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INTRODUCTION 

This is the second paper of a series devoted to the study of Hamilton- 
Jacobi equations in infinite dimensions. Part I [lo] was concerned with the 
uniqueness of viscosity solutions of general first order equations of the form 

F(x, 24, Du) = 0 in R WJ) 

in which 52 is an open subset of some (real) Banach space V, the unknown 
function U: Q -+ R is continuous, and &A(X) denotes the Frechet derivative 
of u at x; thus DU(X)E I’*, where I’* is the dual of I’. The nonlinear 
function F defining the equation is a continuous mapping 
F:QxRx V* -+ R. The notion of a viscosity solution for (HJ) considered 
in [lo] is a straightforward adaptation of the notion of a viscosity solution 
first used in obtaining existence and uniqueness results in the finite dimen- 
sional case (i.e., V= R”) in M. G. Crandall and P. L. Lions [7] (see also 
M. G. Crandall, P. L. Lions, and L. C. Evans [S]). One of the equivalent 
forms of this notion is recalled in Section 1 below. 

Here we prove general existence results for two typical problems, 
namely, the Cauchy problem 

u, + H(x, t, u, Du) = 0 in Vx 10, T[, 
(CP) 

4-c 0) = q(x) in V 
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supported by the National Science Foundation under Grant MCS-8002946. 

368 
0022-1236186 $3.00 
CopyrIght g: 1986 by Academic Press, Inc. 
All rights ol reproductmn m any form reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82023278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


HAMILTON-JACOBI INFINITE DIMENSIONS 369 

and the stationary problem 

u+H(x, 24, Du)=O in V, 

where the functions H and cp are given and satisfy conditions detailed in 
Section 1. In either case we call H the “Hamiltonian.” Here the DU in (CP) 
denotes the derivative of the map x -+ u(x, t); i.e., D is the gradient in the 
“space variable” X. The equation in (CP) is regarded as a special case of 
(HJ) by regarding the pair (x, t) in (CP) as x in (HJ) and Vx R as V. 

The existence results established here are precisely formulated in Sec- 
tion 1. It is quite striking that these results are obtained under much the 
same assumptions used to obtain the corresponding results in the finite 
dimensional case in H. Ishii [ 16, 171 and M. G. Crandall and P. L. Lions 
[9]. (See [3, 7, 18, 19, 211 for earlier existence results.) However, even 
though the finite and infinite dimensional theories have similar for- 
mulations, the proofs must be modified substantially in the infinite dimen- 
sional case. 

There are three main difficulties in the passage from finite to infinite 
dimensions. First, the finite dimensional theory relies everywhere on the 
fact that continuous functions on closed and bounded sets attain maximum 
and minimum values, and this is false in infinite dimensions. A way to deal 
with this in infinite dimensions was demonstrated in [lo] in the course of 
proving uniqueness. Next, in finite dimensions the method of vanishing 
viscosity can be used to solve (CP) or (SP) in a simple way if the data H 
and cp are “nice.” That is, a term --EA is added to the equations; the 
resulting problem is solved; and then E is sent to zero using a priori 
estimates, the Arzela-Ascoli (or AA) theorem, and properties of viscosity 
solutions to pass to a limit. Having obtained existence for a restricted class 
of H and cp, a priori estimates and the AA theorem are used again to 
obtain solutions for H and cp of the generality desired. In infinite dimen- 
sions we have neither the A nor the AA theorem available to us. This first 
difficulty is circumvented by the use of explicit formulae from the theory of 
differential games. We obtain solutions for a restricted class of 
Hamiltonians by forming ad hoc differential games (following the finite 
dimensional discussion in L. C. Evans and P. E. Souganidis [ 141) whose 
value functions are shown to provide the desired solutions. Next, to deal 
with less regular Hamiltonians by limiting arguments in the absence of the 
AA theorem, we must prove a sharp constructive result concerning the con- 
vergence of solutions of the approximate problems. This result is new and 
interesting even in finite dimensions. 

As mentioned above, we formulate the hypotheses for the Existence 
Theorem in Section 1 and also review and present preliminaries on 
viscosity solutions in infinite dimensions. In Section 2 we formulate and 
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prove the Convergence Theorem mentioned above. It is used later (several 
times) to show that solutions of approximate problems converge to a 
solution of the desired problems. This result is one of the main ones of this 
paper; it and variants should prove useful in other situations, even in finite 
dimensions. In order to use the Convergence Theorem one needs control of 
moduli of continuity, and a priori estimates of such moduli are given in 
Section 2 as well. Here we adapt the arguments of Ishii [ 171 to deal with 
the current generality. Section 3 concerns several reduction processes which 
are used to reduce, via the Convergence Theorem, the general existence 
theorem to simpler and simpler cases. Eventually we are interested in 
existence for Lipschitz continuous Hamiltonians and this is taken up in 
Section 4 by the differential game method. Section 4 is independent of Sec- 
tions 2 and 3 and could be read independently. Section 5 is devoted to 
illuminating remarks, examples, variants, and extensions. 

In order to keep this paper to a reasonable size we have had to rely on 
the reader to supply a variety of routine (in the theory of viscosity 
solutions) arguments at various places. As a consequence, the details of the 
proofs are not really accessible to inexperienced readers. In particular, we 
assume familiarity with M. G. Crandall and P. L. Lions [lo] and enough 
prerequisites to read this paper as well as earlier works on existence in 
finite dimensions like H. Ishii [ 171. The following remarks likewise assume 
some knowledge on the part of the reader. 

We do not impose explicit conditions at cc on the solutions we obtain 
for (CP) and (SP) as the behaviour at cc will be controlled by the 
requirement that our solutions be uniformly continuous in x (uniformly in 
t in (CP)). However, under conditions on H other than those we impose 
here other behaviours at cc of the solutions are appropriate, just as in the 
finite dimensional case. In this regard, one can obtain infinite dimensional 
results with other behaviours at cc like the finite dimensional results of 
M. G. Crandall and P. L. Lions [ 111 and H. Ishii [ 161. Similarly, one may 
use G. Barles’ idea in [3] to treat boundary value problems on the basis of 
the current results by reducing the boundary problem to an equivalent one 
in all of V. 

We conclude this introduction by mentioning topics related to the 
current investigation to be taken up in Part III of this series. In view of the 
complexity of the arguments needed to establish the existence results, it is 
natural to seek other approaches. In particular, the idea of Galerkin-type 
approximations (in which one projects the equation on a sequence of 
increasing finite dimensional subspaces) is tempting. However, as we will 
explain in Part III, simple examples show that this method does not con- 
verge in general and cast doubt that it can ever be made the basis of the 
existence theory. Next, one of the principal motivations for studying 
Hamilton-Jacobi equations in infinite dimensions is that they arise as 
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equations satisfied by value functions of optimal control problems with 
infinite dimensional state variables. Important problems of this sort arise in 
engineering applications where the state equation is a linear partial dif- 
ferential equation like the heat or wave equation, and this leads to 
Hamilton-Jacobi equations in which the Hamiltonian incorporates terms 
like (Ax, Du(x)), where A is an unbounded linear operator in V (like -A 
in L’). Barbu and Da Prato [ 1 ] derive such equations and in, e.g., [ 1,2] 
study them (see also the references therein). In our context, the unboun- 
dedness of A seems to present substantial difficulties for the viscosity 
theory. However, in Part III we will explain how to accommodate some 
equations of this type within variations of the theory presented here and in 
Part I. Part III will also demonstrate existence results in spaces “less 
smooth” than those treated here using an e-formulation of viscosity 
solutions as discussed in the Appendix of Part I. 

We mention, finally, that the main results proved here were announced 
in M. G. Crandall and P. L. Lions [ 121. 

1. PRELIMINARIES AND STATEMENTS OF RESULTS 

In all that follows, unless otherwise stated, V is a real Banach space with 
the Radon-Nikodym property (or “V is RN”), V* is its dual space, and Q 
is an open subset of V. We will use the same notation ( 1 for the norm of 
V, the dual norm on V*, and the absolute value on R. The value of p E V* 
at x E V will be written (p, x). 

