was shown in [23]. However,
5

p
2 -membership in the case of an arbitrary Herbrand universe was left as an open question. In Section

6 we shall show that the5p
2 -membership indeed holds.

Remark. All of the problems defined above depend on thechoice of a specific Herbrand universe.
For convenience, we have decided to consider the Herbrand universeH as arbitrary but fixed. So,
in principle, we have to deal with a whole collection of decision problems, which are in a sense
“parameterized” byH . Note, however, that we get exactly the same complexity results if the Herbrand
universeH is considered as part of a problem instance. In particular, the membership proofs in Sections
5 and 6 for the case of a fixed Herbrand universe can be taken over literally to the case where the
Herbrand universe is considered as part of the input.

The termH-subsumption (both for atoms and clauses) was introduced in [7] in order to distin-
guish this kind of subsumption over some Herbrand universe from theusual notion of subsumption,
which does not depend on a specific Herbrand universe. Since no such confusion can arise with the
other decision problems studied here, the “H” is not included in their names, e.g., in accordance with
[7], we talk about MODEL-EQUIVALENCE and CLAUSE-EVALUATION rather than MODEL-H-
EQUIVALENCE and CLAUSE-H-EVALUATION, respectively.
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All of the problems studied here can be expressed asvalidity problems of equational formulae
(i.e., first-order formulae with the syntactic equality “=” as the only predicate symbol) over the term
algebra; e.g., letA = {P(t11, . . . , t1k), . . . , P(tn1, . . . , tnk)} be an instance of TOTAL-COVER and let
{x1, . . . , xl } denote the set of variables inA. Moreover, let{z1, . . . , zk} be a set of variables s.t. the
xi ’s andzj ’s are pairwise distinct. ThenA covers allH -ground atomsP(s1, . . . , sk), iff the formula
∀(z1, . . . , zk)∃(x1, . . . , xl )

∨n
i=1(ti 1 = z1 ∧ · · · ∧ tik = zk) is valid. Hence, our results also apply to the

corresponding classes of equational formulae.

1.4. Overview of Results

In summary, we prove the following complexity results in this paper:

coNP-completeness. The following problems are coNP-complete over any nontrivial Herbrand
universeH : TOTAL-COVER, MODEL-EQUIVALENCE, ATOM-H-SUBSUMPTION and CLAUSE-
EVALUATION.

5
p
2 -membership. The CLAUSE-H-SUBSUMPTION problem over any Herbrand universe is in

5
p
2 . Hence, by the5p

2 -hardness proven in [23], CLAUSE-H-SUBSUMPTION is5p
2 -complete for any

nontrivial Herbrand universeH .

1.5. Structure of the Paper

Section 1 was devoted to an introduction and overview of the main results. In Section 2, we shall
recall some more basic definitions and results. The coNP-hardness of the TOTAL-COVER problem (and,
hence, of all the other problems from Theorem 1.1) will be proved in Section 3. In Section 4 we provide a
formalism for representing the complement of an ARM, which will then be used in Section 5 for proving
the coNP-membership of the CLAUSE-EVALUATION problem (and, hence, of all the other problems
from Theorem 1.1). In Section 6, we prove the5p

2 -membership of clausal H-subsumption. Finally, in
Section 7, the main results of this paper are summarized and some directions for future work are outlined.

2. PRELIMINARIES

2.1. Expressions and Their Representation

An expressionis either a term or an atom. By [E | p] we denote thesubexpressionin E at position
p, wherepositionsin E are defined as strings of integers as follows:

1. The empty stringε is a position inE, and [E | ε] = E.

2. Let F be a function symbol or a predicate symbol, and letα ≥ 1 denote the arity ofF .
Moreover, letp be a position inE with [E | p] = F(t1, . . . , tα). Then, for everyq ∈ {1, . . . , α}, p ◦ q
(or simply “pq”) is also a position inE and [E | pq] = tq.

Theconcatenation of positionscan easily be generalized to positionsp andq of arbitrary length; i.e.,
if p = p1 · · · pk is a position inE with [E | p] = s andq = q1 · · ·ql is a position ins with [s | q] = t ,
then p ◦ q = pq = p1 · · · pkq1 · · ·ql is also a position inE and [E | pq] = t holds. Asubpositionof
a positionp = p1 · · · pk is a prefixp1 · · · pj with 0≤ j ≤ k.

The (term) depth of an expression Eis defined as the maximum length of the positions inE, i.e.,
τ (E) = max({k| ∃p = p1 · · · pk, s.t. p is a position inE}). For a setE of expressions, we define
τ (E) = max({τ(E) | E ∈ E}).

A term t is called asubtermof an expressionE, iff there exists a positionp in E with [E | p] = t .
By Var(E) we denote the set of variables which are subterms of the expressionE. Theminimal depth
of occurrenceof a subtermt of E is defined as the length of the shortest positionp with [E | p] = t ;
i.e.,τmin(E, t) = min({k | ∃p = p1 · · · pk, s.t. p is a position inE and [E | p] = t}).

Remember that an expressionE can be represented by a treeT(E) in the following way: All internal
nodes are labelled with function symbols of arity≥1 (in the case of an atomE, the root node is labelled
with a predicate symbol). The degree of an internal node (i.e., the number of child nodes of such a
node) corresponds to the arity of the labelling symbol. The leaf nodes are labelled either by a constant
or by a variable symbol. Since every node of the treeT(E) corresponds to a unique position in the
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expressionE and vice versa, we shall identify nodes with their positions. The symbol labelling the node
p corresponds to the leading symbol of [E | p].

A branchis a path inT(E) connecting the root with a leaf node. Every path connecting the root node
with some nodep is uniquely determined byp. In particular, a branch is uniquely determined by its
leaf node. Anordering “<” on the nodes ofT(E) can be defined via lexicographical ordering on the
positions or, equivalently, as a top-down, left-to-right ordering of the nodes. This ordering “<” can then
be extended to branches by identifying every branch with its leaf node.

We define thesize of an expressionas the number of positions inE (or, equivalently, the number of
nodes in the tree representation ofE); i.e., size(E) = |{p | p is a position inE}|. Note that there are
many different ways of representing an expression, where the number of symbols required may even
vary exponentially. However, the number of positions inE seems to be a natural measure for the size
of an expression, since for the most common representations of expressions the number of symbols is
linearly bounded in the number of positions. For example, in the case of a representation as a string
of symbols, the number of additional symbols required (i.e., parentheses and commas) is bounded by
2× size(E).

The notions of depth, minimal depth of occurrence, size, etc., can be extended to clauses and to tuples
of terms in the obvious way; e.g., for a negated atom¬A, we defineτ (¬A) = τ (A), τmin(¬A, t) =
τmin(A, t), and size(¬A) = size(A). Moreover, for a clauseC with literals{L1, . . . , Ln}, we set τ(C) =
max(τ(Li ) | 1≤ i ≤ n}), τmin(C, t) = min(τmin(Li , t) | 1≤ i ≤ n}), and size(C) =∑n

i=1 size(Li ).
Analogously, for a term tupleEt = (t1, . . . , tk), we defineτ (Et ) = max({τ(ti ) | 1≤ i ≤ k}) as the term

depth and size(Et ) =∑k
i=1 size(ti ) as its size.

We do not distinguish between a term and a term tuple of dimension 1. Iff is a function symbol
of arity k and Eu = (u1, . . . ,uk) is ak-tuple of terms, then we writef (Eu) as a short-hand notation for
the term f (u1, . . . ,uk). For technical reasons, we also admit term tuples of dimension 0. Hence, we
may write f (Eu) to denote an arbitrary term with leading symbolf , even if f is a constant symbol (or,
equivalently, a function symbol of arity 0). Moreover, we will not explicitly mention the dimension
of a term tuple, if it is clear from the context; e.g., when writingf (Eu), we implicitly assume that the
dimension ofEu coincides with the arity off .

In [7], the setBTH of the so-called “linear base terms over H” was introduced; i.e., for the Herbrand
universeH with signature6, BTH is defined asBTH = { f (Ex) | f is a function symbol in6 with arity
α ≥ 0 andEx is a vector of pairwise distinct variables of dimensionα}. The setBTH induces a partition
of H in that every ground terms ∈ H is an instance of exactly one term ofBTH . Namely, let f denote
the leading symbol ofs ∈ H . Thens is an instance off (Ex) ands is not an instance of any term in
BTH − { f (Ex)}.

2.2. Equational Problems and Constrained Clauses

Constrained clauses provide a significant increase in expressive power w.r.t. standard clauses: By
using equations or disequations as constraints, it is possible to restrict the set of ground instances of
a clause. This increased expressive power will be put to work in Section 4, when we search for a
representation of the complement of an ARM. For the definition of constrained clauses, we follow the
approach of Caferraet al. (cf. [4]), who in turn make use of equational problems in the sense of [5].

In [5], an equational problemis defined as a formula∃ Ew ∀EyP( Ew, Ex, Ey), whereP( Ew, Ex, Ey) is a
quantifier-free formula with equality “=” as the only predicate symbol. A disequations 6= t is a short-
hand notation for a negated equation¬(s= t). The trivially true problem is denoted by>and the trivially
false one by⊥. ByP ≡ Q we denote that the equational problemsP andQ are syntactically identical.

In the context of constrained clauses in the sense of [4], equational problems are only interpreted over
the term algebra. A Herbrand interpretation overH is given through anH -ground substitutionσ , whose
domain coincides with the free variables of the equational problem. The trivial problem> evaluates
to T in every interpretation. Likewise,⊥ always evaluates toF. A single equations = t is validated
by a ground substitutionσ , if sσ andtσ are syntactically identical ground terms. The interpretation of
the connectives¬, ∧, ∨, ∃, and∀ is as usual. A ground substitutionσ which validates an equational
problemP is called asolutionof P.

In [4], constrained clauses (c-clauses, for short) are defined as pairs [c: P], wherec is a clause
andP is an equational problem. Intuitively, [c : P] denotes the set of ground clausescσ , s.t.σ is a
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solution ofP. In this paper, we are only interested in c-clauses as a powerful formalism for representing
sets of ground clauses; e.g., in Section 4 we shall encounter sets of ground clauses which have a finite
representation via c-clauses, but which are, in general, not finitely representable by standard clauses.
Moreover, we only need c-clauses of the following restricted form:

DEFINITION 2.1 (Constrained Atoms). A constrained clause [a :
∧n

i=1 si 6= ti ] is called aconstrained
atomiff the clause part consists of a single atom and the constraint part is either the empty conjunction>
or a quantifier-free conjunction of disequations s.t. all variables from the constraints occur in the atom.

For uniformity between standard clause logic and c-clause logic, we shall use the notationGH

from [7] in order to denote the set ofH -ground instances also in the case ofconstrainedatoms; i.e.,
GH ([a : P]) = {aσ | σ is a solution ofP}. Note that the setGH ([a : P]) is nonempty iff the constraint
partP has at least one solution. In the case of an infinite Herbrand universeH , the following lemma
provides a criterion for testing the latter condition (for a proof, see [5, Appendix B, Lemma 1]).

LEMMA 2.1 (Disequations over an InfiniteH ). LetP be a conjunction of disequations over an infinite
Herbrand universe H. ThenP has at least one solution, iff it contains no trivial disequation of the form
t 6= t .

3. coNP-HARDNESS

In this section we prove the coNP-hardness of the problems TOTAL-COVER, MODEL-
EQUIVALENCE, ATOM-H-SUBSUMPTION, and CLAUSE-EVALUATION. To this end, we only
need to show that the TOTAL-COVER problem is coNP-hard since, by Theorem 1.1, this is the “easi-
est” one of these problems.

