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Abstract

The Mathematical Environment which is under development at the Glushkov Insti-
tute of Cybernetics is a system of tools supporting the interactive manipulation of
knowledge represented in the form of (formalized) mathematical texts. The system
is implemented using a simulator for the Action Language, which has itself been de-
veloped using the algebraic programming system APS. The theoretical background
of this project is the theory of interaction of agents and environments, constraint
solving and the Evidence Algorithm. The main concepts underlying the project
and the methodology of its development are explained in this paper in terms of the
theory of interaction. The Evidence Algorithm is considered as an example of an
interactive algorithm for the Mathematical Environment.

1 Introduction

The Mathematical Information Environment project which is being carried out
at the Glushkov Institute of Cybernetics is based on previous investigations
into automatic theorem proving which started in 1965 when the first prover
for (elementary) group theory was developed [1]. Later, following the ideas
of Glushkov [5], the SAD system was developed in the 1980’s, based on a
language of practical mathematical logic, which is a formalized mathematical
language similar to natural language, and the Evidence Algorithm. A brief
historical sketch of this activity has been presented in [3].

Our current project renews and re-engineers the main ideas of the SAD
system, combining it with contemporary results in the theory of interaction,
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concurrent constraint programming, algebraic programming and computer al-
gebra. The main ideas of the project have been presented in [13]. They include
the following:

1. The development of a formalized mathematical language (FML) which
is a subset of a natural mathematical language.

2. The development of a formal semantics of FML based on transforma-
tions of the behaviour of a mathematical knowledge base.

3. The development of a structure of the mathematical knowledge base
and the representation of the transformational semantics of FML using this
implementation.

4. An experimental implementation of FML on top of APS which can
be integrated with systems of computer algebra and systems which support
distributed computations.

5. The development of tools and their application to real texts in computer
science.

In this paper we present a short sketch of the theoretical background of the
project, instrumental tools for its development and fragments of specifications
of an evidence algorithm. This includes the elements of a theory of interaction
of agents and environments, the Action Language and its implementation, a
calculus for the Evidence Algorithm and discussion of its extensions.

The experimental part of the project is being developed using the alge-
braic programming system APS [9] and the Algebraic Programming LAN-
guage APLAN (the source language of the system). The language is based
on rewriting logic, and provides for the development of computational algo-
rithms as deductive tools and a semantics which is able to combine different
programming paradigms. In many cases APLAN programs can be considered
as executable algebraic specifications of algorithms and methods.

2 Agents and environments

The Mathematical Information Environment is a multiagent system compris-
ing agents cooperatively working over a distributed knowledge base. In the
development of this environment we use the model of interaction presented
in [11,12,10]. In contrast to the main traditional theories of interaction in-
cluding CCS [15], CSP [7], ACP [2], which are based on an implicit and hence
not formalized notion of environment, we study agents and environments as
objects of different types. Mathematically agents are represented by means
of labelled transition systems with divergence and termination, considered up
to bisimilarity. Environments are agents supplied with an insertion function
which describes the change of behaviour of an environment after inserting an
agent into this environment.
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2.1 Agents

Agents are objects which can be recognised as separate from the rest of a world
or an environment. They exist in time and space, change their internal state,
and can interact with other agents and environments, performing observable
actions. Agents can be objects in real life or models of components of an infor-
mation environment in a computerised world. The notion of agent formalizes
such objects as software components, programs, users, clients, servers, active
components of distributed knowledge bases and so on.

Agents with the same behaviour are considered as equivalent and are iden-
tified when reasoning mathematically. The equivalence of agents is charac-
terized in terms of an algebra of behaviors F(A) which is a free two sorted
(actions a € A and behaviors u € F(A)) continuous algebra with approx-
imation and two operations. These are nondeterministic choice which is an
associative, commutative and idempotent binary operation u+uv, u,v € F(A),
and prefizing a.u, a € A, u € F(A) (like basic ACP). The algebra F(A) is
closed relative to the limits (least upper bounds) of the ordered sets of finite
behaviors. Finite elements are generated by three termination constants A
(successful termination), L (the minimal element of approximation relation)
and the deadlock element 0.