There are many equivalent ways to say that V has the Radon-Nikodym 
property-see, for example, [4]. We will use the following form: V is RN if 
and only if whenever cp is a continuous mapping of a closed ball B in V 
into R which is bounded below (above) and E > 0, then there is an element 
x* of V* such that Ix*1 < E and cp +x* attains its minimum (respectively, 
maximum) value over B. 

Both (SP) and (CP) may be regarded as equations of the general form 
H(x, U, Du) = 0 by using I/x R in place of V in the case of (CP). Let 
HE C( Vx R x V*). The notion of viscosity sub- and supersolutions of an 
equation H = 0 in a set Q were defined in [lo]. One of the equivalent 
forms of this definition is: 

DEFINITION 1.1. Let u E C(0). Then u is a viscosity subsolution H= 0 in 
Q if 

Whenever cp E C(Q), y E 9, cp is differentiable at y and u - cp has 
a local maximum at y, then H( y, u(y), Dcp( y)) < 0. (1.1) 

580 65,3-6 
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Similarly, u is a viscosity supersolution of H = 0 in 52 if 

Whenever cp E C(Q), PER, cp is differentiable at y and U- 40 has 
a local minimum at y, then H( y, u(y), &J(Y)) > 0. (1.2) 

Finally, u is a viscosity solution of H= 0 if it is both a viscosity subsolution 
and a viscosity supersolution. 

We will also refer to a viscosity subsolution of H= 0 as a viscosity 
solution of H ~0, etc. We next formulate conditions on the Hamiltonians 
H in (SP) and (CP) which will be among the hypotheses under which we 
will prove the existence of solutions. These conditions will involve two 
auxiliary functions v: V-+ [0, co) and d: Vx V-+ [0, [0, cc) which are 
required to satisfy the following conditions (C): 

(C) For every y E V the nonnegative function x + d(x,y) is Frechet 
differentiable at every point except y and the derivative is denoted by 
d,(x, y). Similarly, y -+ d(x, y) is differentiable except at x and its 
derivative is d,(x, y). The function v is nonnegative and differentiable 
everywhere. Moreover, there is a constant K > 0 such that 

IdAx, ~11, Id,,(x, Y)L lWx)l 6 K (1.3) 

whenever the quantities on the left are defined, 

(1.4) 

and 

Ix-yl,<d(x,y)<Klx-yl for x, y E V. (1.5) 

We continue. A function m: [0, co) + [0, co) will be called a modulus if it 
is continuous, nondecreasing, nonnegative, and subadditive and satisfies 
m(O)=O. We will use m, mH, etc., to denote such functions. We will also 
say that a function (r: [0, cc) x [0, co) -+ [0, co) is a local modulus if 
r + a(r, R) is a modulus for each R 2 0 and c(r, R) is continuous and non- 
decreasing in both variables. We next formulate conditions on the 
Hamiltonian H: I/x [0, T] x R x V* -+ R in (CP). These conditions are 
interpreted in the obvious way for time independent Hamiltonians 
H: Vx R x V* -+ R as in (SP). Throughout the statements it is assumed 
that conditions (C) hold and d, v are the functions in (C). We also let 
BR(x) = (z E V: (z -xl d R) be the closed ball centered at x of radius R in 
V; Bz( p) be the ball of radius R in V* centered at p E V*; and B, = BR(0), 
B;(O) = B;. 
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(HO) There is a local modulus o0 such that 

I~~~,~,~,~~--H(~,~,~,~~ld~,~l~-~l+I~-~l+I~-~l+I~-ql,~~ 

forR>O,x,yEBR,t,SEIO,T],Irl,Iul~R,andp,qEB~. 

(Hi) For each (x, t, p) E Vx [0, T] x V* the map r + H(x, t, r, p) is 
nondecreasing. 

(H2) There is a local modulus gH such that 

Wx, 4 r, p) - ffk t, r, p + ADv(x)) < o,(k I PI + 1) 

whenever 0 6 1, (x, r, t, p) E V x [0, T] x R x I’*. 

(H3) There is a modulus mH such that 

NY, t, r, -@Ax, y)) - ff(x, t, r, W(x, y)) d m,(;ld(x, y) + d(x, y)) 

for x, yE I/with x#y, tE [0, T], rcR and AgO. 

The existence results will be proved for (CP) under (HOk(H3). For (SP), 
(H3) will need to be augmented and sometimes we will invoke the 
additional condition: 

(H4) There is a function F: [ 0, cc ) x [0, cc ) -+ R nondecreasing in its 
arguments such that 

WY, r, -@,(x5 .?J)) - Wx, r, ~wd,(x, Y)) d fl& 4 

for x, YE I’, r E R, and A> 0 and a nonnegative nondecreasing uniformly 
continuous map G: [0, cc) + R which is continuously differentiable on 
(0, 00 ) and satisfies 

G(r) 3 FtG’(r), r) on r>O. 

In order to appreciate the need for (H4) for (SP), as well as for further 
insight into the nature of the other conditions above, we invite the reader 
to refer ahead to Section 5 at this time and to see the discussion in [ 10, 
Remarks 21. The reader will observe some differences in the formulations 
of (C) (in which, for example, a constant called k in [lo] has been put 
equal to 1 here, as can be done without loss of generality) and (HO)-(H3) 
from the corresponding formulations in [lo]. In particular, (HO) is 
stronger in several respects than its analogue due to the more stringent 
requirements of the existence theory. We also recall that for (CP), (Hl ) can 
be weakened to the monotonicity of r -+ H(x, t, r, p) + Ar for some A E R by 
means of the change of variable u -+ e - “~4. 
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Finally we introduce various function classes. If X is any metric space, 
the space of uniformly continuous real-valued functions on X is UC(X) and 
the subspace of bounded functions in UC(X) is BUC(X). The space 
UC,( Vx [0, T]) consists of those functions u: V x [0, T] + R which are 
uniformly continuous in x uniformly in t and uniformly continuous on 
bounded sets. This amounts to asking that there be a modulus m and a 
local modulus g such that 

BUC,( Vx [0, r]) is the subspace of UC,( Vx [0, 7J) consisting of 
bounded functions. 

EXISTENCE THEOREM 1.1. (i) Let (HOt(H3) hold and cp E UC( V). Then 
there is a unique u E UC,( Vx [0, T]) which is a viscosity solution of 
u, + H(x, t, u, Du) = 0 on I/X (0, T) and satisfies u(x, 0) = q(x) on V. 

(ii) Let (HO)-(H4) hold. Then there is a unique viscosity solution 
uEUC(V) ofu+H(x, u, Du)=O on V. 

The program of proof of the Existence Theorem is quite long and 
involved and will occupy the next three sections. There are infinitely many 
variants of this result and we discuss some of them in Section 5. This sec- 
tion concludes with some results of general interest concerning viscosity 
solutions which will be used in various parts of the proof of the Existence 
Theorem. In the statements of these results the reader should think of the 
equations H = 0, etc., which are involved as including both (SP) and (CP). 

In what follows we will assume the existence of a function N: I/+ [0, cc) 
with the following properties: 

The nonnegative function N is Lipschitz continuous on V and 
differentiable on q {O}. Moreover, N(0) = 0 and N(x) >, /x/ in 
some neighborhood of 0 in V. (1.6) 

For example, if the conditions (C) hold, then N(x) = d(x, 0) has the desired 
properties. In addition, if X is reflexive, then it has an equivalent norm 
which may serve as a function N satisfying (1.6). When (1.6) holds, the 
requirements defining viscosity sub- and supersolutions may be weakened 
without modifying the notion. We formulate and prove a result to this 
effect (see also [ 10, Remarks 1 ] ). 

PROPOSITION 1.2. Le’t (1.6) hold. Let u E C(Q). Then u is a viscosity 
solution of H GO (H 20) in 52 if and only of whenever cp E C(Q) is 
everywhere dlyferentiable, y E Q is a point of continuity of Dq and there is an 
r>O such that u(x)-(p(x)<u(y)-q(y)- Ix- y12 for (x- yl dr (respec- 
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tivefy, ~(Y)-cp(Y)~~(x)-cp(x)-Ix-Y12 for Ix - YI G r), then 

WY, u(y), MY)) 60 (rwectiveb, WY, u(y), &(Y))20). 