THEOREM 3.1 (coNP-hardness of TOTAL-COVER).Let H be an arbitrary Herbrand universe with
at least two elements. Then the TOTAL-COVER problem over H is coNP-hard.

Proof. In order to prove the coNP-hardness of the TOTAL-COVER problem, we reduce the well-
known coNP-complete problem co-3SAT to it; i.e.,

• Instance. ({x1, . . . , xk}, E), s.t.E = (l11∨ l12∨ l13)∧· · ·∧ (ln1∨ ln2∨ ln3) is a Boolean formula
and thel i j ’s are literals over the propositional variables{x1, . . . , xk}; i.e., everyl i j is either of the form
xγ or of the form¬xγ for someγ ∈ {1, . . . , k}.
• Question. Is the formulaE unsatisfiable; i.e., doesE evaluate toF in every truth assignmentI

on the propositional variables{x1, . . . , xk}?
H contains at least two elements. Hence, there exists a constanta in the signature ofH and an

additional function symbolf with arity α ≥ 0. Recall from Section 2.1 the definition of the setBTH

of linear base terms. In particular, every ground term inH is an instance of exactly one term in
BTH . Moreover,BTH contains the terma and a term of the formf (y1, . . . , yα) for pairwise distinct
variablesyi .

Now let ({x1, . . . , xk}, E) be an arbitrary instance of the co-3SAT problem. Without loss of generality
we may assume that no clauseCi = (l i 1 ∨ l i 2 ∨ l i 3) contains a pair of complementary literals, since
otherwiseCi is trivially true in every truth assignment and may therefore be deleted. Moreover, letP
denote a predicate symbol of arityk and let{z1, . . . , zk} be a set of pairwise distinct variables. Then we
can reduce this instance of the co-3SAT problem into the instanceA = A′ ∪A′′ of the TOTAL-COVER
problem, where the atom setsA′ andA′′ are defined as

A′ =
⋃

u∈BT′H

{P(u, z2, . . . , zk), P(z1, u, z3, . . . , zk), . . . , P(z1, . . . , zk−1, u)},

with BT′H = BTH − {a, f (y1, . . . , yα)}, and

A′′ = {P(t11, . . . , t1k), . . . , P(tn1, . . . , tnk)}
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with

ti j =


a if xj ∈ {l i 1, l i 2, l i 3}
f (y1, . . . , yα) if ¬xj ∈ {l i 1, l i 2, l i 3}
zj otherwise.

Of course, this transformation can be done in polynomial time. Therefore, it only remains to prove the
following equivalence: The Boolean formulaE is unsatisfiable⇔ EveryH -ground atomP(s1, . . . , sk)
is an instance of some atom inA′ ∪A′′.

Note that the argumentsti j of the atoms inA′′ encode the kind of occurrence of the propositional
variablexj in the i th clause in the following way: a positive occurrence ofxj is represented bya, a
negative occurrence is represented byf (y1, . . . , yα), and a variable stands for no occurrence. The atoms
inA′′ make sure that we do not have to care about terms with a leading symbol different froma and f .
Then the above equivalence is shown as follows.

“⇒” Suppose thatE is unsatisfiable and letP(s1, . . . , sk) be an arbitraryH -ground atom. We
have to show thatP(s1, . . . , sk) is an instance of some atomP(ti 1, . . . , tik) ∈ A. If P(s1, . . . , sk) has
some argument with leading symbol different froma and f , thenP(s1, . . . , sk) is a ground instance of
some atom inA′; i.e., suppose thatsj is a term of the formg(v1, . . . , vβ) with g 6= f andg 6= a, then
BTH − {a, f (y1, . . . , yα)} contains a termg(y1, . . . , yβ), where theyi ’s are pairwise distinct variables.
Moreover,A′ contains the atomP(z1, . . . , zj−1, u, zj+1, . . . , zk) with u = g(y1, . . . , yβ) and, therefore,
P(s1, . . . , sk) is clearly an instance of this atom. But then it only remains to consider the case where
all argumentssj of P(s1, . . . , sk) have eithera or f as the leading symbol. To this end, we define the
following truth assignmentI on the propositional variables{x1, . . . , xk},

I(xj ) =
{

F if sj = a

T otherwise.

By assumption, there is some clausel i 1 ∨ l i 2 ∨ l i 3 which evaluates toF in I; i.e., every literall i γ with
γ ∈ {1, 2, 3} evaluates toF. We claim that thenP(s1, . . . , sk) is an instance ofP(ti 1, . . . , tik). By
construction, every variablezj in P(ti 1, . . . , tik) occurs at most once. Hence, it suffices to show for
every componentj separately thatsj is an instance ofti j . If ti j is a variablezj , thensj is of course an
instance ofti j . It therefore only remains to consider the cases whereti j is not a variable:

Case 1. If ti j = a then, by the problem transformation,xj ∈ {l i 1, l i 2, l i 3}. Thus,xj evaluates toF
in I and, therefore,sj = a by the definition ofI.

Case 2. If ti j = f (y1, . . . , yα), then 6= xj ∈ {l i 1, l i 2, l i 3} holds and, therefore,xj evaluates toT in
I. Hence, by the definition ofI, sj has the leading symbolf and, thus,sj is an instance ofti j .

“⇐” Suppose that everyH -ground atomP(s1, . . . , sk) is an instance of some atom inA and letI
be an arbitrary truth assignment on{x1, . . . , xk}. In order to show that there is some clausel i 1∨ l i 2∨ l i 3
in E which evaluates toF in I, we consider the atomP(s1, . . . , sk), where each argumentsj is defined
as follows:

sj =
{

a if I(xj ) = F

f (a, . . . ,a) otherwise.

By assumption, everyH -ground atom with predicate symbolP is an instance of some atom inA′ ∪A′′.
Note that, by the above construction ofsj , there is no argument inP(s1, . . . , sk) with a leading symbol
different froma and f . Hence,P(s1, . . . , sk) must be an instance of some atomP(ti 1, . . . , tik) ∈ A′′.
We claim that every literall i γ with γ ∈ {1, 2, 3} in the i th clause evaluates toF in I.

Case 1. Suppose thatl i γ is a positive literal, i.e.,l i γ = xj for some propositional variablexj . Hence,
by the problem transformation,ti j = a holds. But then alsosj = a holds, sinceP(s1, . . . , sk) is an
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instance ofP(ti 1, . . . , tik). Thus, by the construction ofP(s1, . . . , sk), it follows thatl i γ = xj evaluates
to F in I.

Case 2. On the other hand, ifl i γ is a negative literal of the forml i γ = ¬xj , thenti j = f (y1, . . . , yα)
holds. Hence,sj = f (a, . . . ,a), sincesj must have the same leading symbol asti j . But then, by
the construction ofP(s1, . . . , sk), xj evaluates toT in I and, therefore,l i γ = ¬xj evaluates toF
in I. j

Remark. As we have recently noticed, slightly different versions of this result have been indepen-
dently published in [12–14]. The credit for this result thus goes to these authors.

Recall from Theorem 1.1 that TOTAL-COVER is the easiest problem studied here. Hence, the
following result follows immediately from the above theorem.

COROLLARY 3.1 (coNP-hardness).Let H be an arbitrary Herbrand universe with at least two ele-
ments. Then the problems TOTAL-COVER, MODEL-EQUIVALENCE,ATOM-H-SUBSUMPTION,and
CLAUSE-EVALUATION over H are coNP-hard.

4. THE COMPLEMENT OF AN ARM

The purpose of this section is to provide a formalism for representing the complement of an ARM via
constrained atoms(cf. Definition 2.1). To this end, we define the complement of ak-tuple of H - terms
Et = (t1, . . . , tk), i.e., the set of all groundk-tuplesEs ∈ Hk that are not instances ofEt . The definition of
the complement of a single atom and of an atom set overH will then be an easy task. But first let us
introduce some additional notation.

It is sometimes convenient to group successive components of a term tuple together, e.g., fori ∈
{1, . . . ,n}, let Et i = (ti 1, . . . , tiki ). Then we may write (Et1, . . . , Etn) to denote the term tuple (t11, . . . , t1k1,

t21, . . . , t2k2, . . . , tn1, . . . , tnkn).
Analogously toconstrained atoms, we can also defineconstrained term tuplesas pairsT = [Et : X],

where T contains all ground instancesEtσ of Et , s.t. σ is a solution ofX. For the sake of a uni-
form treatment of term tuples with or without constraints, respectively, we use the following no-
tation: Let Eu be a constrained term of the form [(u1, . . . ,uk) : X], and let f be a function symbol
of arity k. Then we write f (Eu) to denote the constrained term [f (u1, . . . ,uk) : X]. Likewise, we
may write P(Eu) for a constrained term tupleEu= [(u1, . . . ,uk) : X] to denote the constrained atom
[ P(u1, . . . ,uk) : X]. Note that the constraints in a constrained term tuple [Et : X] always refer to the
variables occurring inEt . Hence it is a purely notational matter whether we attach the constraints to
a term tuple as a whole or whether we consider the constraints as part of the variables occurring
in Et . Hence, more generally, we shall also write (Eu0, f1(Ev1), Eu1, f2(Ev2), Eu2, . . . , fl (Evl ), Eul ) no matter
whether (Eu0, Ev1, Eu1, Ev2, Eu2, . . . , Evl , Eul ) is simply a term tuple or whether it is a constrained term tuple of
the form [(u01, . . . ,u0m0, v11, . . . , v1n1, u11, . . . ,u1m1, . . . , vl1, . . . , vlnl , ul1, . . . ,ulml ) : X]. In the latter
case, (Eu0, f1(Ev1), Eu1, f2(Ev2), Eu2, . . . , fl (Evl ), Eul ) is a short-hand notation for the constrained term tuple
[(u01, . . . ,u0m0, f1(v11, . . . , v1n1), u11, . . . ,u1m1, . . . , fl (vl1, . . . , vlnl ), ul1, . . . ,ulml ) : X].

We are now ready to give a formal definition of the complement of a term tuple.

DEFINITION 4.1 (Complement of a Term Tuple). LetH be a Herbrand universe with signature
6 and letEt be ak-tuple of H -terms withk ≥ 1. Then we define the set comp6(Et ) inductively as
follows:

Case 1. If Et = (t1, . . . , tk) consists of variables only, then we define

comp6(Et ) = {[(z1, . . . , zk) : zi 6= zj ] | 1≤ i < j ≤ n, ti andt j are identical,
all componentstα with α < i are different fromti
and (z1, . . . , zk) is a vector of pairwise distinct variables.}

Case 2. Otherwise, letEt = (Er 0, f1(Es1), Er 1, f2(Es2), Er 2, . . . , fl (Esl ), Er l ) with l ≥ 1, whereEr 0, . . . , Er l

are vectors of variables whose dimension may possibly be 0 andf1(Es1), . . . , fl (Esl ) are the nonvariable
components ofEt . Then we define
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comp6(Et ) = {(Ez0, w1, Ez1, w2, Ez2, . . . , wl , Ezl ) |
for everyα ∈ {0, . . . , l }, Ezα is a vector of pairwise distinct variables,

s.t. Ezα andEr α have the same dimension,
there exists exactly oneβ ∈ {1, . . . , l }, s.t.wβ ∈ BTH − { fβ(Ex)}

and for allγ ∈ {1, . . . , l } − {β}, wγ is a fresh variable
andEz0, w1, Ez1, w2, . . . , Ezl are pairwise variable disjoint.}

∪ {(Eu0, f1(Ev1), Eu1, f2(Ev2), Eu2, . . . , fl (Evl ), Eul ) |
(Eu0, Ev1, Eu1, Ev2, Eu2, . . . , Evl , Eul ) ∈ comp6((Er 0, Es1, Er 1, Es2, Er 2, . . . , Esl , Er l ))}.

