DISCRETE
MATHEMATICS

On the nonexistence of three-dimensional tiling in the Lee metric II

Sylvain Gravier ${ }^{\text {a,* }}$, Michel Mollard ${ }^{\mathrm{b}}$, Charles Payan ${ }^{\text {c }}$
${ }^{\text {a }}$ Ecole Nationale Supérieure d'Informatique et de Mathématiques Appliquées de Grenoble, Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Grenoble Cedex 1, France
${ }^{\mathrm{b}}$ CNRS, Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Grenoble Cedex 1, France
${ }^{\mathrm{c}}$ CNRS, Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Grenoble Cedex 1, France

Abstract

We prove that there does not exist a tiling of R^{3} with Lee spheres of radius greater than 0 such that the radius of at least one of them is greater than one. (c) 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

First, let us recall notations and definitions given in [3].
Let $\left(0, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)$ be an orthogonal basis of n-dimensional space R^{3}, and let $X=\left(x_{1}, \ldots, x_{n}\right)$ be a point of R^{n}. The n-cube centered on X is defined by the set:

$$
C(X)=\left\{Y=\left(y_{1}, \ldots, y_{n}\right) \mid \forall i, y_{i}=\alpha_{i}+x_{i} \text { with } \frac{-1}{2} \leqslant \alpha_{i} \leqslant \frac{1}{2}\right\} .
$$

From the definition, it is clear that $C(X)$ is a convex closed set. Let $\operatorname{Int}(C(X))$ denotes the set of inner points of the n-cube $C(X)$.
The Lee distance between two points $X=\left(x_{1}, \ldots, x_{n}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ of Z^{n}, is defined by

$$
d(X, Y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| .
$$

Let r be a nonnegative integer. The r-Lee sphere in R^{n} centered on 0 of major axes $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$, is the set of n-cubes $C(Y)$ where $d(0, Y) \leqslant r$ and Y has integer coordinates. The border of an r-Lee sphere, is the set of n-cubes $C(Y)$ where $d(0, Y)=r$ and Y has integer coordinates. More generally, an r-Lee sphere in R^{n} centered on X of major

[^0]

Fig. 1. A 1-Lee sphere and a 2-Lee sphere in R^{3}.
axes $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ (see Fig. 1), denoted by $B_{r}^{n}(X)$, is a moving (translation and rotation) ϕ of the r-Lee sphere centered on 0 such that $\phi(0)=X$ and $\phi\left(\boldsymbol{e}_{i}\right)=\boldsymbol{u}_{i}$ for every $i=1, \ldots, n$.

The distance between two Lee spheres is the distance between their centers. A tiling is called regular if neighboring spheres meet along entire $(n-1)$-dimensional faces of the original cubes. Thus, the center of each sphere of a regular tiling with Lee spheres belongs to an integer grid.

In the preceeding paper [3], we proved:

Theorem 1. There does not exist a tiling of three-dimensional space with Lee spheres of radii at least 2 (even with different radii).

This theorem confirms, for the three-dimensional space, a conjecture due to Gollomb and Welch [1,2]. Moreover, a Corollary of the proof of Theorem 1 asserts that:

Corollary 1. There does not exist a non-regular tiling of three-dimensional space with Lee spheres of radii at least 1 , even with different radii.

The previous corollary and theorem suggested the following conjecture.

Conjecture 1. There does not exist a tiling of n-dimensional $(n>2)$ space with Lee spheres of radii greater than 0 such that the radius of at least one of them is greater than 1.

In the submitted version of our paper [3], we proposed Conjecture 1 for threedimensional space. Finally, at printing time, we announced, without proof, this result:

Theorem 2. Conjecture 1 holds for $n=3$.

The aim of the present paper is to give a proof of Theorem 2.

2. Notations and preliminaries

Let \mathscr{T} be a tiling of R^{3} with three-dimensional Lee spheres. As observed in [3], it is straightforward to prove that all spheres of \mathscr{T} have same major axes. Let u be one of these axes. For some integer i, the intersection of \mathscr{T} with the plane orthogonal to u, denoted $\mathscr{T}_{u}^{i}=\left\{X=\left(x_{1}, x_{2}, x_{3}\right) \mid x_{u}=i\right\}$, defines a tiling of this plane, denoted \mathscr{T}_{u}^{i}, by two-dimensional Lee spheres of radius $0,1, \ldots$.
If we move along the axis u in a fixed direction then the intersections of an r-Lee sphere $B_{r}^{3}(X)$ with a plane orthogonal to u are successively Lee spheres $B_{s}^{2}\left(X_{u}\right)$ of the two-dimensional space of radii $s=0, \ldots, r, r-1, \ldots, 0$, where X_{u}^{i} is the projection of X on this plane. The first r intersections Lee spheres of radii $0, \ldots, r-1$ will be denoted by the letter \mathbf{L} for low positions in the Lee sphere. The last r intersections Lee spheres of radii $r-1, \ldots, 0$ will be denoted by the letter \mathbf{H} for high positions in the Lee sphere. And the $(r+1)$ th intersection (Lee sphere of radius r) will be denoted by the letter \mathbf{M}.
We mark a 2-cube $C\left(X_{u}^{i}\right)$ belonging to the border of a Lee sphere of \mathscr{T}_{u}^{i} by + (respectively -) if $B_{0}^{2}\left(X_{u}^{i+1}\right) \in \mathscr{T}_{u}^{i+1}\left(\right.$ resp. $\left.B_{0}^{2}\left(X_{u}^{i-1}\right) \in \mathscr{T}_{u}^{i-1}\right)$. Observe that

Let $X_{u}^{i}=(a, b)$ be the center of a 2-cube belonging to the border of a Lee sphere of \mathscr{T}_{u}^{i}. If $(a, b-1),(a-1, b)$, $(a, b),(a, b+1)$ and $(a+1, b)$ belong to Lee spheres of types \mathbf{L} (resp. type \mathbf{H}) or \mathbf{M} then $C\left(X_{u}^{i}\right)$ is marked + (resp. -).