Sketch of Proof. Assume that u satisfies the conditions the proposition 
asserts are equivalent to being a vicosity solution of H < 0, cp E C(Q) and 
ye D is both a local maximum point of u - cp and a point of differen- 
tiability of cp. In order to deduce that H( y, u)(y), Dq( y)) < 0 we first 
remark that: 

LEMMA 1.3. Let (1.6) hold. Let cp E C(Q) be dtfferentiable at y E Q. Then 
there is a function II/ E C(Q) which is everywhere differentiable on Sz and an 
r > 0 such that II/(y) = cp( y), D$( y) = Dq( y), D$ is continuous at y, and 
I)(X)+ Ix- yl’<cp(x) for Ix- yl <r. 

Proof of Lemma 1.3. Set p = Dq( y). By assumption and (1.6) there is 
an r > 0 and an h E C(R) satisfying h(0) = h’(0) = 0 and 

CP(X)~CP(Y)+(P, x-~)+h(N-y)) for Ix- yl Gr. 

Lemma I.4 of [7] (due to Evans) provides us with a continuously differen- 
tiable function g on R which satisfies g(0) = g’(0) = 0 and g(s) d h(s) for 
small s. Clearly +(x) = cp( y) + (p, x-y) + g(N(x - y)) - N(x - Y)~ has the 
desired properties. 

End of Proof of Proposition 1.2. Since y is a maximum point of u - cp, if 
$ is related to cp as in the lemma, y is also a strict maximum point of u - II/ 
in the sense of the assumptions. But then, by the assumption on u and the 
properties of ICI, H(y,u(y),~~(y))=H(y,u(y),Dll/(y))~O, completing 
the proof. The case of supersolutions is treated in a parallel way. 

The next result presents a key stability property of viscosity solutions. 

THEOREM 1.4. Let (1.6) hold. Let U,E C(Q) and H,E C( Vx R x V*), 
n = 1, 2,..., converge to u, H as n + co in the following way: 

For every x E Q there is an R > 0 such that u, -+ u 
uniformly on BR(x) as n + co, (1.7) 

and 

Zf(x, r, p), (x,, rn, p,) E 52 x Rx V* for n = 1, 2 ,..., and 

CL r,,, P,) -, (x5 r, P) as n -, ~0, then H,(x,, rnr A) + H(x, r, P). (1.8) 

Zf u, is a viscosity subsolution (respectively, supersolution) of H,, = 0 in 52, 
then u is a viscosity subsolution) of H = 0 in 0. 

Proof We treat the case in which the U, are solutions of H, ~0; the 
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case of supersolutions is entirely similar. Let cp E C(Q) be differentiable and 
y~sZ be a point of continuity of Dq Assume, moreover, that 

~(x)-(P(x)~~(Y)-cp(l’)-IY-x12 for Iv-xl dr (1.9) 

for some r > 0. We may also assume, due to the nature of the convergence 
of the a,, that 

u,(x) d 4x) + &,I for Iv-xl <r, (1.10) 

where s,-+O. If PE I’*, IpI GM, and Ix-y1 =66r, we deduce from (1.9) 
and (1.10) that 

Hence if 

cd + 2&,,< 6*, (1.11) 

any maximum of the function u,(x) - q(x) - (p, x - y) over B,(y) must 
occur at an interior point. Let z,, 6, > 0 be sequences convergent to 0 and 
satisfying (1 .l 1). According to Stegall [20] we may choose pn E I/* such 
that lp,( < CI, and u,(x) - q(x) - (p,,, x - y) has a maximum yn with 
respect to B6,( y). By the above, y, is an interior point of BJn( y) and so yn 
is a local maximum. Then, by the definition of viscosity solutions, 
ff,(y,, KAY,,), WY,)+ p,)GO. Since YF+ Y, pn +O, and &J is con- 
tinuous, the assumed convergences yield H( y, u(y), Dq(y)) <O in the 
limit. 

As mentioned above, conditions much like (HOt(H3) were introduced 
in [lo], where the question of uniqueness was studied and some continuity 
of solutions with respect to the equations was proved. We will in fact need 
to supplement these results of [lo] somewhat to achieve full generality 
below. This task is taken up in the next section. 

2. CONVERGENCE THEOREMS AND MODULI OF CONTINUITY 

The results of this section, which are both technical and general, concern 
the continuity of solutions of Hamilton-Jacobi equations in the data of the 
problem. These data are here taken to be the equation and, in the case of 
(CP), the initial-value. Results of this sort were given in [lo]; however, 
they have proven to be inadequate for the full existence program treated in 
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this paper. Roughly speaking, the results of [lo] were formulated to 
correspond to uniform estimates on all of V, while we will need to deal 
with estimates uniform on bounded sets, but not on I’. We will, however, 
make full use of the proofs in [lo] by referring to them rather than 
repeating arguments when appropriate. This minimizes repetition and shor- 
tens the presentation. We ask the reader’s forbearance as we launch our- 
selves into the discussion. 

We consider sequences of Cauchy problems 

u,t + H”(4 4 u,, ml) = 0 in Vx (0, r], 
(CPL 

%(X3 0) = cp,(x) in V, 

and stationary problems 

u, + H,(x, u,, Du,) =o in V W), 

indexed by n = 1, 2, 3 ,.... In each case the Hamiltonians will converge to a 
limit H in the sense that 

lim H,(x, t, r, p) = H(x, t, r, p) uniformly 
n-cc 

on bounded subsets of V x [0, T] x R x V* (2.1) 

(interpreted in the obvious way if H, is independent of t). When a sequence 
of functions f, converges to a limit f uniformly on bounded subsets of its 
domain we will simply write 

and say f, converges UB to f: The point of the main convergence result is 
that if H, (and (Pi for (SP)) converge UB to a limit H (and cp) which obeys 
(HOt(H3) and we have some additional information like (but not exactly) 
a uniform modulus of continuity of the u,, then the u, converge UB to a 
viscosity solution u of the limit problem. The convergence theorem will be 
invoked later to assert that solutions of approximate problems converge to 
solutions of limit problems. In order to verify the hypotheses in these 
applications, we will need to obtain something like uniform moduli of con- 
tinuity. Results in this direction are given in Theorems 2.2 and 2.3 below. 

CONVERGENCE THEOREM 2.1. Let H,, n = 1,2,..., be Hamiltonians which 
are uniformly continuous on bounded sets and satisfy (HO) and H be a 
Hamiltonian which satisfies (HO)-(H3). Let H, converge UB to H. 
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(i) Let U,E UC,( Vx [0, T]) be a viscosity solution of (CP), for 
n = 1, 2,... . Assume that there are constants A and B such that 

I%(.& l)l <A,+ &v(x) for (x, t)~ Vx [0, T] (2.2) 

for n = 1, 2,.... Assume, moreover, that 

F; lim SUP sup { Iu,(x, t) - u,( y, t)l: d(x, y) <r, 0 G t d Tj = 0. (2.3) 
n - m 

Then there is a u E UC,( V x [0, T]) such that 1.4, -+ u UB. 
(ii) Let the above assumptions holds. Let u,, E UC( V) be viscosity 

solutions of (SP), for n = 1, 2,..., and (2.2)-(2.3) hold (where the u, are now 
independent of t). Then there exists a u E UC(V) such that u, + u UB. 

Of course, it follows from Theorem 1.4 that in both cases (i) and (ii) 
above u is a viscosity solution of the limiting problem. Before beginning the 
proof of the Convergence Theorem we will formulate two theorems which 
provide, by giving estimates on viscosity solutions and their moduli of con- 
tinuity, a way to verify its hypotheses. Later we will need to expand the 
range of application still further. 

The following “data” of (CP) or (SP) will be referred to in addition to 
the data in (C) and (HO)-(H4): A modulus m, such that 

IVY - cp(y)i <mdcl(x, Y)) for x, y E V (2.4) 

and positive constants A,, B,, A, B, such that 

IfOx, t,O,O)IdA,,+B,v(x) for (x, t)~ Vx [0, T] (2.5) 

and 

Idx)l d A, + &v(x), (2.6) 

and the function 

b,(R) = sup(lH(x, t, r, p)l: v(x), I PI, b-1 < R and t E CO, Tl>. (2.7) 

We begin with (CP) since the hypotheses needed for (SP) are more restric- 
tive. 