For technical reasons, we also consider term tuplesEt of dimension 0. (Note that this allows us an easy
inductive definition in Case 2 above without having to worry whether the term tuple (Er 0, Es1, Er 1, . . . , Esl , Er l )
has any components at all.) In this case, we simply set comp6(Et ) = ∅.

DEFINITION 4.2 (Complement of an Atom). Let6 be a signature consisting of predicate symbols,
function symbols and constant symbols and letP(Et ) be an atom over6. Then we define the set
comp6(P(Et )) as

comp6(P(Et )) = {Q(Ez) | Q is a predicate symbol in6 with Q 6= P
andEz is a vector of pairwise distinct variables.}

∪ {comp6(P(Eu)) | Eu ∈ comp6(Et )},
where comp6(Et ) is defined according to Definition 4.1 above.

The definition of comp6(P(Et )) for an atomP(Et ) is clear, given that Definition 4.1 really captures the
complement of a term tuple. Intuitively, the elements of comp6(Et ) are obtained as follows: Suppose
that a tupleEs of ground terms isnot an instance ofEt . Then this will be detected by a straightforward
matching algorithm either by finding a nonvariable positionp in Et , s.t. [Et | p] and [Es | p] have a different
leading symbol, or by finding two variable positionsp1 andp2 in Et , s.t. [Et | p1] and [Et | p2] are identical
but [Es | p1] and [Es | p2] are not. Hence, if we consider the tree representation ofEt , then we can reach
the complement ofEt by “deviating” from this tree representation in the following way: If a nodep is
labelled by a function symbolf with arity α ≥ 0 and if we replace the whole subtree with rootp by
the tree corresponding to a termg(Ev) for some function symbolg 6= f , then the resulting term tupleEs
is certainly not unifiable withEt . Hence, all ground instances ofEs are in the complement ofEt . Likewise,
suppose that a variablex occurs in two different places inEt . If we replace these two occurrences of
x by two fresh variablesz1 andz2 and, moreover, add the constraintz1 6= z2, then again all ground
instances of the resulting constrained term tuple are in the complement ofEt . In case of a deviation at a
nonvariable position inEt , the depth of this position corresponds to the recursion depth of the definition
of comp6(Et ), where finally a component offβ(Euβ) is replaced by a termwβ ∈ BTH−{ fβ(Ex)}. Likewise,
the deviation at two variable positions inEt corresponds to the base case in the definition of comp6(Et ),
where a constraint is added. The following example will illustrate these ideas.

EXAMPLE 4.1 (Tree Representation and Complement of an Atom). Let6 = {P3, Q2, f 2, g1,a0}
denote a signature, where the arity of each symbol is given through the exponent, and letA =
P( f (x,a), f (y, x), x) be an atom over6.

The tree representation ofA is depicted in Fig. 1. Moreover, the following atoms contain only ground
instances from the complement ofA:

• deviation at depth 0 isQ(z1, z2);

FIG. 1. Tree corresponding toP( f (x,a), f (y, x), x).
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• deviation at depth 1 isP(a, y1, z1), P(g(x), y1, z1), P(y1,a, z1), P(y1, g(x), z1);

• deviation at depth 2 isP( f (z1, g(x)), f (z2, z3), z4), P( f (z1, f (x1, x2)), f (z2, z3), z4);

• deviation at a variable position is [P( f (z1,a), f (z2, z3), z4) : z1 6= z3], [ P( f (z1,a), f (z2, z3),
z4) : z1 6= z4].

Now we show that comp6(Et ) indeed captures the complement of a term tupleEt :
LEMMA 4.1 (Complement of a Term Tuple).Let H be a Herbrand universe with signature6 and

let Et be a k-tuple of H-terms. Thencomp6(Et ) from Definition4.1 represents the complement ofEt . That
is, for any Es ∈ Hk, the following equivalence holds:Es is not an instance ofEt ⇔ Es is an instance of a
tuple incomp6(Et ).

Proof. We proceed by induction on the term depthτ (Et ) of Et .
Induction Begin.Let Et be a term tuple withτ (Et ) = 0; i.e., the components ofEt are either constant

symbols or variables. Then we distinguish the following cases.

Case 1. Let Et = (t1, . . . , tk) consist of variables only. For the “if”-direction, suppose thatEs =
(s1, . . . , sk) is an instance of some element [(z1, . . . , zk) : zi 6= zj ] in comp6(Et ). Then, in particular,
the componentssi andsj of Es are distinct. On the other hand,ti and t j are two occurrences of the
same variable inEt . Hence, for every ground instanceEt ′ of Et , thei th and j th components ofEt ′ must be
identical. But thenEs cannot be an instance ofEt .

For the “only if”-direction, suppose thatEs is not an instance ofEt . SinceEt consists only of variables,
there must be a pair (i, j ) of components inEt s.t. ti and t j are two occurrences of the same variable
in Et and the termssi andsj are distinct. Without loss of generality, let (i, j ) be the lexicographically
smallest such pair. Note thatEs is of course an instance of the constrained tuple [(z1, . . . , zk) : zi 6= zj ],
where (z1, . . . , zk) is a vector of pairwise distinct variables. It only remains to prove that [(z1, . . . , zk) :
zi 6= zj ] ∈ comp6(Et ). By the definition of comp6(Et ) in Case 1 of Definition 4.1, it suffices to show
that tα 6= ti holds for all componentstα with α < i . Suppose on the contrary that the variableti also
occurs in some componenttα of Et with α < i . Then, by the conditionsi 6= sj , we have eithersα 6= si

or sα 6= sj . Moreover,tα andti as well astα andt j are occurrences of the same variable inEt . Finally,
(α, i ) and (α, j ) are lexicographically smaller than (i, j ), which contradicts our assumption that (i, j )
is the smallest such pair of components.

Case 2. Otherwise,Et = (Er 0,a1, Er 1,a2, Er 2, . . .al , Er l ) with l ≥ 1, s.t.Er 0, . . . , Er l are vectors of vari-
ables anda1, . . . ,al are constant symbols. Moreover, letEs ∈ Hk. For the “if” direction, suppose thatEs
is an instance of some element in comp6(Et ). Then we distinguish two possibilities:

1. Es is an instance of a term tuple of the form (Ez0, w1, Ez1, . . . wl , Ezl ) in comp6(Et ) and there
exist indicesi andβ, s.t. thei th componentti of Et is of the formti = aβ andsi is an instance of
wβ ∈ BTH −{aβ}. Hence,si andti are nonvariable terms with different leading symbols and, therefore,
si cannot be an instance ofti . But thenEs is not an instance ofEt either.

2. Es is an instance of a term tuple of the form (Eu0,a1, Eu1, . . . ,al , Eul ) in comp6(Et ), s.t. (Eu0, Eu1, . . . ,

Eul ) is in comp6((Er 0, Er 1, . . . , Er l )). Note that (Er 0, Er 1, . . . , Er l ) is a vector of variables. Hence, by Case 1
of Definition 4.1, there exist two occurrences of the same variableriαi in Er i = (ri 1, . . . , rini ) andr jα j

in Er j = (r j 1, . . . , r jn j ), s.t. the constrained term tuple (Eu0, Eu1, . . . , Eul ) from comp6((Er 0, Er 1, . . . , Er l ))
is of the form (Eu0, Eu1, . . . , Eul ) = [(z01, . . . , z0n0, . . . , zl1, . . . , zlnl ) : ziαi 6= zjα j ]. Thus, Es is an in-
stance of the constrained term tuple [(z01, . . . , z0n0,a1, z11, . . . , z1n1, . . . ,al , zl1, . . . , zlnl ) : ziαi 6=
zjα j ] from comp6(Et ). On the other hand, the componentsriαi and r jα j in Et = (r01, . . . , r0n0,a1,

r11, . . . , r1n1, . . . ,al , rl1, . . . , rlnl ) are two occurrences of the same variable. But then, analogously
to the considerations in Case 1 above,Es cannot be an instance ofEt .

For the “only if” direction, suppose thatEs is not an instance ofEt = (r01, . . . , r0n0, a1, r11, . . . ,

r1n1, . . . ,al , rl1, . . . , rlnl ). Then there are again two possibilities:

1. There exists a componentai in Et s.t. the corresponding componentfi (Eui ) of Es has a different
leading symbol; i.e.,ai 6= fi . ThenEs is an instance of the term tupleT = (Ez0, w1, Ez1, . . . wl , Ezl ), where
everyEzα is a vector of pairwise distinct variables,wi ∈ BTH − {ai }, and for allγ ∈ {1, . . . , l } − {i },
wγ is a fresh variable. Moreover, by Case 2 of Definition 4.1,T is contained in comp6(Et ).
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2. Es coincides withEt on all nonvariable componentsai of Et but there exist two occurrences
riαi andr jα j of the same variable inEt s.t. the terms in the corresponding components ofEs are dis-
tinct. Without loss of generality, let (i, αi , j, α j ) be the lexicographically minimal quadruple with
this property. ThenEs is of course an instance of the constrained term tupleT = [(z01, . . . , z0n0,

a1, z11, . . . , z1n1, . . . ,al , zl1, . . . , zlnl ) : ziαi 6= zjα j ], where the componentszβγ are pairwise distinct
variables. Moreover, analogously to Case 1 above, it can be shown that [(z01, . . . , z0n0, . . . , zl1, . . . ,

zlnl ) : ziαi 6= zjα j ] is an element of comp6((Er 0, Er 1, . . . , Er l )). Hence, by Case 2 of Definition 4.1,T is
contained in comp6(Et ).

Induction Step. Letd ≥ 0 and suppose that comp6(Eu) indeed represents the complement ofEu for all
term tuplesEu with τ (Eu) ≤ d. Moreover, letEt be a term tuple withτ (Et ) = d + 1. ThenEt is of the form
Et = (Er 0, f1(Es1), Er 1, f2(Es2), Er 2, . . . , fl (Esl ), Er l ) with l ≥ 1, whereEr 0, . . . , Er l are vectors of variables and
f1(Es1), . . . , fl (Esl ) are the nonvariable components ofEt . Now let Es be an arbitrary ground term tuple
from Hk with Es= (Er 0

′, g1(Es1
′), Er 1

′, g2(Es2
′), Er 2

′, . . . , gl (Esl
′), Er l

′), s.t. everyEr i
′ has the same dimension as

Er i . Then the ground termgi (Esi
′) is unifiable with fi (Esi ), iff gi and fi are identical andEsi

′ is an instance
of Esi . Likewise, Es is unifiable withEt , iff for all i ∈ {1, . . . , l }, gi and fi are identical andS = (Er 0

′,
Es1
′, Er 1

′, Es2
′, Er 2

′, . . . , Esl
′, Er l
′) is an instance ofT = (Er 0, Es1, Er 1, Es2, Er 2, . . . , Esl , Er l ). In other words,Es is in

the complement ofEt , iff either (1) there exists a nonvariable componentfi (Esi ) in Et , s.t. the corresponding
componentgi (Esi

′) in Es has a different leading symbol, or (2) the leading symbol of every nonvariable
component inEt coincides with the corresponding component inEs but S is not an instance ofT .
Analogously to Case 2 of Induction Begin, it can be shown that the ground instances of the tuples of the
form (Ez0, w1, Ez1, w2, Ez2, . . . wl , Ezl ) from comp6(Et ) are exactly those ground term tuples which fulfill
condition (1) above.