The notion of an abstract agent is introduced as a transition closed set
of behaviors. All known compositions in various kinds of process algebras
(including parallel and sequential composition) can be then defined by means
of continuous functions over the behaviors of agents.

Each behavior u € F(A) over an action set A can be represented in the
form
(1) u:Zai.ui—l—s

iel
where a; are actions, u; are behaviors, I is a finite (for finite elements) or
infinite set of indices, ¢ = A, L, A+ 1,0. If all summands in the representa-
tion (1) are different then this representation is unique up to the associativity
and commutativity of nondeterministic choice.

2.2  Environments

An environment E is an agent over an environment algebra of actions C with
an insertion function. The insertion function Ins of an environment is a
function of two arguments: Ins(e,u) = e[u|. The first argument e is a behavior
of an environment, the second is a behavior of an agent over an action algebra
A in a given state u (the action algebra of agents can be a parameter of the
environment). An insertion function is an arbitrary function continuous in
both of its arguments. The result is a new behavior of the same environment.

The notion of an environment gives the possibility of defining a new type of
agent equivalence which is in general weaker than bisimilarity. This is insertion
equivalence which depends on an environment and its insertion function. Two

3



ALV VIR Ly AAAL I AVAT VA, VUMY, VAUV AAL HIVIAL,y AU AT IALy AR AL

agents (in given states) or behaviors u and v are insertion equivalent with
respect to an environment E, written u ~p v if for all e € E e[u] = e[v].
Each agent u defines the transformation Tr} : E — E of its environment:
Trl(e) = eu] and u ~p v iff TrZ = Tr”. We shall also use the notation [u]
for Trk.

After inserting an agent into an environment, the new environment can ac-
cept new agents to be inserted, and the insertion of several agents is something
that we will often wish to describe. We shall use the notation

elug, ..., uy] = elu] ... [uy]

for the insertion of several agents.

3 Constraint machine

The constraint machine considered in this section is the first prototype of the
Mathematical Information Environment. It describes the environment in a
very abstract way and can be used as its specification. The model is based on
the ideas of concurrent constraint programming [17] and describes distributed
computations over a constraint store. We restrict ourselves to a simple case
which is sufficient to explain the main ideas.

3.1 Constraint agents

Constraint agents are agents over a set of actions interpreted as transforma-
tions of a constraint store. The notion of a constraint store considered in this
example generalises the notion of memory in imperative programming and is a
special case of the constraint store used in concurrent constraint programming
(the use of some special version of a general notion of a constraint system).

Constraint store. The state of a constraint store is a finite set or a con-
junction of elementary constraints which in our example are logical formulas
with the following syntax:

crx=a, €V acD;
e p(t1,...,t,), p— predicate symbol, ¢1,...,t, — terms with variables from V;

e dx P, x € V, P — conjunction of elementary constraints.

In this definition V is a set of variables, D is a data domain. All algebraic
operations and predicates are interpreted over the domain D, so that the values
of terms and predicates can be computed as soon as the values of all variables
which these terms and predicates depend on are known. The constraints of
type = a are called assignments (to a variable z).

As an example a set of integers as D, arithmetic predicates such as <, =,
# and linear combinations of variables as terms (linear constraints) can be
considered. A more complex example is a field (or a ring) F' as a domain for
variables and nonlinear constraints (polynomials or rational functions) with
the same basic predicates.
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Conjunctions of elementary constraints are called constraints. A mapping
o :V — D is called a valuation of variables. A constraint c is called consistent
if there exists a valuation o such that co is true where co denotes the result
of substituting o(v) instead of all free occurrences of v € V' to ¢. The set of
all consistent constraints will be denoted as Consc. The set V is partitioned
into the set V4 of local (internal) variables and the set V7 of global (external)
variables. A constraint ¢ is called internal (external) if it does not contain
free occurrences of external (internal) variables. The set of internal (external)
constraints will be denoted Intc (Extc).