THEOREM 2.2. (i) Let H in (CP) satisfy (HO)-(H3) and cp EUC( V) 
satisfy (2.4)-(2.7). Let UE UC& Vx [0, T]) be a viscosity solution of (CP). 
Then there are constants A, B depending on A,, B,, A,, B,, bH such that 

lu(x, t)l G (A + Bvb)), (x, t) E Vx CO, Tl, (2.8) 
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and a modulus m depending on m, and m, such that 

lu(x, t)-u(y, t)l <W(x, Y)) for x, y E V and t E [0, T]. (2.9) 

Moreover, there is a local modulus rs depending on A, B in (2.8), m in (2.9), 
b,, v, and d such 

144 t)-u(x,s)l <o(lt--I, 14) for t, se [0, T]. (2.10) 

(ii) Let H in (SP) satisfy (HO)-(H4) and ~EUC(V) be a viscosity 
solution of (SP). Then there are constants A and B depending on A,, B,, 
and IJ~ such that 

lu(x)l d A + Bv(x) for XE V, (2.11) 

and a modulus m, depending on G in (H4), A and B in (2.1 l), and mH, such 
that 

(2.12) 

As a simple example of the use of these results, observe that by com- 
bining the Convergence Theorem and Theorem 2.2 we learn, in particular, 
that if H satisfies (HO)-(H3) and u, is a solution of (CP) with the initial 
data cp, E UC( V), n = 1, 2 ,..., the rp, admit a common modulus of con- 
tinuity, q,(O) is bounded, and qn + cp UB, then u, + u UB and 
u E UC,( Vx [O, T]) is the viscosity solution of (CP) for the initial-value cp. 
This result employs only the special case of the Convergence Theorem in 
which the modulus is uniform in the u, and is interesting and new in the 
classical finite dimensional theory. 

We remark that the additional assumption (H4) (or some variant) is 
necessary for (SP) in the sense that it is possible to give examples (there is 
one in Section 5) of stationary problems u + H(x, Du) = 0 in I/= R in 
which H satisfies (HO)-(H3) but there are no uniformly continuous 
viscosity solutions. 

We next sketch the proof of the Convergence Theorem. After this is com- 
plete we establish Theorem 2.2. 

Proof of the Convergence Theorem 2.1. We begin with the case (i). As a 
first step we replace u, by e -‘u,, in the usual way, the effect being that we 
may assume that u, is a viscosity solution of the problem 

u,, + u, + H,(x, t, u,, &J = 0, (2.13) 

and the remaining assumptions are still satisifed. We seek to estimate the 
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difference u,(x, t) - u,(x, t) on the set v(x) < R. To this end, let G: R -+ R 
be continuously differentiable and satisfy 

G(r) = 0 if r,<O, G(l)= 1, and 06G’(r)d2. (2.14) 

Let R, R’, ~1, /I > 0, and put 

@(x, y, t)=%7(X, t)-%(Y, t)- 0, Y)’ -+/3G (y)). (2.15) 
tl 

The parameters will be chosen for various purposes later. Roughly 
speaking, we will first produce a bound on u,- u, on v(x) < R which is 
independent of R and then we will use this to sharpen the estimates and 
show the convergence. Let 

M,,=suP{@k Y, t):(x, Y, f)ES), (2.16) 

where ,S=((X,~,~)EVXVX[O,T]:~(~),~(~)~R+R’ and d(x,y)<l} 
and (x,, y,, fk) E S, be such that 

6) @(x,3 YkYfk) t Mum, 

(ii) @(xk, yk, zk) 2 @txk, xk, tk). 

Notice that, by (2.14), 

M,, 2 sup{ u,(x, t) - u,(x, t): v(x) < R, t E [0, 2-l). 

The relation (2.17) (ii) implies that 

dh, yk)*b d %dxk, tk) - %n(Yk, tk). 

Now we set 

o,(r) = sup{ Iu,(x, t) - u,( y, t)l: d(x, y) < r, 0 < t d T}, 

o(r) = lim sup w,(r) for 06 Y. 
n-m 

Using (2.19) and (2.20) we have 

d(X,, Yk)* 6 CW,z(d(Xk, yk)). 

We consider three possible situations: Either 

(I) tk +O or 

(II) max(v(x,), v( yk)) + R + R’ Or 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21 

(III) for some q > 0, t, > r] and v(x,), v( yk) < R + R’ - q for large k. 
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By passing to a subsequence of {@(x,, y,, t,)} if necessary, we can always 
reduce to a case in which one of (I)-(III) holds. Using the bound (2.21) 
and d(x,, yk) < 1 we find 

(2.22) 

and so 

4x,, YJa Q (o,(l )/a)“*. (2.23) 

Using (2.22) in (2.21) 

4~ ykJ2/a 6 ~,((awm(l)P2). (2.24) 

Let us now assume we are in case (I). In this event, (2.17) (2.22) and 
u,(x, 0) = q,(x), etc., imply that 

M,, 6 SUP{ IV,(X) - ~p,(x)l: V(X) 6 R + R’} + qJ(aqJ1))1’2). (2.25) 

If we are in case (II), we use (2.2) to conclude that 

M,, d 2(A, + B,(R + R’)) - j litc”_“,“p G((v(xk) - R)/R’). (2.26) 

Now either v(xk)+ R+ R’ or v(yk) -+ R+ R’. Since v(xk)a v(yk)- 
K 1.‘~~ - y,l > v( yk) - Kd(x,, yk) and G’ is bounded by 2, in both cases we 
conclude that 

M,, 6 2(A + B(R + R’)) -/I( 1 - 2(K/R’)(ao,( 1))“‘). (2.27) 

In case (III) we may use the arguments of [lo] to conclude that the 
estimates we arrive at below by assuming that in fact 0(x,, yk, fk) = M,, 
and using the equations satisfied by u, and u, are valid if we keep the 
parameters in the range where (2.22) gurantees d(x,, yk) remains strictly 
away from 1 (as we will). Hence we simply assume (x,, y,, fk) is a 
maximum point of @ on S. We write (x,, yk, tk) = (X, j, t) to have a nicer 
appearance. Recall ([lo]) that the function z(x, y, t) = u,(x, t) - u,( y, t) 
satisfies the equation 

z, + z + Hn(x, f, %(X, t), D,z) - ffm( Y> 6 &7(Y, t), -Q) = 0 

on Vx Vx (0, T] in the viscosity sense. Therefore we have 

%l(% 0 - KI(Y, t) 

Q HAY, i, u,(U, 0,2dd,la) 

- H,(X, i, u,(X, i), 2dd,/a + (B/R’) G’((v(X) - R)/R’) b(X)), (2.28) 
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where d= d(X, j), etc. We also have 

-H,(x, i, u,(X, t-), 2dd,la + (j/R’) G’((v(x) - R)/R’) h(x)) 

= H(x, i, u,(x, i), 2dd& + (j/R’) G((v(x) - R)/R’ b(x)) 

- H,(x, i, u,,(X, i), 2dd,/a + (/3/R’) G’((v(x) - R)/R’) h(x)) 

- H(% i, u,(X, t], 2dd,/a + (b/R’) G’((v(x) - R)/R’) Dv(X)) 

+ H(i, i, u,(X, i), 2ddJa) - H(x, i, u,(X, i), 2ddJa). (2.29) 

Let us introduce the functions 

k(R) = sup{ IfJ,(x, t, r, PI- H(x, 4 r, PI: v(x), I4 IA d RI. 