On the other hand, the term depth of the tupleT = (Er 0, Es1, Er 1, . . . , Esl , Er l ) is strictly smaller thanτ (Et ).
Hence, by the induction hypothesis, we may conclude that the set of ground instances of the tuples in
comp6(T) coincides with the complement ofT . But then also the ground instances of the tuples in
T = {(Eu0, f1(Ev1), Eu1, . . . , fl (Evl ), Eul ) | (Eu0, Ev1, Eu1, . . . , Evl , Eul ) ∈ comp6(T)} are exactly those ground
term tuples which fulfill condition (2) above.

The only point that we have to be a bit careful about is that a term tuple (Eu0, Ev1, Eu1, . . . , Evl , Eul )
in comp6(T) may contain constraints, which are then also contained in the corresponding term tuple
(Eu0, f1(Ev1), Eu1, . . . , fl (Evl ), Eul ) in T . However, removing a function symbolfi from a component inEt
and lifting the argumentsEsi to components ofEt clearly preserve all the occurrences of the variables
from Et . Likewise, when we produce a tuple (Eu0, f1(Ev1), Eu1, . . . , fl (Evl ), Eul ) by adding a function symbol
fi in front of the componentsEvi of the corresponding tuple in comp6(T), then no variable occurrences
are deleted or added. Hence, analogously to Case 2 of Induction Begin, it is a purely notational matter
whether we consider the constraints of a tuple (Eu0, f1(Ev1), Eu1, . . . , fl (Evl ), Eul ) in T as part of the tuple
itself or as part of the tuple (Eu0, Ev1, Eu1, . . . , Evl , Eul ) in comp6(T). j

The correctness of Definition 4.2 follows immediately.

COROLLARY 4.1 (Complement of a Single Atom).Let A be an arbitrary atom over the signature
6 and let B be a ground atom over the same signature. Thencomp6(A) according to Definition4.2
represents the complement of A, i.e., B is not an instance of A⇔ B is an instance of some element
in comp6(A).

Proof. Let A = P(Et ) and letB be an arbitrary ground atom over the signature6 with B = Q(Es).
B is not an instance ofA, iff either P 6= Q or Es is not an instance ofEt . But these two cases are exactly
captured by Definition 4.2.j

Recall from the Sections 1.2 and 2.2 that we writeGH (A) to denote the set ofH -ground in-
stances contained in a (possibly constrained) atomA. Then the complement representation of a single
atom from Definition 4.2 can be easily extended to a representation of the complement of an ARM
A = {A1, . . . , An}.

COROLLARY 4.2 (Complement of an ARM). LetA = {A1, . . . , An} be an atom set over the signature
6 and, for every i ∈ {1, . . . ,n}, let comp6(Ai ) be defined according to Definition4.2. Then the
complement ofA (i.e., the set of ground atoms over6 which are not an instance of any Ai ) can be



WORKING WITH ARMs 195

computed as follows:

comp6(A) =
[ ⋃

B1∈comp6 (A1)

GH (B1)

]
∩ · · · ∩

[ ⋃
Bn∈comp6 (An)

GH (Bn)

]
.

Remark. Definition 4.2 of the complement of an atom via the complement of a term tuple improves
upon a previous version of this definition in two aspects (cf. [11]): First, the inductive definition of
comp6(Et ) in Definition 4.1 can be easily implemented. Second, the number of constrained atoms
necessary for representing the complement of an atomA depends linearly on the number of positions
in A (rather than quadratically as in [11]). The latter fact is formally stated below.

LEMMA 4.2 (Size of the Complement Representation).Let6 be a signature with|6| = c and let A be
an atom over6. Moreover,letcomp6(A) be defined as in Definition4.2. Then|comp6(A)| ≤ c×size(A)
holds.

Proof. Let A = P(Et ). Then the number of atoms of the formQ(Ez) in comp6(A) with Q 6= P
is clearly restricted by (c− 1). Moreover, size(Et ) = size(P(Et )) − 1. Hence, it suffices to show that
|comp6(Et ) |≤ c× size(Et ) holds for every term tupleEt over6. Analogously to Lemma 4.1, we proceed
by induction onτ (Et ):

Induction Begin. Ifτ (Et ) = 0, then we distinguish two cases: IfEt consists of variables only, then,
by Case 1 of Definition 4.1, even|comp6(Et )| ≤ size(Et ) holds. Otherwise, letEt = (Er 0,a1, Er 1, . . .al , Er l )
with l ≥ 1, s.t.Er 0, . . . , Er l are vectors of variables anda1, . . . ,al are constant symbols. Then the number
of term tuples of the form (Ez0, w1, Ez1, . . . , wl , Ezl ) in comp6(Et ), s.t.wβ ∈ BTH − {aβ} for exactly one
β ∈ {1, . . . , l } is restricted by (c−1)× l . Moreover, the number of elements in comp6((Er 0, Er 1, . . . , Er l ))
and, therefore, also the number of tuples of the form (Eu0,a1, Eu1, . . . ,al , Eul ) in comp6(Et ) are restricted
by size((Er 0, Er 1, . . . , Er l )) = k − l . We thus get the upper bound|comp6(Et )| ≤ (c− 1)× l + (k − l ) ≤
c× k = c× size(Et ).

Induction Step. Letd ≥ 0 and suppose that|comp6(Eu)| ≤ c × size(Eu) holds for all term tu-
ples Eu with τ (Eu) ≤ d. Now let Et be a term tuple withτ (Et ) = d + 1, s.t. Et is of the form Et =
(Er 0, f1(Es1), Er 1, . . . , fl (Esl ), Er l ) with l ≥ 1, whereEr 0, . . . , Er l are vectors of variables andf1(Es1), . . . , fl (Esl )
are the nonvariable components ofEt . Then the number of term tuples of the form (Ez0, w1, Ez1, . . . wl , Ezl )
in comp6(Et ), s.t.wβ ∈ BTH − { fβ(Ex)} for exactly oneβ ∈ {1, . . . , l } is restricted by (c− 1)× l .

Moreover, the number of remaining elements in comp6(Et ) corresponds to the cardinality of
comp6((Er 0, Es1, Er 1, . . . , Esl , Er l )). For this vector (Er 0, Es1, Er 1, . . . , Esl , Er l ) the conditions size((Er 0, Es1, Er 1, . . . ,

Esl , Er l )) = size(Et ) − l andτ ((Er 0, Es1, Er 1, . . . , Esl , Er l )) ≤ d hold. Hence, by the induction hypothesis, we
have|comp6((Er 0, Es1, Er 1, . . . , Esl , Er l ))| ≤= c× (size(Et )− l ). But then,|comp6(Et )| ≤ (c− 1)× l + c×
(size(Et )− l ) ≤ c× (size(Et ) holds. j

The size of an element in|comp6(A)| is clearly polynomially (in fact, even linearly) bounded w.r.t. the
size ofA. Moreover, by the linear bound on|comp6(A)|, the set comp6(A) can of course be computed
in polynomial time. In particular, only polynomial time is required to “guess” an arbitrary element
from comp6(A). The latter property will play a role in the construction of a nondeterministic clause
evaluation algorithm in Section 5. Finally, recall that every atomB without constraints can be easily
converted into a constrained atom by adding the trivially true constraint>, i.e.: B and [B :>] have
identical sets of ground instances. Hence, w.l.o.g. we may assume that all elements in comp6(A) are
constrained atoms.

5. coNP-MEMBERSHIP

In the case of a finite Herbrand universe, a coNP-algorithm for the CLAUSE-EVALUATION problem
is easy to construct; i.e., letC = L1 ∨ · · · ∨ Ll ∨ ¬M1 ∨ · · · ∨ ¬Mm and letA = {A1, . . . , An} be an
ARM. Then we can check by the following nondeterministic algorithm thatC does not evaluate toT
in the modelMA:

1. Guess anH -ground instanceCϑ of the clauseC.

2. Check by matching that no atomLiϑ is an instance of anyAk ∈ A and that every atomM jϑ

is an instance of someAk ∈ A.
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However, in the presence of function symbols, there is no guarantee that the size of the “counterex-
ample” Cϑ to be guessed in the first step is polynomially bounded. Hence, a different approach is
called for. In this section, we prove the coNP-membership of the CLAUSE-EVALUATION problem by
making use of the complement representation of ARMs from the previous section. By Theorem 1.1, the
coNP-membership of TOTAL-COVER, MODEL-EQUIVALENCE, and ATOM-H-SUBSUMPTION
will then follow immediately.

In the case of a single atom, the considerations on the complement of an ARMA from the previous
section lead to the following truth evaluation criterion:

LEMMA 5.1 (Truth Evaluation of an Atom).Let C be an atom over some signature6 and let
A = {A1, . . . , An} be an ARM over6. Furthermore,let comp6(Ai ) denote the complement of Ai

according to Definition4.2. Then the following equivalence holds:

C evaluates toF inMA⇔ there exist constrained atoms B1, . . . , Bn with Bi ∈ comp6(Ai )
for every i, s.t. GH (C) ∩ GH (B1) ∩ · · · ∩ GH (Bn) 6= ∅.

Proof. Cevaluates toF inMA, iff there exists a ground instanceC′ of C, s.t.C′ is in the complement
of A. By Corollary 4.2, this is the case iff

C′ ∈
[ ⋃

B1∈comp6 (A1)

GH (B1)

]
∩ · · · ∩

[ ⋃
Bn∈comp6 (An)

GH (Bn)

]
.

By the distributivity of∪ and∩, this condition holds iff there exist constrained atomsB1, . . . , Bn, with
Bi ∈ comp6(Ai ) for everyi , s.t.C andGH (B1) ∩ · · · ∩ GH (Bn) have a common ground instance.j

Now we extend the above criterion from single atoms to arbitrary clauses.

LEMMA 5.2 (Truth Evaluation of a Clause).LetA = {A1, . . . , An} be an ARM over some signature
6 and let C= L1 ∨ · · · ∨ Ll ∨ ¬M1 ∨ · · · ∨ ¬Mm be a clause over6, where the Li ’s and Mj ’s are
unnegated atoms. Furthermore, for every k∈ {1, . . . ,n}, let comp6(Ak) denote the complement of Ak

as in Definition4.2. Then C evaluates toF inMA, iff the following conditions hold.
There exist l× n constrained atoms Bi j with 1 ≤ i ≤ l and 1 ≤ j ≤ n, s.t. Bi j ∈ comp6(Aj )

for every i and j and there exist m indices k1, . . . , km together with a substitutionσ , s.t. Liσ ∈
GH (Bi 1) ∩ · · · ∩ GH (Bin) for all i ∈ {1, . . . , l } and Mjσ ∈ GH (Akj ) for all j ∈ {1, . . . ,m}.

Proof. C evaluates toF in MA, iff there exists a ground instanceCσ of C s.t. all literalsLiσ

and¬M jσ evaluate toF; i.e., everyLiσ is in the complement ofA and everyM j is an instance
of someAk. Analogously to the proof of Lemma 5.1, this condition holds iff there exist constrained
atomsBi j ∈ comp6(Aj ) with 1 ≤ i ≤ l and 1≤ j ≤ n, s.t. Liσ ∈ GH (Bi 1) ∩ · · · ∩ GH (Bin) for all
i ∈ {1, . . . , l } and there exist indicesk1, . . . , km, s.t.M jσ ∈ GH (Akj ) for all j ∈ {1, . . . ,m}. j

In Lemma 5.2 above we have reduced the truth evaluation of a clauseC in a model represented by
an ARMA to deciding whether certain substitutionsσ on Var(C) exist. The following lemma provides
a tool by which the existence of such a substitution can actually be checked.