Let us define the entailment relation - on the set of constraints so that ¢ -
¢ iff for each valuation o from co is true it follows that /o is also true. States
of a constraint store will be identified with conjunctions of constraints which
are in this store and will be considered up to the equivalence of constraints
defined in the following way. Constraints ¢ and ¢ are called equivalent (¢ ~ ()
if for any constraint d, ¢ d iff ¢ F d. Note that a consistent constraint can
contain no more than one assignment to the same variable.

Let us consider the following types of actions over a constraint store:
tell ¢, ask ¢, © := t where ¢ is a constraint, x € V, ¢t — term. The alge-
bra A of actions generated by these actions is an algebra with combination
(associative and commutative operation over the actions) defined by the fol-
lowing equations:

tell ¢ x tell ¢ =tell cA(
ask ¢ x ask ¢ =ask cAC
tell cxask ¢ =telleXx (v:=t)=askeX (z:=t) =)
We also add to A the neutral action 0 with equations:
IXa=ax0d=a

Agents over A are called constraint agents.

Constraint machine. The constraint machine is an environment for
constraint agents. The state of the machine is an expression s[u] where u is a
constraint agent, s is the state of a constraint store which is considered as the
local store of agent u inserted to it. Locality means that internal constraints
cannot be observed from outside. The existential closure E(c) of a constraint
¢ is introduced in order to hide internal variables. It is defined as E(c) =
A(xy,...,z,)c where xq, ..., x, are all internal variables which occur free in c.
Note that E(c) is an external constraint, and E(c) ~true if ¢ € Intc NConsc.
We shall also extend this closure to agents assuming that F(u +v) = E(u) +
E(v), E(a.u) = E(a).E(u), E(tell ¢) = tell E(c), E(ask ¢) = ask E(c).
The transitions of the constraint machine are defined (in SOS style) in the
Figure 1.

The insertion function of the constraint machine implements parallel in-
sertion defined by the equation s[u][v] = s[ul|v]. To prove the correctness of
this definition note that the bisimilarity of states s[A] and s'[A] is the same
as the equivalence of constraints s and s'.
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Fig. 1. Transitions of the constraint machine

Distributed constraint machine. We can forget that s[u] is an environ-
ment and consider it as an agent F/(s[u]) with closed internal constraints. This
agent generates only external actions and is called a constraint agent with a
local store. Several agents each with their own local store can be inserted
to a constraint machine and the state e = s[u|[E(s1[u1]), ..., E(sa[un])] =
s[ul|E(s1[ua])]] - .- [|E(sn]us])] can be considered as a state of a constraint ma-
chine with distributed memory (sy,...,s,) and shared memory s. Each state,
reachable from e = e[A] can be represented in this form. The construction
can be iterated and we can obtain a multilevel constraint machine with dis-
tributed memory. The top level environment can include the external observer
(user of a machine) who can control the process of computation and restrict
the nondeterminism of a machine behavior. More complex models can change
the insertion function for higher levels of the machine and thus formalize the
inclusion of interpreters and control systems for distributed knowledge bases.

An ordinary memory state can be considered as a special type of a con-
straint store state. It is a state of a type (1 = dy, ...z, = d,). If conditions
are considered as elementary constraints, then imperative agents (programs)
can be considered as constraint agents without tell-actions.

The extension of a constraint machine for more a complete description of
the Mathematical Environment must include a type system for functions and
predicates and algorithms for computing entailment and consistency. These
algorithms will use the structure of the knowledge base which has been de-
scribed by examples in [13].
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4 Action Language

The Action Language [12] is used for the syntactical representation of agents
(especially constraint ones) as programs. It has a simple abstract syntax
parametrised by the syntax of actions and procedure calls and semantics pa-
rameterised by the insertion function of an environment.

Prog := Act | TermConst | ProcCall | (Prog+Prog) | (Prog||Prog) |
(Prog; Prog) |Loc(SetVar, Prog)

TermConst are some termination constants, defined in Section 2.1, (at least
Stop for A should be used). Three main compositions are nondeterministic
choice, parallel and sequential composition. The construction Loc is used for
the description of local variables and components of a distributed environment.
The intensional semantics of a program without locality is an agent which can
be obtained by means of unfolding procedure calls and defining transitions
on a set of program states. The interaction semantics of simple programs
can be defined for program agents by means of an insertion function. Local
components are considered as environments for programs within them and as
agents for environments of higher levels.

