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Abstract

We prove that there does not exist a tiling of R® with Lee spheres of radius greater than 0
such that the radius of at least one of them is greater than one. (©) 2001 Elsevier Science B.V.
All rights reserved.

1. Introduction

First, let us recall notations and definitions given in [3].
Let (0,e;,...,e,) be an orthogonal basis of n-dimensional space R®, and let
X =(x1,...,x,) be a point of R". The n-cube centered on X is defined by the set:

2

From the definition, it is clear that C(X) is a convex closed set. Let Int(C(X)) denotes
the set of inner points of the n-cube C(X).

The Lee distance between two points X = (xy,...,x,) and ¥ =(y1,...,y,) of Z", is
defined by

—1 1
CX)= {Y=(y1,...,yn)|\7i,yf=ai+xi with 2<oci<}.

n
d(X, Y):Z i — -
i=1
Let » be a nonnegative integer. The r-Lee sphere in R" centered on 0 of major axes
el,...,ey,, is the set of n-cubes C(Y) where d(0,Y)<r and Y has integer coordinates.
The border of an r-Lee sphere, is the set of n-cubes C(Y) where d(0,Y)=r and Y
has integer coordinates. More generally, an r-Lee sphere in R” centered on X of major
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Fig. 1. A 1-Lee sphere and a 2-Lee sphere in R.

axes uy,...,u, (see Fig. 1), denoted by B/(X), is a moving (translation and rotation)
¢ of the r-Lee sphere centered on 0 such that ¢(0) =X and ¢(e;) = u; for every
i=1,...,n.

The distance between two Lee spheres is the distance between their centers. A tiling
is called regular if neighboring spheres meet along entire (n — 1)-dimensional faces of
the original cubes. Thus, the center of each sphere of a regular tiling with Lee spheres
belongs to an integer grid.

In the preceeding paper [3], we proved:

Theorem 1. There does not exist a tiling of three-dimensional space with Lee spheres
of radii at least 2 (even with different radir).

This theorem confirms, for the three-dimensional space, a conjecture due to Gollomb
and Welch [1,2]. Moreover, a Corollary of the proof of Theorem 1 asserts that:

Corollary 1. There does not exist a non-regular tiling of three-dimensional space with
Lee spheres of radii at least 1, even with different radii.

The previous corollary and theorem suggested the following conjecture.

Conjecture 1. There does not exist a tiling of n-dimensional (n > 2) space with Lee
spheres of radii greater than 0 such that the radius of at least one of them is greater
than 1.

In the submitted version of our paper [3], we proposed Conjecture 1 for three-
dimensional space. Finally, at printing time, we announced, without proof, this result:

Theorem 2. Conjecture 1 holds for n=3.

The aim of the present paper is to give a proof of Theorem 2.
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2. Notations and preliminaries

Let 7 be a tiling of R® with three-dimensional Lee spheres. As observed in [3], it
is straightforward to prove that all spheres of .7 have same major axes. Let # be one
of these axes. For some integer i, the intersection of 7~ with the plane orthogonal to
u, denoted 7! = {X = (x1,x2,x3) | x, = i}, defines a tiling of this plane, denoted 7,
by two-dimensional Lee spheres of radius 0, 1,... .

If we move along the axis u in a fixed direction then the intersections of an r-Lee
sphere B2(X) with a plane orthogonal to u are successively Lee spheres B(X,) of
the two-dimensional space of radii s =0,...,7,7 — 1,...,0, where X! is the projection
of X on this plane. The first r intersections Lee spheres of radii 0,...,7 — 1 will be
denoted by the letter L for low positions in the Lee sphere. The last » intersections
Lee spheres of radii » — 1,...,0 will be denoted by the letter H for high positions in
the Lee sphere. And the (»+ 1)th intersection (Lee sphere of radius ») will be denoted
by the letter M.

We mark a 2-cube C(X]) belonging to the border of a Lee sphere of 7! by +
(respectively —) if B3(Xit!) € 7! (resp. BA(X/~!) € 7~1). Observe that

Let X! = (a,b) be the center of a 2-cube belonging

to the border of a Lee sphere of 7. If (a,b — 1), (a — 1,b),

(a,b), (a,b+ 1) and (a + 1,b) belong to Lee spheres of

types L (resp. type H) or M then C(X,) is marked + (resp. —). (1)

If we have two Lee spheres of type L (or two of type H) then we can move along
u in one of the directions such that both radii increase. Using this observation, we
obtain the following lemma.

Lemma 1. The distance between two 2-cubes in the border of two Lee spheres
belonging to T, is at least 3 if these spheres are both L or both H.

By the previous lemma, we have

If C(X!) and C(Y,) are two 2-cubes marked both +
or both — then d(X/,Y!)>3. ()

u u

3. Proof of Theorem 2

Assume that 7 is a tiling of R* with Lee spheres of radii at least one such that
there exists a Lee sphere B>(X) € 7 with r>2. Let u be one of the major axes of
B3(X). We consider the orthogonal plane of u which cuts B3(X) in a way to obtain
the 1-Lee sphere B3(X?) of type L (see Fig. 2).

By Corollary 1,  must be regular.
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Fig. 3. An M Lee sphere in the neighbourhood of B(X?).
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Fig. 5. E belongs to a Lee sphere of type H.
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Fig. 7. D belongs to a Lee sphere of type H.

all ':: ::'M
@
—>
I_I—l_lLemma 1 M (moving up)
H | H |

+(1)

(A)

M impossible
by (2)
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Fig. 10. Subcase (B.1).
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|T||H among x and y)
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(B.2.a) impossible

By (2), x and v are not marked @) hence u belongs to a Lee sphere
of type H and at least one of v and w belongs to a Lee sphere of
type H which contradicts Lemma 1.

Fig. 11. Subcase (B.2).

By Lemma 1, at least one of the 2-cubes A, B, C or D must belong to a Lee
sphere of type M. Since the radius of each sphere of 7 is greater than 0, we obtain
a situation similar to one describe in Fig. 3.

By Lemma 1, D belongs to a Lee sphere of type M or H.

First, assume that D belongs to a Lee sphere of type M. By (1), we have that the
2-cube ‘a’ is marked +. If C belongs to a Lee sphere of type M then the 2-cube ‘b’
will be marked +, which is impossible by (2). So, we may assume that C belongs to
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impossible
M byLemmal

Fig. 12. Subcase (B.2.b).

a Lee sphere of type H which implies by Lemma 1 that A belongs to a Lee sphere
of type M. This analysis is summarized in Fig. 4.

By (2), the 2-cube ‘c’ cannot be marked +. Hence, E belongs to a Lee sphere of
type H (see Fig. 5).

By Lemma 1, F belongs to a Lee sphere of type M. But, now by (1), the 2-cube
‘d’ should be marked +, which contradicts (2) (see Fig. 6).

Now, we may assume that D belongs to a Lee sphere of type H. We will examine
the tiling 770 in the neighborhood of B}(X?) and similarly to the previous case, we
will obtain a contradiction. Our proof is given by Figs. 7-12. In some cases, we will
be led to move according to the axis u (denoted by ‘moving up’ or ‘moving down’)
to look at the neighbourhood of B3(X,!) or B3(X, ') in the tiling on the ‘next’ or
‘previous’ plane J )} or 7!, respectively.

We have the two cases describe in Fig. 7.
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