LEMMA 5.3 (Simultaneous Unifications).Let C= L1∨· · ·∨Ll∨¬M1∨· · ·∨¬Mm be a clause where
the Li ’s and Mj ’s are unnegated atoms. Furthermore, let [b11 :Q11], . . . , [b1n :Q1n], . . . , [bl1 :Ql1],
. . . , [bln :Qln] be constrained atoms,and let A1, . . . , Am be atoms. Finally,let the clauses C, b11, . . . ,

b1n, . . . , bl1, . . . ,bln, A1, . . . , Am be pairwise variable disjoint and let the simultaneous unification
problem S be defined through the following set of equations:

S= {L1 = b11 = · · · = b1n, . . . , Ll = bl1 = · · · = bln,M1 = A1, . . . ,Mm = Am}.

Then the following conditions hold:

Case 1. If S is not unifiable, then there exists no ground instanceCλ of C s.t. Liλ ∈ GH ([bi 1 :
Qi 1]) ∩ · · · ∩ GH ([bin : Qin]) for every i ∈ {1, . . . , l } andM jλ ∈ GH (Aj ) for every j ∈ {1, . . . ,m}.
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Case 2. If S is unifiable withσ = mgu(S), then for every ground instanceCλ of C, the following
equivalence holds:Liλ ∈ GH ([bi 1 :Qi 1]) ∩ · · · ∩ GH ([bin :Qin]) for every i ∈ {1, . . . , l } andM jλ ∈
GH (Aj ) for every j ∈ {1, . . . ,m} ⇔ Cλ is an instance of [Cσ :Rσ ] with R ≡ Q11 ∧ · · · ∧ Q1n ∧
· · · ∧Ql1 ∧ · · · ∧Qln.

Proof. If S is not unifiable, then there exists no substitutionλ s.t. Liλ ∈ GH (bi 1) ∩ · · · ∩ GH (bin)
for everyi ∈ {1, . . . , l } andM jλ ∈ GH (Aj ) for every j ∈ {1, . . . ,m}. Hence, in particular, there exists
no substitutionλ s.t.Liλ ∈ GH ([bi 1 :Qi 1]) ∩ · · · ∩GH ([bin :Qin]) andM jλ ∈ GH (Aj ) for everyi and
j , since the set of ground instances of an atom certainly does not increase when constraints are added.
Hence, it only remains to prove the equivalence in Case 2.

“⇒” Let Cλ be a ground instance ofC s.t. Liλ ∈ GH ([bi 1 :Qi 1]) ∩ · · · ∩ GH ([bin :Qin]) and
M jλ ∈ GH (Aj ) for every i and j . We have to show that thenCλ is an instance of [Cσ :Rσ ] with
R ≡ Q11∧ · · · ∧Q1n ∧ · · · ∧Ql1 ∧ · · · ∧Qln:

For everyi ∈ {1, . . . , l }, Liλ is a common ground instance of [bi 1 :Qi 1], . . . , [bin :Qin]. Hence,
there exist solutionsϕi 1 of Qi 1, . . . , ϕin of Qin s.t. Liλ = bi 1ϕi 1 = · · · = binϕin. By assumption,
the clausesC, bi 1, . . . ,bin are variable disjoint. Now letϕ(i ) = ϕi 1 ∪ · · · ∪ ϕin. Then the equations
Li (λ ∪ ϕ(i )) = Liλ, bi 1(λ ∪ ϕ(i )) = bi 1ϕi 1, . . . ,bin(λ ∪ ϕ(i) ) = binϕin hold. Hence,λ ∪ ϕ(i ) is a unifier
of Li = bi 1 = · · · = bin. Analogously, for everyj ∈ {1, . . . ,m}, M jλ is a ground instance ofAj , i.e.,
M jλ = Ajψ j for some substitutionψ j . Thus, sinceC andAj have no variables in common,λ ∪ψ j is
a unifier ofM j = Aj .

Remember that the clausesC, b11, . . . ,b1n, . . . , bl1, . . . ,bln, A1, . . . , Am are pairwise variable dis-
joint. Hence, we arrive at a simultaneous unifier ofSby putting together all of the above unifiersλ, ϕ(i ),
andψ j into a single substitution, i.e., letµ = λ ∪ ϕ(1) ∪ · · · ∪ ϕ(l ) ∪ψ1 ∪ · · · ∪ψm. Thenµ is a unifier
of Sand, therefore,µ is a ground instance ofσ = mgu(S). Hence, there exists a ground substitutionτ
s.t.µ = σ ◦ τ . Furthermore,µ|Var(C) = λ and, therefore,Cλ = Cµ.

Moreover, Var(Qik) ⊆ Var(bik) for all i andk by the definition of constrained atoms. Thus,Qikµ ≡
Qikϕik holds. Hence,µ = σ ◦ τ is a solution of everyQik and, therefore, also ofR ≡ Q11 ∧ · · · ∧
Q1n ∧ · · · ∧Ql1∧ · · · ∧Qln. Thusτ is a solution ofRσ andCλ = Cµ = Cστ is a ground instance of
[Cσ : Rσ ].

“⇐” Let Cλ be an instance of [Cσ :Rσ ] with R ≡ Q11 ∧ · · · ∧ Q1n ∧ · · · ∧ Ql1 ∧ · · · ∧ Qln.
We have to show that thenLiλ ∈ GH ([bi 1 :Qi 1]) ∩ · · · ∩ GH ([bin :Qin]) for every i ∈ {1, . . . , l } and
M jλ ∈ GH (Aj ) for every j ∈ {1, . . . ,m} holds.

SinceCλ is a ground instance of [Cσ :Rσ ], there exists a solutionτ of Rσ s.t. Cλ = Cστ .
Furthermore, by assumption,σ = mgu(S). Hence, in particular,Liσ = bi 1σ = · · · = binσ for every
i ∈ {1, . . . , l } and M jσ = Ajσ for every j ∈ {1, . . . ,m}. Therefore,Liλ = Liστ is a common
ground instance of [bi 1σ :Rσ ], . . . , [binσ :Rσ ] and M jλ = M jστ is a ground instance ofAjσ for
every i and j . But every equational problemQik is a conjunct inR. Thus,Liλ = Liστ is a ground
instance of [bikσ : Qikσ ] and also of [bik :Qik ] for every i ∈ {1, . . . , l } andk ∈ {1, . . . ,n}. Hence,
Liλ ∈ GH ([bi 1 :Qi 1]) ∩ · · · ∩ GH ([bin :Qin]) for every i ∈ {1, . . . , l } andM jλ ∈ GH (Aj ) for every
j ∈ {1, . . . ,m}. j

By combining Lemmas 5.2 and 5.3 above with Lemma 2.1 to test the nonemptiness of a setGH ([Cσ :
Rσ ]), we are now ready to prove the coNP-membership of the CLAUSE-EVALUATION problem.

THEOREM 5.1 (coNP-Membership of CLAUSE-EVALUATION). Let H be an arbitrary Herbrand
universe. Then the CLAUSE-EVALUATION problem over H is in coNP.

Proof. Let C = L1 ∨ · · · ∨ Ll ∨ ¬M1 ∨ · · · ∨ ¬Mm be a clause and letA = {A1, . . . , An} be an
ARM over H . Moreover, let6 denote the signature that contains all predicate symbols occurring in
C andA as well as the constant symbols and function symbols fromH . Then consider the following
nondeterministic algorithm for testing whetherC evaluates toF in the model represented byA:

1. Guessl × n constrained atoms [bik : Qik ] with 1 ≤ i ≤ l and 1≤ k ≤ n, s.t. [bik : Qik ] ∈
comp6(Ak) for everyi andk.

2. Guessm indicesk1, . . . , km with kj ∈ {1, . . . ,n} for every j .
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3. Suppose that the variables have been renamed appropriately s.t. the clausesC,b11, . . . ,b1n, . . . ,

bl1, . . . ,bln, Ak1, . . . , Akm are pairwise variable disjoint. Moreover, let the simultaneous unification prob-
lem S be defined asS= {L1 = b11 = · · · = b1n, . . . , Ll = bl1 = · · · = bln,M1 = Ak1, . . . ,Mm =
Akm}. Then check thatS is unifiable withσ = mgu(S) and that the equational problemRσ with
R ≡ Q11∧ · · · ∧Q1n ∧ · · · ∧Ql1 ∧ · · · ∧Qln contains no trivial disequation of the formt 6= t .

We claim that this algorithm is correct and that its time complexity is polynomially bounded. As
for thecorrectness, recall the criterion for clause evaluation from Lemma 5.2. The target of the above
algorithm is to test this very criterion; namely, the purpose of Step 1 is to guess constrained atoms
Bik = [bik : Qik ] ∈ comp6(Ak) with 1 ≤ i ≤ l and 1≤ k ≤ n. Likewise, in Step 2 we guessm
indicesk1, . . . , km. Finally, in Step 3 the Lemmas 5.3 and 2.1 are applied to check whether an instance
Cλ of C actually exists s.t.Liλ ∈ GH ([bi 1 : Qi 1]) ∩ · · · ∩ GH ([bin : Qin]) for all i ∈ {1, . . . , l } and
M jλ ∈ GH (Akj ) for all j ∈ {1, . . . , m} hold.

The crucial point for thecomplexityof the above algorithm is that, by the considerations from the
previous section on the complement of an ARM, the total length of the constrained atoms [bik : Qik ]
with 1 ≤ i ≤ l and 1≤ k ≤ n, which are guessed in the first step, is polynomially bounded in the size
of an input problem instance. Moreover, the use of an efficient unification algorithm guarantees that all
unifications involved in the third step can be done in polynomial time (in fact, even linear time suffices;
cf., e.g., [20] or [21]). Likewise, we can check in polynomial time for all disequationsuσ 6= vσ in the
resulting equational problemRσ that the termsuσ andvσ are syntactically distinct. j

In a previous version of this work, the coNP-membership of the problems TOTAL-COVER, MODEL-
EQUIVALENCE, and ATOM-H-SUBSUMPTION was shown separately by a completely different
method (cf. [11]). However, by Theorem 1.1, CLAUSE-EVALUATION is the hardest problem studied
here and therefore the coNP-membership of the other problems is an easy consequence of Theorem 5.1.
Moreover, by the coNP-hardness result from Corollary 3.1, we immediately get:

COROLLARY 5.1 (coNP-Completeness).Let H be an arbitrary Herbrand universe with at least two
elements. Then the problems TOTAL-COVER,MODEL-EQUIVALENCE,ATOM-H-SUBSUMPTION,
and CLAUSE-EVALUATION over H are coNP-complete.