The Action Language has been implemented by means of a simulator [4,18],
a program which generates all histories of agent activity which are possible
as a result of interaction with a given environment. The simulator is imple-
mented as an interactive program using the algebraic programming system
APS [9]. The functionalities of the simulator permit forward and backward
moves along histories and automatic search for program states with given
properties (successful termination, deadlocks and so on).

5 Symbolic computation using algebraic programming

The APS is a programming system based on rewriting logic. The main equiv-
alence relation (basic congruence) on a set of (graph) terms is achieved by
means of a set of interpreters for operations which define a basic canonical
form. The main strategy of rewriting is one-step syntactic rewriting with
postcanonisation by means of reducing the rewritten node to a basic canoni-
cal form. All other strategies are the combinations of the main strategy with
different ways of navigating over the tree representing a term. Strategies of
rewriting can be chosen from a library of strategies or written as procedures
or functions in APLAN. The system also contains a built-in unification algo-
rithm which can be used for the extension of the algebraic paradigm to logic
programming.

APS supports a number of basic computer algebra tools. Among them are
computation with integer and rational numbers of arbitrary accuracy, opera-
tions over polynomials in various representations (natural, vector and recur-
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sive), differentiation and simple integration, transformations over transcendent
functions, algorithms for non-canonical simplification in various algebras.

The APS has been applied to the development of some special computer
algebra systems. Among these are

e the applied computer algebra system AIST [19] for teaching mathematics
in secondary level schools where the APS was used for the implementa-
tion of the mathematical kernel of the system (algebraic and trigonometric
simplifications, proofs of identities and solutions of equations),

* the package of tools supporting numeric-analytical computations with func-
tions which are solutions of ordinary differential equations with polynomial
coefficients [20],

* tools for constraint logic programming [21], and

* a work-bench for programming and experimenting with critical pairs and
completion like algorithms.

The expressivity and flexibility of APLAN facilitates the parameterisation
of the AL. All the parameters of the AL are implemented by means of rewriting
rules and canonical forms. These parameters include the syntax and semantics
of operations in the action algebra, the unfolding function for procedure calls,
the intensional semantics, which includes the definition of sequential and par-
allel compositions for agents, and the definition of insertion function. These
definitions are very close to the original mathematical definitions of those pa-
rameters. For instance, in order to obtain the implementation of the insertion
function for the constraint machine it is sufficient to represent the definitions
in Figure 1 in the form of conditional rewriting rules, and to implement the
entailment relation of corresponding constraint system.

For special types of constraint systems there exist powerful methods for
solving the satisfaction problem and finding concrete solutions for systems
of constraints. For example, the solution of linear constraints over integers,
especially finite domain constraints (the case when the domains of all variables
have lower and upper bounds) is such an area. Computer algebra methods
should be used for nonlinear constraints, especially the use of Grobner bases
for solving the satisfaction problem for systems of algebraic equations. In
simple cases the algorithms are already directly implemented in APS. However
the integration of the Mathematical Information Environment with powerful
solvers and computer algebra systems is very desirable for the solution of more
complex problems, and this is included in our future plans.

6 Evidence algorithm

In this section a specification of the Evidence Algorithm [5,6] is presented in
the form of a logical calculus. This specification is a reconstruction of the evi-
dence algorithm as implemented in SAD in the form proposed by A.Degtyarev
and A.Lyaletsky. For the simplicity it is formulated only for propositional cal-

8
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culus and first order predicate calculus. The algorithm is a kind of sequent
algorithm and makes use of the construction of an auxiliary goal as the main
inference step. This makes the algorithm understandable and can easily be
used in cooperation with a mathematician who can correct and control the
direction of the search for proofs.

The calculus is represented as a combination of two calculi. The first is the
calculus of auxiliary goals, the second is the calculus of conditional sequents.
The inference in the calculus of auxiliary goals is used as a one step inference
in the calculus of conditional sequents.