Using (2.22)-(2.29), and (H2) we deduce that 

-ff,(% i, u,JX, t), 2dd,/a + (b/R’) G’((v(X) - R)/R’) h(X)) 

<k&4 + (1 + B)(R+ R’)+2K((c0,(l)/a)“~+ p/R’)) 

+ ~,(‘WIR’, W(o,(l)/cr)“*) + P/R’)) - H(x, i, u,(X, i), 2dd,/a). 
(2.30) 

In a similar way we find that 

H,,,(.k f, u,(Y, 0,2dd,la) 

d k,(A + (1 + B)( R + R’) + 2K((w,( 1 )/a)‘12)) 

+ H( r, I, u,,J J, t], - 2ddJa). (2.31) 

Putting (2.30) and (2.31) together with (2.28) and using (Hl) and (H3) 
yields 

%G, t‘) - %?AY, 11 

d (k, + k,)(A, + (1 + B,)(R + R’) + 2K( (w,( 1 )/a)“* + p/R’)) 

+ ~&W/R’, 2K((w,(l )/a)“’ + B/R’)) 

+ mAWw,d(aw,(l ))“‘I + (ao,(l ))“*)I (2.32) 

and so 

~,,~((k,+k,)(&+ (1 + &)(R+ R’)+2K((o,(l)/a)“2+ (B/R’)) 

+ ~HWIVR’, W(o,(l )/a)“‘)) + P/R’)) 

+ m,(2K(w,((aw,(l))“*) + (awAl))“*)). (2.33) 
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Let 

L=o(l)“? (2.34) 

To estimate lim sup n,m - m M,, we can assume that we are in one of the 
cases (Ik(II1) for each n, m. In case (I) we use (2.3), (2.20), (2.25), (2.34) 
and the assumed UB convergence of the qn to conclude that 

lim sup M,, < o(cr”*L) (2.35) 
n,m - Lo 

(where we should write w(a”*L+) on the right but won’t). 
In case (II) we use (2.27) and (2.24) to conclude 

lim sup M,, d 2(A + B(R + R’)) - b( 1 - 2(K/R’) cc”‘L). 
n,m - ns 

Letting 

R’=Ral 

and assuming hereafter that cx is so small that 

a1j2L 6 min{$, 1/(4K)} 

we see that the right-hand side of (2.36) is negative if 

(2.36) 

(2.37) 

(2.38) 

/?=4(4+2BR)+l, (2.39) 

and we may therefore disregard case (II) when (2.37)-(2.39) hold. 
In case (III) we use (2.33) and (2.37)-(2.39) together with k, + 0 UB to 

conclude that when these conditions hold 

lim sup M,, 6 m,(2Kw((ctL”2) + 4) 
n,m - cc 

+ aH(2K(4(A + 2B) + l), 2K(Lcr-“’ + 4(A + 2B) + 1)). 

(2.40) 

Notice that the right-hand sides of (2.35) and (2.40) are independent of R, 
so from (2.18) we deduce that for all R > 0 

sup{dx, t) - u,(x, t): v(x) < R t E CO, 7-l) GE,,,, + B,, (2.41) 

where 

E nm + 0 as n, m+ co (2.42) 

and B, is some constant independent of R. 
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The estimate (2.35) is sufficient for our purposes in case (I), but we need 
to use the above information to sharpen the bounds in cases (II), (III). 
First of all, we argue that (2.41) holds with a constant B, independent of R 
in general. This follows from the above by choosing R = R’ and p as in 
(2.39) to reduce to either case (I) or (III) so that (2.41) or (2.35) holds. 
Since (2.35) implies (2.41) we conclude that (2.41) holds for all R. Since 
(2.41) is independent of fl, CI we are free to assume (2.41) holds and to 
choose 6, cc anew in further analysis. 

To analyze case (II) further, we use (2.41) (with R + R’ in place of R) to 
deduce 

%(XP, fk) - Urn(Yk, fk) 6 &?l + B, + o,((ao,(l ))I”) 

and so in case (II), (2.27) can be replaced by 

M,, < E,, + B, + w,((aw,,( 1))‘.‘2) - /3( 1 - Z(K/R’)(cto,( 1 ))I’*). (2.43) 

Hence, by (2.42) 

lim sup M,,, 6 B, + L2 - /I( 1 - 2(K/R’) c(‘j*L). 
n,m - oc 

(2.44) 

We see that we may fix p sufficiently large and independent of R, R’ 3 1 in 
such a way that the right-hand side of (2.44) is negative for all sufficiently 
small c( > 0. With /I so lixed, we may disregard case (II). The estimate 
(2.35) is still sufficient for our purposes in case (I). In case (III) we use 
(2.33) with the /I just fixed by case (II) to conclude that 

Iim sup M,, < o,(2K/l/R’, 2K( Lot ~ ‘I2 + B/R’)) 
n,m - a 

+ m,(2Kw(a”*L) + o.I’~L). (2.45) 

By (2.3) the right-hand side of (2.35) can be made as small as desired by 
choosing LX small. Similarly, the right-hand side of (2.45) yields 0 in the 
iterated limit R’ -+ co and then c1 --f 0. In view of (2.18) we conclude the UB 
convergence of the u, to a limit u. It follows easily from (2.3) that u is 
uniformly continuous in x uniformly in t. Since each u, is uniformly con- 
tinuous on bounded sets, their UB limit u also has the property and we 
conclude that u E UC,( V x [0, T]). 

The proof in the case (ii) of (SP) is given in an entirely analogous way. 
One still uses (2.17) (now independent of t) and proceeds through the same 
steps. We leave it to the reader. 

We turn now to the proof of Theorem 2.2. 

Proof of Theorem 2.2. We adapt the comparison function technique of 



HAMILTON-JACOBI INFINITE DIMENSIONS 385 

Ishii [16, 173 to the current case. First of all, we bound u. Let A , B > 0. 
Using (Hl) and (H2) we have 

-H(x, t, u, (1 + t) BDv) < -H(x, t, 0,O) + oN(( 1 + T) B, (1 + T)B) (2.46) 

for u > 0 and so we see that the function v(x, t) = (A + Bv(x))(l + t) is a 
viscosity solution of u, + H(x, t, u, Du) 2 0 if 

A + Bv(x) > H(x, t, 0,O) + oH(( 1 + T) B, (1+ T)B). (2.47) 

In making this claim, we are using the obvious remark that inequations in 
the viscosity sense for everywhere differentiable functions are equivalent to 
the corresponding pointwise statements. If also A + Bv(x) 3 A, + B,v(x), 
then u(x, 0) > u(x, 0) = q(x) and we conclude, using [ 10, Theorem 23 (the 
global nature of the assumption (HO) in r there is not necessary in Sz = V), 
that if 

B = max(B,, BH), 

A=max(A,, AH} +oH((l + T)B, (1 + T)B) 
(2.48) 

then 

u(x, t) 6 (A + Bv(x))( 1 + t). 

To begin the estimate on the modulus, we recall [lo] that the function 
z(x, y, t) = u(x, t) - u( y, t) on Vx Vx [0, T] satisfies the equation 

z, + H(x, t, 44 t), D,z) - wy, t, u(y, t), -D,z) = 0 (2.49) 

in the viscosity sense. Therefore, by (Hl ), on the set {(x, y, t) E Vx V x 
(0, Tl: 4-T Y, t) > o>, z is a viscosity solution of 

z, + 17(x, Y, t, MY, t), D,z, D.,.z) d 0, (2.50) 

where 

WG Y, t, r, P, 4) = W-c t, r, P) - f4 Y, t, r, - 4). (2.51) 

We seek a function w(x, y, t) of the form 

4x, y, t) = (& + F. 4x, Y)) e”‘, (2.52) 

which is a viscosity solution of 

w, + w(x, y, 6 r, Dxw, D,w) 2 0 (2.53) 

for all r E R. To this end, we make the following simplifying remark: 
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Remark 2.3. Even though d(x, y) is not differentiable with respect to x 
or y on the diagonal x = y, all of the formal calculations below with trial 
subsolutions and supersolutions involving d(x, y) can be made rigorous by 
first doing the calculations with d,(x, y) = (E + d(x, y)‘)i/’ for E > 0, then 
letting E + 0 and invoking Theorem 1.4. Observe that d,(x, y) is everywhere 
differentiable with respect to x and y and, for example, 

4,(x, Y) = (E + 44 YYY2 4-G Y) &(x, Y) 

(interpreted as zero on x= y) and (E+ d(x, y)‘) ‘I2 d(x, y)< 1. For 
everywhere differentiable functions the pointwise and viscosity notions of 
solutions obviously coincide. 