6. 5p
2-MEMBERSHIP OF CLAUSAL H-SUBSUMPTION

Analogously to the coNP-membership proof of CLAUSE-EVALUATION in the previous section,
the CLAUSE-H-SUBSUMPTION problem can easily be shown to be in5

p
2 in the case of a finite

Herbrand universe. To see this, we consider the following nondeterministic algorithm with NP-oracle,
which checks thatC 6≤sH D holds:

1. Guess anH -ground instanceDjϑ of some clauseDj ∈ D.

2. For all clausesCi ∈ C, check by an oracle for first-order subsumption thatCi 6≤s D jϑ holds.

This algorithm clearly works in polynomial time. Furthermore, first-order subsumption is NP-
complete (cf. [8, Problem LO18]). Hence, the oracle used in the above algorithm is in NP and therefore
the overall algorithm is in6 p

2 .
Again, this algorithm cannot be carried over directly to the case of an infinite Herbrand universe, since

there is no guarantee that the size of the “counterexample”Djϑ , which is guessed in the first step of this
algorithm, is polynomially bounded. In order to prove the5p

2 -membership of clausal H-subsumption
also in this case, we make use of the following lemma from [7], which states that H-subsumption and
ordinary subsumption coincide, if certain conditions on the term depth are fulfilled (for a proof, see [7,
Lemma 6.5]).

LEMMA 6.1. LetC andD be clause sets over some infinite Herbrand universe H and suppose that
for all clauses D∈ D and all variables x inVar(D), τmin(x, D) > τ (C) holds. Then the equivalence
C ≤s D⇔ C ≤sH D holds.

Our5p
2 -algorithm for checkingC 6≤sH D will then consist of the following steps:
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1. Guess anH -instanceD of some clauseDj ∈ D, s.t. for all variablesx ∈ Var(D), τmin(x, D) >
τ (C) holds.

2. For all clausesCi ∈ C, check by an oracle for first-order subsumption thatCi 6≤s D holds.

The correctness of this algorithm follows immediately from Lemma 6.1. However, if the signature of
H contains at least one function symbol of arity≥2, then we have no guarantee that there exists a
“counterexample”D of polynomial size. The purpose of this section is to prove that a (not necessarily
ground) counterexampleD of polynomial size actually does exist whenever any counterexample exists.

In [7, Theorem 6.6], a decision procedure ofH - subsumption, which is based on “partial saturation”
of the clause setD to some clause setD′, s.t. all variables inD′ occur at a depth greater thanτ (C), is
provided. In Definition 6.1 below we make this notion of “partial saturation” precise.

DEFINITION 6.1 (Partial Saturation). LetD be a clause over some Herbrand universeH and let
Var(D) = {x1, . . . , xk} denote the variables inD. Furthermore, letBT(1)

H , . . . ,BT(k)
H denote pairwise

variable disjoint variants of the linear base termsBTH over H (cf. Section 2.1). Then an application of
thepartial saturation ruleto the clauseD leads to the following set of clauses:

PSat(D) =
⋃

t1∈BT(1)
H

. . .
⋃

tk∈BT(k)
H

{D[x1← t1, . . . , xk ← tk]}.

For a clause setD, we define PSat(D) =⋃D∈D PSat(D). Then the result ofd successive applications of
the partial saturation rule to the clause setD will be denoted asDd; i.e.,D0 = D andDi = PSat(Di−1)
for i ≥ 1.

The following properties of the setDd, which results fromd successive applications of the par-
tial saturation rule,form the starting point of our construction of a counterexample of polynomial
size:

LEMMA 6.2 (Properties ofDd). Let C and D be clause sets over some Herbrand universe H.
Furthermore,let d = max({τ(C), τ (D)}) + 1 and let the setDd be defined according to Definition
6.1. ThenDd has the following properties:

1. Dd=sHD, i.e.,Dd andD represent the same set of ground instances.

2. τ(Dd) < 2d.

3. For every D∈ Dd and every variable x∈ Var(D), τmin(x, D) ≥ d.

Proof. We first consider a single application of the partial saturation rule.

1. D1 =sH D: Remember from Section 2.1 that the linear base termsBTH are defined in such a
way that theyH -subsume the whole Herbrand universeH , i.e.,BTH =sH H . Hence, for an arbitrary
clauseD with variables Var(D) = {x1, . . . , xk}, the following clause sets have the same set of ground
clauses:

{D} =sH

⋃
t1∈BT(1)

H

{D[x1← t1]} =sH

=sH

⋃
t1∈BT(1)

H

⋃
t2∈BT(2)

H

{D[x1← t1, x2← t2]} =sH · · · =sH

=sH

⋃
t1∈BT(1)

H

⋃
t2∈BT(2)

H

· · ·
⋃

tk∈BT(k)
H

{D[x1← t1, . . . , xk ← tk]} = PSat(D).

2. τ (D1) ≤ τ (D) + 1: For an arbitrary clauseD with variables Var(D) = {x1, . . . , xk} and
for any k-tuple of terms (t1, . . . , tk), the following inequality holds:τ (D[x1 ← t1, . . . , xk ← tk]) ≤
τ (D) + max({τ(t1), . . . , τ (tk)}). Furthermore, the term depth of the linear base terms is either 0 or
1. Hence, if every variablexi ∈ Var(D) is instantiated to a linear base termti , we get the following
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inequality:τ (D[x1 ← t1, . . . , xk ← tk]) ≤ τ (D) + 1. By applying this upper bound to every clause
D ∈ D, we arrive at the desired inequalityτ (D1) ≤ τ (D)+ 1.

3. Lete denote a lower bound on the depth of variable occurrences inD, i.e., for everyD ∈ D
and everyxi ∈ Var(D), τmin(xi , D) ≥ eholds. We claim that thene+1 is a lower bound on the depth of
variable occurrences inD1: By the definition of the partial saturation rule, every variablexi in a clause
D ∈ D is either replaced by a constant or by a term of the formf (Ev), whereEv is a vector of variables.
Thusτmin(v j , D′) ≥ e+ 1 for every clauseD′ ∈ PSat(D) and every variablev j in D′.

For the initial setD0 = D, the conditionsτ (D0) < d andτmin(x, D) ≥ 0 hold for everyD ∈ D0 and
everyx ∈ Var(D). Hence, Lemma 6.2 follows by an easy induction argument on the number of partial
saturation rule applications.j

Remember from Definition 1.1 thatC ≤s D holds, iff there exists a clauseC ∈ C and a substitutionϑ
s.t.Cϑ ⊆ D. In this definition of subsumption, clauses are considered as sets of literals. In this section,
it is more convenient to consider the order of literals in a clause as fixed. Moreover, the predicate
symbol of a literal together with its sign is considered as a single symbol (i.e., the “literal symbol”).
Then the notion of positions can be extended in a natural way from atoms to clauses, namely, the
position p = p1 p2 · · · pk with p 6= ε in some clauseC denotes the positionp2 · · · pk of the p1th
literal of C. Furthermore, a clauseB1 ∨ · · · ∨ Bn is an instance of another clauseA1 ∨ · · · ∨ An, iff
there exists a substitutionϑ s.t. Aiϑ = Bi for every i ∈ {1, . . . ,n}. Then the following criterion for
subsumption of clausesC = L1 ∨ · · · ∨ Ll andD = M1 ∨ · · · ∨ Mm clearly holds:C ≤s D, iff there
exists anl -tuple of indices (k1, . . . , kl ) ∈ {1, . . . ,m}l s.t. the clauseMk1 ∨ · · · ∨ Mkl is an instance of
C = L1 ∨ · · · ∨ Ll .

On the other hand, if some clauseD′ = Mk1 ∨ · · · ∨ Mkl is not an instance ofC = L1 ∨ · · · ∨ Ll ,
then this is detected by a simple matching algorithm in the following way: Either there is a nonvariable
positionp in C, s.t. [C | p] and [D | p] have different leading symbols, or there is a variablex with two
distinct occurrencesp andq in C, s.t. the subterms inD at the positionsp andq are not identical. In
other words, only a very limited number of positions inD′ is responsible, ifD′ is not an instance ofC.
Likewise, if C 6≤s D, then this is also due to a restricted number of positions inD. This observation is
formalized in the following definition and lemma of “witnesses” for the nonsubsumption of a clauseD
by a clause setC.

DEFINITION 6.2 (Witness Branches). LetC = {C1, . . . ,Cn} be a clause set andD be a clause with
Ci = Li 1 ∨ · · · ∨ Lil i for i ∈ {1, . . . ,n} andD = M1 ∨ · · · ∨ Mm. Furthermore, assume thatC 6≤s D
holds. Then we define the set Wit ofwitness branchesin the following way:

Wit =
n⋃

i=1

SWiti ∪
n⋃

i=1

PWiti ,

where the sets SWiti and PWiti are defined as follows.

SWiti (=Witnesses of Single Literals). LetLi j with j ∈ {1, . . . , l i } be a literal fromCi and letMk

with k ∈ {1, . . . ,m} be a literal fromD. If Mk is not an instance ofLi j , then we distinguish the following
two cases:

• Case 1.There exists a nonvariable positionp in Li j , s.t. [Li j | p] and [Mk | p] have different
leading symbols. Moreover, letpbe the minimal position (w.r.t. the lexicographical ordering on positions
mentioned in Section 2.1) with this property and letπ be the minimal branch inD s.t. the positionp in
Mk is on this branch. Then SWiti contains the branchπ .

• Case 2.There exist two distinct positionsp andq in Li j , s.t. [Li j | p] = [Li j |q] = x for some
variablex and [Mk | p] 6= [Mk |q]. Hence, in particular, there exists a positionr in the terms [Mk | p]
and [Mk |q] s.t. the terms [Mk | p◦ r ] and [Mk |q ◦ r ] have different leading symbols. Moreover, let the
positionsp, q, andr be minimal with these properties and letπ1 andπ2 in D be the minimal branches,
s.t. the positionp ◦ r in Mk is situated onπ1 andq ◦ r is onπ2, respectively. Then SWiti contains the
two branchesπ1 andπ2.
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PWiti (=Witnesses of Pairs of Literals). Ifl i = 1 (i.e.,Ci is a unit clause), then we set PWiti = ∅.
Otherwise we consider every pair of literalsLi j1 ∨ Li j2 from Ci with 1≤ j1 < j2 ≤ l i and every pair of
literalsMk1 ∨Mk2 from D for arbitrary (k1, k2) ∈ {1, . . . ,m}2. Suppose that there exists a positionp in
Li j1 and a positionq in Li j2 s.t. [Li j1 | p] = [Li j2 |q] = x for some variablex and [Mk1 | p] 6= [Mk2 |q].
Then, there exists a positionr in the terms [Mk1 | p] and [Mk2 |q] s.t. [Mk1 | p◦ r ] and [Mk2 |q ◦ r ] have
different leading symbols. Moreover, let the positionsp, q andr be minimal with these properties and
let π1 andπ2 in D be the minimal branches, s.t. the positionp ◦ r in Mk1 is situated onπ1 andπ2 goes
through the positionq ◦ r in Mk2, respectively. Then PWiti contains the two branchesπ1 andπ2.

The requirement of choosing the minimal positions with certain properties and the minimal paths
through these positions in the above definition is not really necessary. However, the proof of Lemma
6.3, where we claim that the set of witnesses Wit provides a sufficient criterion for the nonsubsumption
of an arbitrary clauseE by the clause setC, will be easier when the positions and paths involved are
unique.

LEMMA 6.3 (Nonsubsumption Criterion Based on Wit).LetC = {C1, . . . , Cn} be a clause set with
Ci = Li 1 ∨ · · · ∨ Lil i for i ∈ {1, . . . ,n} and let D = M1 ∨ · · · ∨ Mm be a clause s.t.C 6≤s D.
Furthermore,let the set of witnessesWit be defined according to Definition6.2. If E= N1∨ · · · ∨ Nm

is another clause s.t. D and E coincide on all branches inWit, thenC 6≤s E also holds.