6.1 Propositional calculus

The elementary objects of the calculus are propositional formulas and se-
quents. Propositional formulas are considered up to equivalence which is de-
fined by means of all boolean equations except that of distributivity, which is
the source of exponential explosion. The function Can defined in the Appendix
by means of a system of rewriting rules defines the reduction of propositional
formulas to a canonical form. The associativity, commutativity and idem-
potence of conjunction and disjunction as well as the laws of contradiction,
exclusive third and the laws for propositional constants are used implicitly in
these equations.

(Ordinary) sequents have the syntax o = y where x and y are propositional
formulas.

Calculus of auxiliary goals.

Auxiliary goal: (v,u = z, P), where z is a literal, u,v are propositional
formulas, P is a conjunction of ordinary sequents (the empty conjunction is
1).

Rules:

(v,eNy= 2z, P)F(vAz,y= 2z, P)

(v,zVy=2z P)F(v,z= 2z (v=-y)AP)
In these laws conjunctions and disjunctions are considered up to commuta-
tivity, so it is not necessary to introduce alternatives which exchange x and
Y.
Lemma 1 . (v,u= 2z, P)F (v',u' = 2, P'), whereu' is literal or v’ = zAu".

Calculus of conditional sequents.

Conditional sequent: (w,u = P), where w is a conjunction of literals, u, P
are propositional formulas. Formulas of the calculus are expressions of type
(w, Q) where @ is a conjunction of ordinary sequents.

Axioms:

(w,u=1)
(w,0= P)

0,Q)
9
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@ is a conjunction of ordinary sequents.

Rules:

(w,u= 0)F(w,1 = —wu)
(w,u=zAyYy)F(w,u=2Au=1y)
(wy,u =2 Vy)F(w,~xAu=1y)
(w,z ANy = 2)F(wAz,y=2)

x is a literal.
(LLwAu=z1)F (v,z2Ay= 2z P)
(w,u=2) F (wA -z, P)
z is a literal, P is a conjunction of ordinary sequents.
(w,F) F (W', F")
(w,FANH)F (w,H)

(w', F') is an axiom.

Theorem 6.1 . P is tautology < (1,1 = P) F Q, Q is an aziom.

6.2 Predicate calculus

Formulas are also considered up to the renaming of bound variables and
equations ~dxp = Vr—p, —Vop = dx—p.

Calculus of auxiliary goals.

Auxiliary goal: (s,v,u = z, P), z is a literal, u, v are predicate formulas, P
is a conjunction of sequents, s is a sequence of variables. Two types of variables
are distinguished in the sequence s. They are arbitrary constants which appear
after removing the universal quantifiers and unknowns which appear after
removing the existential quantifiers. The order of variables corresponds to
the order of removing quantifiers and is used for the definition of correct
(consistent with a given sequence) substitutions for unification: the values of
unknowns can depend on those constants which appear before them only.

Rules:

(s,v,x Ny= 2z, P)F(s,vAy, v =z, P)
(s,v,zVy= 2z, P)F(s,v,2 =z v=-yAP)
(s,v,3zp = 2z, P)F ((s,a),v,1lsub(p,x :=a) = z, P)
(s,v,Vep = 2z, P)F ((s,u),v AVap,lsub(p,z := u) = z, P)
a is a new constant, u is a new unknown, 1sub is a substitution with corre-
sponding renaming of bound variables.

Calculus of conditional sequents.

Conditional sequent: (X,s,w,u = P), X is a valuation (binding) for
unknowns, s is a sequence of variables, w is a conjunction of literals, v and
P are predicate formulas. Formulas of the calculus are expressions of type
(X, s,w, Q) where @ is a conjunction of sequents.