If we have two Lee spheres of type \mathbf{L} (or two of type \mathbf{H}) then we can move along u in one of the directions such that both radii increase. Using this observation, we obtain the following lemma.

Lemma 1. The distance between two 2-cubes in the border of two Lee spheres belonging to \mathscr{T}_{u}^{i}, is at least 3 if these spheres are both \mathbf{L} or both \mathbf{H}.

By the previous lemma, we have

$$
\begin{align*}
& \text { If } C\left(X_{u}^{i}\right) \text { and } C\left(Y_{u}^{i}\right) \text { are two 2-cubes marked both }+ \\
& \text { or both }- \text { then } d\left(X_{u}^{i}, Y_{u}^{i}\right) \geqslant 3 \text {. } \tag{2}
\end{align*}
$$

3. Proof of Theorem 2

Assume that \mathscr{T} is a tiling of R^{3} with Lee spheres of radii at least one such that there exists a Lee sphere $B_{r}^{3}(X) \in \mathscr{T}$ with $r \geqslant 2$. Let u be one of the major axes of $B_{r}^{3}(X)$. We consider the orthogonal plane of u which cuts $B_{r}^{3}(X)$ in a way to obtain the 1-Lee sphere $B_{1}^{2}\left(X_{u}^{0}\right)$ of type \mathbf{L} (see Fig. 2).

By Corollary $1, \mathscr{T}$ must be regular.

Fig. 2. $B_{1}^{2}\left(X_{u}^{0}\right)$.

Fig. 3. An \mathbf{M} Lee sphere in the neighbourhood of $B_{1}^{2}\left(X_{u}^{0}\right)$.

Fig. 4. D belongs to a Lee sphere of type \mathbf{M}.

Fig. 5. E belongs to a Lee sphere of type \mathbf{H}.

Fig. 6. A contradiction.

Fig. 7. D belongs to a Lee sphere of type \mathbf{H}.

Fig. 8. Case (A).

Fig. 9. Case (B).

Fig. 10. Subcase (B.1).

By (2), x and y are not marked \oplus, hence u belongs to a Lee sphere of type H and at least one of v and w belongs to a Lee sphere of type H which contradicts Lemma 1.

Fig. 11. Subcase (B.2).

By Lemma 1, at least one of the 2-cubes A, B, C or D must belong to a Lee sphere of type \mathbf{M}. Since the radius of each sphere of \mathscr{T} is greater than 0 , we obtain a situation similar to one describe in Fig. 3.

By Lemma 1, D belongs to a Lee sphere of type \mathbf{M} or \mathbf{H}.
First, assume that D belongs to a Lee sphere of type M. By (1), we have that the 2-cube ' a ' is marked + . If \mathbf{C} belongs to a Lee sphere of type \mathbf{M} then the 2-cube ' b ' will be marked + , which is impossible by (2). So, we may assume that C belongs to

Fig. 12. Subcase (B.2.b).
a Lee sphere of type \mathbf{H} which implies by Lemma 1 that A belongs to a Lee sphere of type M. This analysis is summarized in Fig. 4.
By (2), the 2-cube ' c' cannot be marked + . Hence, E belongs to a Lee sphere of type \mathbf{H} (see Fig. 5).
By Lemma 1, F belongs to a Lee sphere of type M. But, now by (1), the 2-cube ' d ' should be marked + , which contradicts (2) (see Fig. 6).
Now, we may assume that D belongs to a Lee sphere of type \mathbf{H}. We will examine the tiling \mathscr{T}_{u}^{0} in the neighborhood of $B_{1}^{2}\left(X_{u}^{0}\right)$ and similarly to the previous case, we will obtain a contradiction. Our proof is given by Figs. 7-12. In some cases, we will be led to move according to the axis u (denoted by 'moving up' or 'moving down') to look at the neighbourhood of $B_{0}^{2}\left(X_{u}^{1}\right)$ or $B_{2}^{2}\left(X_{u}^{-1}\right)$ in the tiling on the 'next' or 'previous' plane \mathscr{T}_{u}^{1} or \mathscr{T}_{u}^{-1}, respectively.

We have the two cases describe in Fig. 7.

References

[1] S.W. Gollomb, L.R. Welch, Algebraic coding and the Lee metric, in: H.B. Mann (Ed.), Error Correcting Codes, Wiley, New York, 1968, pp. 175-189.
[2] S.W. Gollomb, L.R. Welch, Perfect codes in the Lee metric and the packing of polyminoes, SIAM J. Ann. Discrete Math. 18(2) (1970) 302-317.
[3] S. Gravier, M. Mollard, C. Payan, On the nonexistence of 3-dimensional tiling in the Lee metric, European J. Combin. 19 (1998) 567-572.

[^0]: * Corresponding author.

 E-mail addresses: sylvain.gravier@imag.fr (S. Gravier), michel.mollard@imag.fr (M. Mollard), charles. payan@imag.fr (C. Payan).