Proof. Suppose thatC 6≤s D holds. Then, by the criterion for nonsubsumption of clauses mentioned
earlier in this section, there exists noCi ∈ C and nol i -tuple of indices (k1, . . . , kli ) ∈ {1, . . . ,m}l i , s.t.
the clauseMk1 ∨ · · · ∨Mkli

is an instance ofCi = Li 1∨ · · · ∨ Lil i . Then we have to prove that the same
condition also holds forE; i.e., for all Ci ∈ C and all (k1, . . . , kli ) ∈ {1, . . . ,m}l i we have to show that
E′ = Nk1 ∨ · · · ∨ Nkli

is not an instance ofCi .
By assumption,D′ = Mk1 ∨ · · · ∨ Mkli

is not an instance ofCi . Then we distinguish the following
cases (which correspond to the cases in the definition of Wit).

Case 1. There exists a nonvariable positionp = p1 · · · pα in Ci , s.t. [Ci | p] and [D′ | p] have
different leading symbols. Without loss of genarality we assume thatp is minimal with this property.
Then p′ = p2 · · · pα is a nonvariable position, s.t. [Mkp1

| p′] and [Lip1 | p′] have different leading
symbols. Thus,Mkp1

is not an instance ofLip1 and, by Definition 6.2, SWiti contains a branchπ which
goes throughp. But E andD coincide on this branch. Hence,Nkp1

is not an instance ofLip1 either and,
therefore,E′ = Nk1 ∨ · · · ∨ Nkli

is not an instance ofCi = Li 1 ∨ · · · ∨ Lil i .

Case 2. There exists a variablex with two occurrencesp = p1 · · · pα andq = q1 · · ·qβ in Ci

s.t. [D′ | p] 6= [D′ |q]. Hence, in particular, there exists a positionr in the terms [D′ | p] and [D′ |q]
s.t. [D′ | p ◦ r ] and [D′ |q ◦ r ] have different leading symbols. Again we assume w.l.o.g. that the
positionsp, q, andr are minimal with these properties. Then we have to distinguish the following two
subcases:

Case 2.1. p1 = q1; i.e., both occurrences ofx are in the same literalLip1. Then, in particular, the
literal Mkp1

is not an instance ofLip1 and, by Definition 6.2, SWiti contains a pair of branches (π1, π2)
which go through the positionsp ◦ r and q ◦ r , respectively. ButE and D coincide on these two
branches. Hence,Nkp1

is not an instance ofLip1 and, therefore,E′ = Nk1 ∨ · · · ∨ Nkli
is not an instance

of Ci = Li 1 ∨ · · · ∨ Lil i .

Case 2.2. p1 6= q1; i.e., the two occurrences ofx are in different literalsLip1 and Liq1. Then, in
particular, the two-literal clauseMkp1

∨ Mkq1
is not an instance ofLip1 ∨ Liq1 and, by Definition 6.2,

PWiti contains a pair of branches (π1, π2) which go through the positionsp ◦ r andq ◦ r , respectively.
Again, sinceE andD coincide on these two branches,Nkp1

∨ Nkq1
is not an instance ofLip1 ∨ Liq1 and,

therefore,E′ = Nk1 ∨ · · · ∨ Nkli
is not an instance ofCi = Li 1 ∨ · · · ∨ Lil i . j

Our construction of a counterexampleD∗ of polynomial size w.r.t. the input problem instance “C ≤sH

D” will be based on the following idea: We start off with a clauseD ∈ Dd which is not subsumed
by C and “reduce”D to a smaller clauseD∗ by pruning “irrelevant” subtrees fromD. If we leave all
witness branches inD unchanged then, by Lemma 6.3, we can be sure that the “reduced” clause is not
subsumed byC either. Note thatD ∈ Dd is an instance of some clauseDj from the input setD. In
order to construct a counterexampleD∗ for the H-subsumption problem “C ≤sH D” we have to make
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sure that all H-ground instances ofD∗ are instances of clauses inD. To this end, we shall constructD∗

in such a way that it is still an instance ofDj . But then we have to take multiple variable occurrences
in Dj into account. In order to make sure that all occurrences of a variablex in Dj are instantiated to
the same term inD∗, we introduce the notion ofsimilbranches.

DEFINITION 6.3 (Similbranches). LetDj be a clause over some Herbrand universeH and letD be
an instance ofDj . Furthermore, letπ be a branch inD. Then we define the set Sim(π ) of similbranches
of π as follows:

Suppose that the corresponding branch inDj goes through a variable, i.e.,π = p1 · · · pn and there
exists a positionp′ = p1 · · · pk with k ≤ n, s.t. [Dj | p′] = x for some variablex◦, then we define
Sim(π) = ⋃q∈Q{q ◦ pk+1 · · · pn}, whereQ = {q : [Dj |q] = x} denotes the set of all occurrences of
x in Dj .

If the branch inDj corresponding toπ does not go through a variable, then we set Sim(π) = {π}.
Finally, for a set5 of branches inD, we define Sim(5)=⋃π∈5 Sim(π).

Note that everysimilbranchρ ∈ Sim(π) of a branchπ = p1 · · · pn is actually abranch in D. In
order to see this, letQ = {q : [Dj |q] = x} and letp′ ∈ Q be a position inDj with p′ = p1 · · · pk for
somek ≤ n. By assumption,D = Djϑ for some substitutionϑ and, therefore, [D |q] = xϑ for every
q ∈ Q. In particular, [D | p′] = xϑ . But thenpk+1 · · · pn is a branch in the termxϑ and, therefore,
q ◦ pk+1 · · · pn is a branch inD for everyq ∈ Q.

In our construction of a polynomial size counterexampleD∗ from an arbitrary counterexample
D ∈ Dd, we only have to take care of those positions inD, which guarantee that, on the one hand,D∗

is not subsumed byC and, on the other hand, thatD∗ is still an instance of someDj ∈ D. This idea is
made precise in the notion of “relevant” positions defined below. Moreover, it will turn out that there
are only polynomially many such positions.

DEFINITION 6.4 (Relevant Positions). LetC andD be clause sets and letD ∈ Dd be an instance
of some clauseDj ∈ D with C 6≤s D. Furthermore, let Wit denote the set of witnesses thatD is not
subsumed byC according to Definition 6.2. Then the set Rel(D) of relevant positionsin D is defined
as follows:

1. All positions ofDj are in Rel(D).

2. All positions in all similbranches of Wit are in Rel(D).

LEMMA 6.4 (Number of Relevant Positions).Let C = {C1, . . . ,Cn} andD = {D1, . . . , Dm} be
clause sets with d= max({τ(C), τ (D)}) + 1. Moreover,let L denote an upper bound on the number
of literals in the clause D and in the clauses Ci ∈ C. Finally, suppose that D∈ Dd is an instance of
some clause Dj ∈ D with C 6≤s D and letRel(D) be defined as in Definition6.4. Then the number of
positions inRel(D) is restricted in the following way:|Rel(D)| ≤ size(Dj )× [1+n× (2L2+ L4)×2d].

Proof. The number of positions inD j , by definition, corresponds to size(Dj ). It remains to prove
that the number of positions in the similbranches of Wit is restricted by size(Dj )×n× (2L2+ L4)×2d.

The maximum number of positions along a branchπ in D is restricted by the term depth ofD which,
by Lemma 6.2, is strictly smaller than 2d. Now suppose thatπ is an arbitrary branch inD, s.t. the
corresponding branch inDj goes through a variablex. The maximum number of occurrences ofx in
Dj is clearly restricted by size(Dj ). Hence, also|Sim(π)| ≤ size(Dj ) holds. But then the number of
positions in similbranches of witness branches is restricted by size(Dj )× |Wit| × 2d.

Now the only part missing in our proof is an appropriate upper bound on|Wit|: LetCi = Li 1∨· · ·∨Lil i

for i ∈ {1, . . . ,n} and letD = M1 ∨ · · · ∨ Mm. Thenm ≤ L andl i ≤ L for all i ∈ {1, . . . ,n} hold by
assumption. Moreover, the following inequalities hold by the construction of Wit:

|Wit| ≤
n∑

i=1

|SWiti | +
n∑

i=1

|PWiti |,

with

|SWiti | ≤ 2× L2
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and

|PWiti | ≤ 2× ∣∣{Li j1 ∨ Li j2 | 1≤ j1 < j2 ≤ l i
}∣∣∣∣{Mk1 ∨ Mk2

∣∣ k1 ≤ m andk2 ≤ m
}∣∣

≤ 2×
(

L
2

)
× L2 ≤ L4.

We thus get the desired bound|Wit| ≤ (n× 2L2)+ (n× L4) = n× (2L2+ L4). j

In order to prune all subtrees with no relevant positions from the clauseD, we define the following
cutting rule.

DEFINITION 6.5 (Cutting Rule). LetC andD be clause sets over some Herbrand universeH and
let “a” denote a constant symbol inH . Furthermore, letD ∈ Dd be anH -instance of some clause
Dj ∈ D s.t. D is not subsumed byC, and let the set ofrelevant positionsRel(D) be defined according
to Definition 6.4. Then we define the cutting rule as follows.

Let p be a relevant position inD, s.t. [D | p] = F(t1, . . . , ti , . . . , tα) holds, whereF is a function sym-
bol or a (possibly negated) predicate symbol andα ≥ 1 denotes the arity ofF . Moreover, suppose that
no position inti is relevant. Then the subtreeF(t1, . . . , ti , . . . , tα) may be replaced byF(t1, . . . , ti−1,a,
ti+1, . . . , tα).

The following lemma shows that, in order to check whether a subtree inD contains no relevant
positions, it suffices to inspect its root node.

LEMMA 6.5 (Irrelevant Positions inD). Let p be an irrelevant position in D, i.e., p 6∈ Rel(D). Then
every position q below p is also irrelevant;i.e., for every position r6= ε, p ◦ r 6∈ Rel(D).

Proof. Let p andq = p ◦ r be positions inD and suppose thatq ∈ Rel(D). We have to show that
then alsop ∈ Rel(D). Note that, by the definition of Rel(D), q is either a position inD j or a position
on a similbranchπ of some witness branch. In the former case every subposition ofq is also a position
in Dj , and in the latter case every subposition ofq is also a position onπ . Hence,p is relevant, too. j

In the following lemmas, we shall prove several properties of the clauseD∗, which results from
exhaustively applying the cutting rule to an arbitrary counterexampleD ∈ Dd. In Lemma 6.9, these
lemmas will then be used to show that the clauseD∗ is the desired counterexample of polynomial size.

LEMMA 6.6 (Positions ofD∗). Let D ∈ Dd be an H-instance of some clause Dj ∈ D with C 6≤s D
and let D∗ be the clause resulting from exhaustively applying the cutting rule from Definition6.5 to the
clause D. Then the following conditions on the positions of D∗ hold:

1. Every position p of D∗ is also a position of D.

2. If p ∈ Rel(D), then p is also a position of D∗ and,furthermore,[D∗ | p] has the same leading
symbol as[D | p].

3. If p is a position in D∗ and p 6∈ Rel(D), then[D∗ | p] = a.

Proof. An application of the cutting rule can never introduce a new position, since its only effect is
to prune the subtree at some positionp and to replace the term at positionp by a. Hence, all positions
of D∗ are also contained inD.

If p is a relevant position inD, then the cutting rule must not be applied to the positionp or any
position abovep. Hence, neither can a relevant positionp ever be deleted nor can the leading symbol
of an expression at positionp be altered by an application of the cutting rule. But then, on the one hand,
positionp still exists inD∗ and, on the other hand, [D∗ | p] and [D | p] have the same leading symbol.