10
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Axioms:
(X, s,w,u = 1)
(X,s,w,0= P)
(X,5,0,Q)

@ is a conjunction of sequents.
Rules:

(X, s,w,u=0

~—

F (X, s,w, 1= —u)
X,s,w, (u=2)A(u=1y))
F (X, s, w,—x Au=y);

(X, s,w,u=xAy)k

~— o~

(X, s,w,u=xVy
(X, s,w,u = Jzp) - (X, (s,y
(X, s,w,u = Vap) F (X, (s,a), w,u = 1sub(p,z := a))
(s,LwAu=z1)F (t,v,x ANy = z,P)
(X, s,w,u=z) - (Y,t,wA -z, P)
z is literal, P is a conjunction of ordinary sequents, Y is mgu of x = z w.r.t.
X, Y is compatible with ¢.

(X, s,w,u=2)F (Y,s,0,u= 2)

~—

,w,(Jzp) Au= lsub(p,z :=y))

Y is mgu of px and —(py) in w (contrary pairs).
(X, s,w, F) - (X', s',w' F")
(X,s,w,FANH)F (X', s, w,H)

(X', s',w', F') is an axiom.

Theorem 6.2 . P is tautology < (1,1 = P) F Q, Q is an aziom.

6.3 Implementation

In order to implement the algorithms based on the calculi defined above, a
simple constraint system is introduced for the constraint store of a constraint
machine. In the case of the propositional calculus the elementary constraints
are boolean variables or their negations. In the case of the predicate calculus
elementary constraints are elementary predicate formulas (literals).
Programs in the AL (constraint agents) use parts of formulas of the calculi
above to represent their states. They are considered as procedure calls of the
AL. There are three procedures in the AL-program for propositional calculus.
Two of them, namely procedures prove and aux represent the calculus of con-
ditional sequents and auxiliary goals correspondingly. The third procedure
prove_aux is used to combine the two calculi. The corresponding fragments
of the rewriting system for the unfolding operator of the AL-program for the
propositional calculus are represented in the Appendix (this is a simplified
version, the actual program contains some optimisations based on the recog-
nition of patterns of formulas). This Appendix also represents the rewriting
rules for the canonical reduction of propositional formulas. In addition to ask

11
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and tell statements, the action algebra of the AL also contains actions of type
Mesg used to inform the user about the proofs of formulas. One of such proofs
for the formula

&y l/ "x & "(y) <= "x& “(y) I/ " &y))

is also represented in this Appendix.

The predicate calculus utilises a more complicated structure for the con-
straint store. The state of this store includes not only elementary formulas
introduced as premises by tell statements, but also an ordering sequence for
free variables.

6.4 Constraint extensions

The form of the Evidence Algorithm admits easy extension by the introduc-
tion of interpreted operations and predicates, especially set theoretical ones
for which specialized solvers (which may be not complete but are sufficiently
efficient) can be developed instead of unification. This is in some way similar
to the introduction of constraint solvers to logic programming systems. For
example the implementation of Gauss algorithm in APS for symbolic solving of
linear equations, or the solving of satisfaction problem for algebraic equations
using Groebner bases technique.

6.5 FML-extension

Formalized mathematical texts written in the Formal Mathematical Language
(FML) which is used for the representation of mathematical texts contains
special linguistic constructions such as attributes or typed expressions, making
the formal language closer to ordinary natural mathematical language. These
constructions can be used as an extension of the first order predicate language
and also as extensions of the calculus of the Evidence Algorithm. A special
point is the use of definitions and the calls to them in the Evidence Algorithm.

7 Initial results and conclusions

Initial implementations of the constraint machine and the Evidence Algo-
rithm have been made using a simulator for the Action Language [4], itself
constructed using APS. Experiments have been performed using fragments
of mathematical texts as inputs to the Evidence Algorithm program and
they have demonstrated that this system is an initial, usable prototype of
the Mathematical Information Environment. We plan to extend the system
with interfaces to definitions and distributed knowledge bases, to integrate it
with existing systems of computer algebras and solvers, and to improve its
efficiency.