In order that (2.52) solve (2.53) we need that 

A(E, + F, d(x, y)) e’.’ > H( y, t, r, -ei’FO d,,) - H(x, t, r, e”FO d,) 

for all r. In view of (H3), it suffices to have 

(2.54) 

i(E,+ F, d(x, y)) >e-irmH(ei’Fo d+ d). 

Because mH is a modulus, mH(r) < mH( 1) + mH( l)r, and it follows that 
(2.54) holds as soon as A is large enough. Moreover, by (2.4), for E,, 
Fo3mo(l) 

We claim that then z(x, y, t) d w(x, y, t). This follows from the proof of 
[ 10, Theorem l] (but not quite from the theorem itself). To see this, 
observe that for fixed r, n(x, y, t, r, p, q) satisfies conditions (HO)-(H3) of 
[lo] (while H(x, t, u(x, t), p, q) may not). In checking that this is so, one 
uses 

w, Y) = v(x) + V(Y) and 4(X? Y), cc 3) = (4x, XJ2 + 4.K Y12P2 

as the functions for conditions (C) on Vx V and in (H2)-(H3) for H. In 
order to prove z < w we will only need to discuss z where it is nonnegative. 
Then proceeding as in the proof of the comparison theorem and using 
(2.50) and (2.53) one encounters an upper bound roughly of the form 

B(x, y, t, r, p, q) - R(x, y, t, u( y, t), p, q) + terms which go to zero, 

where (x, y, t) is chosen to maximize a certain functional. Since r is at our 
disposal, we may use r = u( y, t) and the comparison argument succeeds. 
Fixing 1 > ~1, y > 0, we next seek a supersolution w of (2.53) on the set 
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of the form 

w=(E+F(a+d(x, y))y)(l +t), (2.55) 

where E > 0 and F satisfies 

F>eiT(Eo+F,,) (2.56) 

with 1, E,,, F, from above. This guarantees that w(x, y, t) 2 u(x, t) - u( y, t) 
on d(x, y) = 1 and on t = 0, d(x, y) < 1. A calculation reveals that (2.55) is 
a viscosity supersolution on S if 

E + F(or + d(x, y))’ 3 mH(( 1 + T) yF(a + d)? + d). (2.57) 

Fix 

F=max(m,(l)+1,m,(l),E,+F,) 

so that (2.56) holds and put 

(2.58) 

E(y)=max{m,((l+T)yF(cr+r)Y+r)-E(cr+r)Y:O~r,u<l}. (2.59) 

One easily shows that E(0 + ) = 0 (see, e.g., [9, Lemma 1 I). As above, com- 
parison implies that for 0 < ~1, y < 1 

I&G t) -4x t)l< (E(Y) + F(a + 4x, y))‘)(l + t) 

and sending cz--) 0 and taking the intimum over y on the right produces the 
modulus m(d(x, y)) on d-c 1. 

In order to exhibit the local modulus in time, fix X E V with v(X) < R and 
TV [0, T] and seek a supersolution u of 

v, + H(x, t, v, Do) 2 0 

on {(x, t) E Vx (i, T] } of the form 

v(x, t) = u(X, 0 + A + Bd(x, X) + C(t - t), 

which further satisfies 

(2.60) 

(2.61) 

v(x, t) 2 u(x, t) ifv(x)=R+landtE[i,T] (2.62) 

and 

v(x, t] B u(x, t) for v(x)<R+l. (2.63) 

Using (2.8) we see that 

I@, t)l G c, ifv(x)<R+ 1 and te [0, T], 

580/65/3-7 
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where C, depends only on the data. Let d(x, y) > L if Iv(x) - v( y)[ B 1. We 
will have (2.62) provided only that 

Using (2.9) we see that (2.63) holds provided that 

A + Bd(x, X) > m(d(x, X)) onv(x)<R+ 1. 

Since m is a modulus, 

m(d) <m(c) + (m(E)/e)d for c,d>O, 

and we can thus choose 

B= max{2C,/L, m(c)/&}, A = m(e), (2.64) 

for any E > 0 and have that (2.62) and (2.63) hold. Fixing A, B as in (2.64) 
and CBO (so v> u(X, i) > -CR)) the inequation (2.50) holds provided 
that 

C + H(x,t, -CR, Bd,(x, X)) > 0 onv(x)dR+l,i<t<T, 

and for this it is enough that 

C = bH( R + 1 + 2C,/L + m(c)/&). (2.65) 

By comparison, we conclude that for each E > 0 

4% i) d 24% t) + m(c) + C( t - i), 

where C is given by (2.65). Arguing in a similar way one obtains analogous 
estimates from below and for t d i, establishing the desired results. 

The result for (SP) is proved in a similar way. First, we see that v(x, t) = 
A + Bv(x) is a supersolution of (SP) if 

A + Bv(x) a -H(x, 0,O) + o,(B, B) 

so it is enough to put B = B, and A = A, + a,(B, B) to guarantee (2.11). 
To begin the estimate on the modulus we set z(x, y)= u(x)- u(v) so 

that 

on the set z > 0, where R is given by (2.51) as before. It is in getting a first 
bound on z in Vx V that we need to invoke (H4), which is designed just 
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for that purpose. Indeed, set w(x, y) = G(d(x, y)). Then, by (H4), w is a 
solution of 

4x, Y) + R(x, Y, r, D, w, D, w) B 0. 

This follows from the computation 

H(x, r, D,w) - WY, r, --D,w) = I-& r, G’(d)&) - WY, r, -G’(d)&) 

3 -F(G’(d), d) 2 -G(d) = -w, 

showing that w is a supersolution. We conclude that w 3 z. Now we 
can proceed as in (CP) once more. Since z < G( 1) on 
((4 y)e Jfx v: 4-T y)< l}, and E, + FO(a + d(x, y))’ is a supersolution 
on d< 1 if 

E, + Fo(a + 4x, ~))‘a m,(yF,(a + d)’ + d), 

one proceeds in the same way as for the (CP). 

3. REDUCTION TO THE CASE OF LIPSCHITZ CONTINUOUS HAMILTONIANS 

We will carry out the discussion below for the Cauchy and stationary 
problems simultaneously. Appropriate distinctions between the cases will 
be made at those times when it is necessary-otherwise the discussion 
proceeds as if H depends on t and (SP) is understood to be included by 
allowing H to be independent of t. 

First Reduction-To Lipschitz continuous initial-values 

The first reduction is only relevant for (CP). Let H(x, t, r, p) satisfy 
(HO)-(H3) and cp E UC(V). We consider (CP): 

u, + H(x, t, u, Du) = 0, 4x3 0) = v(x). 

Then cp may be approximated by its “inf convolution” 

cp,(x) = inf{cp( A + n Ix - YI : Y E v> 

for n > 0. If m, is a modulus for cp, i.e., 

Idx)-cp(Y)l ~WAIX-YI) for x, y E V, 

then one can easily demonstrate that 

CPAX) G v(x) G cpn(x) + E”, 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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where 

E, = inf{ m,(r) - nr: 0 < r ) 

satisfies E, + 0 as n -+ co. (In particular, E, is finite if n > m( 1 ), and ‘p, is 
well-defined in this range.) Moreover, m, is a modulus for (P,,. In all, (Pi is 
Lipschitz continuous for n large (with n as a Lipschitz constant) and con- 
verges uniformly to cp as n -+ co and has the same modulus of continuity as 
cp. Using the Convergence Theorem (or the simpler result which bounds 
the difference of solutions of (CP) by the supremum of the difference of the 
initial values), we conclude that to prove existence of a solution 
UE UC,( Vx [0, r]) of (CP), we may assume that cp is Lipschitz con- 
tinuous. We could (but do not need to) further approximate by putting 
(assuming now that cp is already Lipschitz) q,(x) = (I- lxl/n)‘q(x) 
(where r+ = max(r, 0)). The (P,, have a common modulus and converge UB 
to cp, so we may use the Convergence Theorem to assert that it is enough 
to solve (CP) in the case of Lipschitz continuous initial-values of bounded 
support. 

Next we begin a sequence of approximations of the Hamiltonian. 