If p = p1 · · · pk is an irrelevant position ofD∗ then, by Lemma 6.5, also all positions below
p are irrelevant. Now suppose that [D∗ | p] 6= a and [D∗ | p′] = F(t1, . . . , tpk , . . . , tα) for the po-
sition p′ = p1 · · · pk−1. Then the cutting rule may be applied to replaceF(t1, . . . , tpk , . . . , tα) by
F(t1, . . . ,a, . . . , tα). But, by assumption, no more cutting rule application toD∗ is possible. Hence,
[D∗ | p] = tpk = a. j
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LEMMA 6.7 (Further Properties ofD∗). Let D ∈ Dd be an H-instance of some clause Dj ∈ D with
C 6≤s D and let D∗ be the clause resulting from exhaustively applying the cutting rule from Definition6.5
to the clause D. Then D∗ has the following properties:

1. D∗ is also an H-instance of Dj .

2. C 6≤s D∗.
3. For every variable x∈ Var(D∗), τmin(x, D∗) ≥ d.

Proof. For the proof of Property 1, we suppose on the contrary thatD∗ is notanH -instance ofDj .
Then we derive a contradiction for the following two possibilities.

Case 1. There exists a nonvariable positionp in Dj , s.t. [Dj | p] and [D∗ | p] have different leading
symbols. In particular,p is a position inDj and thusp ∈ Rel(D). Hence, by Lemma 6.6, [D | p] and
[D∗ | p] have the same leading symbol. But thenD is not an instance ofDj either.

Case 2. There exist positionsp andq in Dj , s.t. [Dj | p] = [Dj |q] = x for some variablex and
[D∗ | p] 6= [D∗ |q]; i.e., there exists a positionr in [D∗ | p] and [D∗ |q], s.t. [D∗ | p◦ r ] and [D∗ |q ◦ r ]
have different leading symbols. Note thatr cannot be the empty position. For suppose on the contrary
that r = ε. Then p ◦ r = p andq ◦ r = q are positions inDj and, therefore,p ◦ r ∈ Rel(D) and
q ◦ r ∈ Rel(D). But then, by Lemma 6.6, [D | p ◦ r ] and [D |q ◦ r ] have the same leading symbols as
[D∗ | p ◦ r ] and [D∗ |q ◦ r ], respectively, and thusD is not an instance ofDj either. So it only remains
to consider the case thatr 6= ε.

By assumption, the terms at the positionsp◦r andq◦r in D∗ have different leading symbols. Hence,
at least one of these two positions must be relevant, since otherwise, by Lemma 6.6, we would have the
terma on both positions. Without loss of generality we assume thatp ◦ r ∈ Rel(D). Note thatp ◦ r
is not a position inDj , sincep is a variable position inDj (i.e., p is a leaf node inDj ) and we only
consider the case thatr 6= ε. But then, by the definition of relevant positions,p ◦ r is on a similbranch
of some witness branch; i.e., there exists a positionp′ in Dj , s.t. [Dj | p′] = x and p′ ◦ r is a position
on a witness branchπ ∈Wit. If p′ = q, thenq ◦ r is on the witness branchπ , and if p′ 6= q, thenq ◦ r
is on a similbranch w.r.t.π . In either case,q ◦ r is also a relevant position. Hence, by Lemma 6.6, the
leading symbols of the terms inD andD∗ coincide on the positionsp◦ r andq ◦ r . But then, [D | p◦ r ]
and [D |q ◦ r ] have different leading symbols. Thus,D is not an instance ofDj .

For Property 2 note that, by Lemma 6.6,D∗ coincides withD on all relevant positions and hence,
in particular, on all witness branches. But then, by Lemma 6.3,D∗ is not subsumed byC. Finally, for
Property 3, remember from Lemma 6.6 that at all irrelevant positions inD∗ we have the terma. Hence,
every variablex in D∗ occurs at a relevant positionp. But then, by Lemma 6.6,D∗ andD coincide on
p. Thus,τmin(x, D∗) ≥ τmin(x, D) ≥ d holds for everyx ∈ Var(D∗). j

LEMMA 6.8 (Size ofD∗). Let C = {C1, . . . ,Cn} andD = {D1, . . . , Dm} be clause sets over some
signature6 and let H be the corresponding Herbrand universe. Let D∈ Dd be an H-instance of some
clause Dj ∈ D with C 6≤s D and let D∗ be the clause resulting from exhaustively applying the cutting
rule from Definition6.5 to the clause D. Finally, let c denote the maximum arity of the symbols in6.
Thensize(D∗) has the following upper bound:

size(D∗) ≤ (c+ 1)× size(Dj )× [1+ n× (2L2+ L4)× 2d].

Proof. Recall that we have defined the size of a clause as the number of positions (or, equivalently,
as the number of nodes in the tree representation). By Lemma 6.6, all nodes corresponding to irrelevant
positions inD∗ are labelled with the constant symbola, i.e., all irrelevant positions inD∗ correspond
to leaf nodes and, therefore, all internal nodes ofD∗ are relevant. Hence, we get the upper bound
size(D∗) ≤ |Rel(D)| + |{leaf nodes ofD∗}|.

The degree of an internal nodep in D∗ (i.e., the number of child nodes of such a node) corresponds
to the arity of the function symbol or the (possibly negated) predicate symbol labellingp. Hence, the
degree of the nodes in the tree representation ofD∗ is restricted by the maximum arityc of the symbols
in6. Furthermore, the number of leaf nodes is restricted by the number of nodes immediately above the
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leaf nodes times their maximum degree. Moreover, all parents of leaf nodes are internal nodes. Hence,
we get the following upper bound:|{leaf nodes ofD∗}| ≤ c×|{internal nodes ofD∗}| ≤ c×|Rel(D)|.

By putting these pieces together, we have size(D∗) ≤ (c + 1) × |Rel(D)|. Then, by putting this
together with the relation|Rel(D)| ≤ size(Dj )× [1+ n× (2L2+ L4)× 2d] from Lemma 6.4, we get
the desired upper bound on the size ofD∗. j

In Lemmas 6.7 and 6.8 we have basically shown thatD∗ is an appropriate counterexample. In
particular, we have established a polynomial bound on the size ofD∗. Hence, it is now easy to prove
that a polynomial-size counterexample exists whenever any counterexample exists.

LEMMA 6.9 (Existence of a Counterexample of Polynomial Size).Let C and D be clause sets
over some signature6 and let H be the corresponding Herbrand universe. Furthermore, let d =
max({τ(C), τ (D)})+1 and let L denote an upper bound on the number of literals in the clauses Ci ∈ C
and in the clauses Dj ∈ D. Finally, let c denote the maximum arity of the symbols in6. Then the
following equivalence holds:
C 6≤sH D, iff there exists an H-instance D∗ of some Dj ∈ D, s.t. the following properties hold:

1. size(D∗) ≤ (c+ 1)× size(Dj )× [1+ |C| × (2L2+ L4)× 2d];

2. for every variable x∈ Var(D∗), τmin(x, D∗) ≥ d;

3. C 6≤s D∗.

Proof. We prove both directions of the equivalence separately.

“⇒” If C 6≤sH D, then alsoC 6≤sH Dd, sinceDd =sH D holds by Lemma 6.2. But thenC 6≤s Dd

holds as well; i.e., there exists a clauseD ∈ Dd, s.t.C 6≤s D. FromD we can constructD∗ by exhaustive
application of the cutting rule from Definition 6.5. Then, by Lemmas 6.7 and 6.8,D∗ has the desired
properties.

“⇐” Let D∗ be an instance of some clauseDj ∈ D with the above properties. Then, in particular,
the conditionsC 6≤s D∗ andτmin(x, D∗) ≥ d for every variablex ∈ Var(D∗) hold. Hence, by Lemma 6.1,
alsoC 6≤sH D∗ holds; i.e., there exists anH -ground instanceD′ of D∗, s.t. D′ is not subsumed byC.
But D′ is also anH -ground instance ofDj ∈ D and, therefore,C 6≤sH D j holds as well. j

The above criterion for testing thatC does not H-subsumeD will now be put to work in the5p
2 -

membership proof of the clausal H-subsumption problem:

THEOREM6.1 (5p
2 -Membership of CLAUSE-H-SUBSUMPTION).Let H be an arbitrary Herbrand

universe. Then the CLAUSE-H-SUBSUMPTION problem over H is in5
p
2 .

Proof. The5p
2 -membership in the case of a finite Herbrand universe is clear. Hence, we only have

to consider the case of an infinite Herbrand universeH . LetC andD be clause sets overH . Moreover, let
6 denote the signature that contains all predicate symbols occurring inC andA as well as the constant
symbols and function symbols fromH . Then the following nondeterministic algorithm with first-order
subsumption oracle checks in polynomial time thatC 6≤sH D holds.

1. Guess anH -instanceD∗ of some clauseDj ∈ D with τmin(x, D∗) ≥ d for everyx ∈ Var(D∗)
and size(D∗) ≤ (c+ 1)× size(Dj )× [1+ |C| × (2L2+ L4)× 2d], whered = max({τ(C), τ (D)})+ 1
is a bound on the term depth inC andD, c denotes the maximum arity of the symbols in6, andL is
an upper bound on the number of literals in the clausesCi ∈ C and in the clausesDj ∈ D.

2. For alli ∈ {1, . . . ,n}, check by an oracle for first-order subsumption thatCi 6≤s D∗ holds.

The correctness of this algorithm follows immediately from Lemma 6.9. The polynomial time com-
plexity is guaranteed by the polynomial bound on the size of the counterexample guessed in the first
step. The first-order subsumption oracle is in NP (cf. [8, Problem LO18]). Hence, the overall algorithm
is in6 p

2 . j

Together with the5p
2 -hardness result from [23, Theorem 4.2], we may therefore conclude that the

CLAUSE-H-SUBSUMPTION problem is5p
2 -complete.

COROLLARY 6.1. Let H be an arbitrary Herbrand universe with at least two elements. Then the
CLAUSE-H-SUBSUMPTION problem over H is5p

2 -complete.
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7. CONCLUSION AND FUTURE WORK

The focus of this work is on the complexity of several decision problems related to atomic represen-
tations of Herbrand models. We have proven the coNP-completeness of the model equivalence problem
and of the clause evaluation problem for ARMs. Likewise, the coNP-completeness of the total cover
problem and the atomic H-subsumption problem have been established in this paper. As a byproduct
of the coNP-membership proof, we have provided an appropriate representation of the complement of
an ARM. Finally, we have also shown the5p

2 -membership of clausal H-subsumption over an arbitrary
Herbrand universeH .

The complexity results may in a sense seem to be a bit discouraging. Nevertheless, the success
of ARMs in the field of automated model building suggests that the search for reasonably efficient
algorithms for these decision problems should not be given up. In [22], algorithms for atomic H-
subsumption, model equivalence, and clause evaluation in ARMs are presented, which are much more
efficient than the original ones in [7]. But there is clearly ample space for further improvement.

In [10], the following observation has led to a different approach to dealing with the high computational
cost of these decision problems: For every ARM there is a large number of equivalent representations.
However, as far as the actual cost of the algorithms in [7] and [22] is concerned, such equivalent
representations may behave quite differently. Hence, it makes sense to identify desirable properties of
atom sets and to transform an arbitrary ARMA into an equivalent ARMA′ of the desired form. The cost
of this kind of preprocessing step may be far outweighed by the time saved when the clause evaluation
(or any other) algorithm is run repeatedly on the transformed atom setA′ rather than onA.
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