12
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Appendix

Definition of procedure prove

proc_def_rs:=rs(x,y,z,u,v,w,m,P,Q,F,H)(
/* Calculus of conditional sequents */

/* (w,u=>1) is an axiom */

HLNVEIAS Yy

prove(u=>1) = Mesg("prove 1\nevident"),

/* (w,0=>P) is an axiom */
prove (0=>P) = Mesg(P" is evident"),

/¥ (u=>0) |- (w,1=> "(u) */
prove (u=>0) = prove(1l=> “(u)),

/¥ (w,u=>x&y) |- (w,(u=>x)&(u=>y))
prove (u=>x& y) = (

prove (u=>x) ;

prove (u=>y)
),

/¥ (w,u=>xl/y |- (w, “(y)&u=>x */
prove (u=>x|/y) = mrg(

*/

Mesg("prove "(x|/y)"\nlet " “(x)).(

prove (Can(” (x) &u)=>y) ;
Mesg((x|/y)" proved")
)

+

Mesg("prove "(x|/y)"\nlet " ~“(y)).(

prove (Can (" (y)&u)=>x) ;
Mesg((x|/y)" proved")

/%

(1,w&ku=>z,1) |- (v,z&y=>z,Q)

(w,u=>z) |-(w& ~(2),Q)

prove (u=>z) =
15
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ask z.Mesg("z is evident")
+
aux(1,u=>z,1)
),
prove_aux(z,1) = (
Mesg(z" is evident")
),

prove_aux(z,Q) = (

Mesg("prove "z'"\nauxiliary goal is " “(z)=>Q);

tell ~(z);
prove Q;
Mesg(z" proved")

/%

(w,F&H) |- (w,H)

prove (F&H) = (
prove (F) ;
prove (H)

):

/* P is tautology <=> (1,1=>P)|- axiom */
prove 0 = 0,
prove P = (
prove(1=>Can P);
Mesg("\ntheorem proved")

)
Definition of procedure aux

proc_def_rs:=rs(x,y,z,u,v,w,m,P,Q,F,H)(

/* Calculus of auxiliary goals */
aux(v,z&y=>z,P) = (
prove_aux(z,Can_aux P)
),
aux(v,z=>z,P) = (
prove_aux(z,Can_aux P)

),
16
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/* (v,x&y=>z,P) |- (v&y,x=>z,P) */
aux (v,x&y=>z,P) = (

aux (x&v,y=>z,P)

+

aux (y&v,x=>z,P)

),

/* (v,x|/y=>z,P) |- (v,x=>z,(v => “(y))&P) */
aux(v,x|/y=>z,P) = (

aux (v,x=>z, (v=>Can(~ (y)) ) &P)

+

aux (v,y=>z, (v=>Can (" (x)))&P)
),

aux(v,x=>z,Q) = 0,

Canonical reduction rules

Can:=rs(A,B) (

(A<=>B) = Can((A->B)&(B->A)),

(A ->A) =1,

(A ->B) = Can("(A)|/B),
“(A<=>B) = Can("((A->B)&(B->A))),
~(A ->B) = Can(A & ~(B)),
“("(A) ) = Can A,

“(A& B) = Can("(A)I/ ~(B)),
“(Al/ B) = Can("(A)& ~(B)),
(A& B) = mrg(Can A & Can B),
(Al/ B) = mrg(Can A |/Can B)
);

Proof in propositional calculus

prove (x &y I/ "(x) & "(y) <=> "(x & "(y) I/ "(x) & y))
prove ("(y) I/ ")) & (y I/ x) I/ @ I/ 2 & I/ ()
let “(C"(y) I/ ")) & (y I/ x))
prove “(y) |/ x
let ~(x)
“(y) is evident
“(y) |/ x proved

prove y |/ ~(x)
let "("(x))

17
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y is evident
y |/ “(x) proved
CO &) &G/ )1 CO 1 x) &y I/ 7&)

prove “(y) & “(x) |/ "(y) &x |/ y& "(x) |/ y&x
let "("(y) &x |/ y& ") |/ y&x)
prove ~(y)
auxiliary goal is (y |/ "(x)) & ("(y) [/ (%))
“(x) is evident
“(y) proved
prove ~(x)
auxiliary goal is (“(y) |/ x) & ("(y) |/ ~(x))
“(y) is evident
“(x) proved
“y) & ") I/ (@) &x I/ y& "(x) I/ y & x proved
theorem proved
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proved

=> ~“(x)

=> “(y)