Second Reduction-To bounded Hamiltonians 

For n > 0 set 

H, = max(min(H, n), -n). (3.5) 

Since H is uniformly continuous on bounded sets by (HO), it is bounded on 
bounded sets and therefore H, -+ H UB. Moreover, it is easy to see that H, 
satisfies (HOk(H3) with the same functions (TV, mH as H. In the stationary 
case, H will satisfy (H4) and the H,,‘s do also with the same F, G. 
Therefore, if we can establish the existence assertions with H replaced by 
H,,, the Convergence Theorem and Theorem 2.2 can be invoked to 
establish the existence assertions for H. We have now reduced our con- 
siderations to bounded Hamiltonians satisfying the assumptions. 

Third Reduction-H(x, t, r, p) is also uniformly continuous in (x, r) for p 
bounded 

Now let H be a bounded Hamiltonian satisfying (HO)-(H3). For n > 0 
Put 

H,b, 1, rr PI = Cl- I4/n)+H(x, 1, rn, PI, (3.6) 

where r, denotes r truncated at the level n as in (3.5). Then H,, is supported 
on the bounded set (xl < n and is independent of r on r > n and on r < -n. 
In the case of the Cauchy problem, one easily checks that the H, converge 
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UB to H and satisfy (HOt(H3) uniformly in such a way that the Con- 
vergence Theorem and Theorem 2.2 may be invoked to reduce the 
existence assertions for H to the case in which H is bounded, has a boun- 
ded support in x, and is independent of large r. For (SP) we would need to 
have (H4) satisfied uniformly in n. This is so, but not because H in (3.6) 
satisfies (H4): Instead we use the uniform bound C on IH,J provided by 
the bound on H and put F= 2C, G = 2C. Thus we may assume hereafter 
that, in addition to (HOk(H3) (and (H4) for (SP)), H(x, t, r, p) is now 
bounded and (jointly) uniformly continuous in (x, r) uniformly in 
t E [0, T] and bounded p. 

Fourth Reduction-H(x, t, r, p) is also independent of r 

We remark that the reader will be better served on an initial reading to 
assume H is independent of r from the beginning, skip this reduction, and 
then return to it when it is convenient. To begin the reduction to the case 
in which H is independent of r, assume the conditions through the third 
reduction and put 

H,(x, t, r, p)=inf{H(x, t,s, p)+n lr-sl:sER}. (3.7) 

If H has all the properties achieved through the third reduction, then H, 
does as well and uniformly in n. Moreover, H, is Lipschitz continuous in r 
and converges to HUB. Thus it is enough to solve (CP) (or (SP)) with H, 
in order to have the solution in general. To do this we will use a fixed point 
argument based on the solvability (yet to be established) for the case in 
which H is independent of r. We describe the program in the case of (SP). 
One begins by verifying that if H( x, r, p) satisfies the conditons achieved 
through the third reduction and is Lipschitz continuous in r, then for 
w E UC(V) the Hamiltonian H(x, w(x), p) satisfies the same conditions and 
the solvability of (SP) with this Hamiltonian would be guaranteed if we 
had settled the case in which H is independent of r. If the map w + u is 
then shown to have a fixed point we would be done. A slight modification 
of this outline indeed succeeds, as we now establish. 

Let H have all the properties of H, above, 

(3.8) 

and w E BUC( V). Let w, W E UC( V) and u, ii E UC( V) be viscosity solutions 
of 

u + H(x, w(x), Du) = 0 and u + H(x, W(x), DU) = 0. 
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Because H is bounded, so are u and U. Using the comparison result of [IO] 
we easily find that 

124(x) - ii(x)/ < Lsup( /w(z) - W(z)/: 2 E Y). 

Thus the map w -+ u is a strict contraction of BUC( I’) if L < 1, and there is 
a fixed point u which solves u + H(x, u, Du) = 0. If L z 1, we proceed by 
choosing u E BUC( V) and using the result just obtained to uniquely solve 

u + lH(x, u, Du) - rju = 0 

when AL< 1 (the Hamiltonian now being %H(x, r, p)-qu(x). The 
self-map u -+ u of BUC( V) has 1~1 as a Lipschitz constant and therefore 
has a fixed point if 0 < q < 1. The fixed point u satisfies 
(1 - q)u + 1H(x, u, Du) = 0. Putting, for example, 3. = 1 - q = 1/(2L) we 
satisfy all the conditions; the fixed point u therefore exists and it solves 
u + H(x, u, Du) = 0, so we are done. 

The Cauchy problem is treated in an analogous way, with the details 
being somewhat more complex. We consider the map w + K(w) = solution 
u of the Cauchy problem u,+ H(x, t, w(x, t), Du) =O, u(x, 0)= q(x) as a 
self-map of BUC,( Vx [0, T]) under the assumptions which we now have 
available on H and the assumed solvability if H is independent of r. Via the 
arguments of [lo] one shows that 

IK(w)(xt t)-K(~)(x, t)l a?, ~~P{Iw(Y,+KY, s)l: YE V} ds, 

where L is a Lipschiptz constant for H in r, and thus concludes that K has 
a fixed point. We leave it to the reader to verify this inequality-it is not 
quite explicit in [ 10, Theorem 2, and following remarks]. There is another 
way to deal with u dependence of H, as is remarked at the end of Section 4. 

Fifth Reduction-H is also Lipschitz continuous in (x, p) 

At the next stage, we begin with a bounded Hamiltonian H(x, t, p) (the 
r-dependence having been taken care of by the fourth reduction) which is 
uniformly continuous in x uniformly in t and bounded p and satisfies 
(HO)-(H3) (and (H4) for (SP)). We then set 

H,(x,t,p)=inf{H(y,t,q)+(ly-xl+Ip-ql)n:(y,q)~~~~*) (3.9) 

and wish to argue that it is enough to solve (CP) or (SP) with H, in place 
of H. H, is well-defined (since H is bounded) and H, is Lipschitz con- 
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tinuous in x and p. Moreover, H, satisfies (HO) and there is a continuous 
nondecreasing function E, such that 

IH,(x, t, P) - W, t, P)I d G(IPI 1 (3.10) 

and 

lim c,(R) = 0 for R>O. (3.11) 
n-m 

In particular, H, + HUB. However, it does not follow from the 
assumptions that H,, satisfies (Hlk(H3) with d, v from (C), let alone 
uniformly in n. It does, however, satisfy (H4) uniformly in n since H is 
bounded-see the third reduction. We will need the full force of the Con- 
vergence Theorem. 

We continue the discussion in the context of (CP). Assume that 
u, E UC,( Vx [0, T]) is a viscosity solution of 

u,t + H,(x, t, NJ = 0, 

%(X, 0) = cp(x). 
(3.12) 

We seek to estimate u,(x, t) -u,( y, t) = z(x, y, t). Using the above and 
(3.10) we find that 

z, + H(x, t, D,z) - WY, t, -0.~) d E,(P,zI) + 4~,zl). (3.13) 

We construct some supersolutions of (3.13). First, we observe that if w as 
given by (2.52) solves (2.54) then 

w,(x, y, t) = (E, + F, d(x, y)) enr + 2&,(ei.‘KFo)t 

is a supersolution of (3.13) since eATKFO is a Lipschitz constant for w in x 
and y. We claim that z 6 w,. The inequations solved by w, and z do not 
satisfy the hypotheses of the comparison theorem in [lo], but going 
through the proof given in [lo] and regarding the terms involving E,(.) as 
a perturbation one easily justifies the above claim. We leave the tedious 
verification to the interested reader. 

In particular, u,(x, t) - u,( y, t) is bounded independently of n on the set 
d(x, y) < 1, say by M. Next let w(x, y, t) be the supersolution E(y) + 
F(cr + d(x, y))‘( 1 + t) of (2.53) constructed in (2.55)-(2.59) with, however, 

F2 max(m,(l) + 1, m,(l), M) 

in place of (2.58) (where m, is a modulus for cp as in (2.4)) so that 
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w>u,(x, f)-u,(y, t) on t=O and d< 1 and on d= 1. Then, as above, we 
conclude that 

unb, t) - u,(Y, 1) d (E(y) + F(a + 4x, y)Ml + T) + 24L(y, cr))T, (3.14) 

where L is a Lipschitz constant for w in x and y. It is now clear that the 
condition (2.3) in the Convergence Theorem holds. Our conclusion is that 
if we can solve (CP) with bounded Lipschitz continuous Hamiltonians, 
then we have proved the Existence Theorem. This last step is taken up in 
the next section. The arguments above need only minor adaptations to 
cover the case of (SP). 

4. EXISTENCE IN THE LIPSCHITZ CONTINUOUS CASE 

We will now prove the existence in the Lipschitz continuous case to 
which the above considerations have reduced the proof of the Existence 
Theorem. 

PROPOSITION 4.1. (i) Let H: V x [0, T] x V* + R satisfy (HO) and 
L,, L, be constants such that 

IWi, 4P)-m, 4 p)I <L, IX-4 +L, IP-PI (4.1) 

for X,.fEV, p,pEV*, and t E [0, T]. Assume that cp E UC(V) is Lipschitz 
continuous with constant L. Then there is a viscosity solution u of 
u, + H(x, t, Du) = 0 on V x (0, T) which is Lipschitz continuous on bounded 
sets and satisfies 

lu(X, t) - u(x, t)l d (L, T+ L) IX- XI for x, XE V, te [0, T], 

4% 0) = cp(x) for xE V. 
(4.2) 

(ii) If H in (SP) satisfies (4.1), then there is a Lipschitz continuous 
viscosity sofution u of (SP) with L, as a Lipschitz constant. 

Proof: We will mainly treat the case of (CP) and relegate (SP) to 
remarks. It follows from (4.1) that 

ffb, t, PI = min (Wx, t, 4) + L, I P - 41) for R>,Ipl (4.3) 
qEBI: 

and so 

fW,t,~)=min SUP (-(P,z)+(q,z)+H(x,t,q)) for R > IpI. (4.4) 
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So motivated, we introduce the following Hamiltonians: 

H,&,~P)= inf sb (-(P,z)+(q,z)+H(x,t,q)). (4.5) 
qcB& rsBL2 

Clearly H,(x, p) = H(x, p) for Jpl GM. We will produce a viscosity 
solution uM of 

uMt + H,(x, t, Du,) = 0 in V x (0, T], u,,Jx, 0) = q(x) in I’, (4.6) 

such that uw is Lipschitz continuous in x with Lipschitz constant 
(L, T+ L) and uM is Lipschitz continuous in t uniformly on bounded sets 
of V. In this event, if (p, a) E I/* x R and (p, a) E D+u,(x, t) u D-u,(x, t) 
(D+ and D- here taking values in Vx R), then it is easy to see that 
lpi < (L, T+ L) and so uM is also a viscosity solution of 
uMt + H(x, t, Du,) = 0 if M> (L, T+ L). 

For 0 < s < t < T, we set Q,l = {strongly measurable q: [s, t] + B$} and 
Z,,, = (strongly measurable z: [s, t] + BL2). The set of strategies on [s, t], 
ES,,. is defined by zS,, = {nonanticipating maps g: QS,, + Z,,}, where non- 
anticipating means that if p, q E Q,,, agree almost everywhere on an interval 
[a, t], s<a< 1, then so do t(p) and t(q). 

Let 0 < s < t d T. We define iY(t, s)cp E UC( I’) for cp E UC( V) by 

WC s) cp(x) 
= inf sup ‘mr, t, x), 7, 5(4)(t), s(t)) h + dm, t, xl) 

5 E %,r q E Qt., 

where the “state process” X(t, S, x) is given by 

X(t,s,x)=x+ ‘r(q)(t)& 5 s (4.8) 

and 

f(4 t, z, 4) = 44, z) - fax, t, 4) forxE V,zzEBLz,andqEB$. (4.9) 

It is easy to see that u(t, S) is in fact a self-map of UC(V) (see below). We 
are abusing notation a bit by not expressing the dependence of X on t and 
q, which should be kept in mind. For those without experience with 
differential games, let us mention that the key relation in what follows is 
that if g(X, f, z, p) =z (so that (4.8) amounts to A” = g(X, t, t(q), q), 
X(s, x)=x), then (4.5) may be written 

fJ&, 6 P)= inf sup {-(P, g(x, t, z, 4))-f(x, t, z, 4)). (4.10) 
q.B; zsEL2 

Indeed, all that follows generalizes to suitable representations of this sort. 
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LEMMA 4.2. The value function u,+, given by u,Jx, t) = (U(t, O)cp)(x) is a 
oiscosity solution of u, + H,(x, t, Du) = 0 in Vx (0, T). Moreooer, u, is 
Lipschitz continuous on bounded sets and is Lipschitz continuous in x with 
constant (L, TS L). Finally, u,(x, 0) = q(x). 

Proof It will simplify the notation if we agree to write u in place of Us 
hereafter. With 5 and y fixed and x, ,U E V, 

X( t, s, x) - X( t, s, X) = x - x. 

Moreover, from (4.1) and (4.9) we have 1 f(x, t, z, q) - f(x, t, z, q)1 d 
L, /x-Xl. It then follows immediately from the definitions and assumptions 
that 

lu(x, t)-u(i, t)l 6 (L, T+ L) Ix-Xl (4.11) 

for x, X E I’ and t E [0, T], and the asserted Lipschitz continuity in x holds. 
Moreover, u is easily seen to be Lipschitz continuous in t uniformly for 
bounded x. 

To prove that u is a viscosity solution of u, + H,(x, t, Du) = 0 we will 
use the optimality conditions of the dynamic programming principle. In 
this situation, this just amounts to the statement that U is an evolution 
operator. That is, if 0 < r 6 s < t < T, then 

U(t, r) = wt, s) w, y), (4.12) 

where juxtaposition denotes composition of mappings. This relation may 
be verified in the usual way-see [ 141 for the finite dimensional case. In 
order to verify that u is a viscosity supersolution of u, + H(x, t, u, Du) = 0 
we assume the contrary and reach a contradiction. Assume that 
(p,a)EV*xR, (y,b)E Vx(0, T), and 

u(x,t)du(y,b)+(p,x-y)+a(t-b)+o(lx-y(+(b-tl); (4.13) 

i.e., (p, a) lies in the superdifferential of u at ( y, b). Assume, moreover, that 

4y=a+H(y,b,p)>O, (4.14) 

where y is defined by (4.14). Using (4.5) we conclude that 

a+ SUP (-(p,z)+(q,z)+H(y,b,q))34y for qEBL. (4.15) 
-EBL, 

Using (4.15) and a partition of unity argument, one easily concludes the 
existence of a continuous function 5: BL -+ BLZ such that 

a - (P, 5(q)) + (q,<(q)) + Wy, b, q) 2 37 for qEB%. (4.16) 
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Next choose an arbitrary q E QS,b and s < b. From the continuity properties 
of H and (4.16), we deduce that if s 6 t 6 b and b -s is small enough, then 

a - (P, as(t))) + (q(t), t(s(t))) + WNt, s, YL 4 s(t)) 2 3, (4.17) 

where X is given by (4.8) and t(q)(t) = ((q(t)) denotes the strategy 
associated with the mapping of B& into B,, discussed above. Integration of 
(4.17) with respect to t over the range s 6 t < b and use of the relation 

s b(~,r(q(~)))d~=(y,X(b,s,~)-~) 
s 

(4.18) 

yield 

4b - $1 + (P, Y -X(6 s, Y)) 

+ jb (fGJ4f , s, Y), f, q(t)) + (q(t), tXq(t)))) dt 2 Mb -3). (4.19) 
s 

Use of (4.13) in conjunction with (4.19) and obvious considerations of con- 
tinuity yield 

-G'(b, s, Y), s) + U(Y, 6) + jb (WX(t, s, Y), t, q(t)) + (q(t), t(dt)))) dl ., 

>y(b-s) 

for b -s sufficiently small. Hence, using (4.12) 

u(y, b) > id sup (u(X(b, s, I?), s) 
5 E 5.h Y E Q7.h 

- .r ’ (ff(Jf(t, s, Y), t, t(q)(f)) + (q(t), 5(q)(t))) dt) s 
= (U(b, slut., J))(Y) = (U(b, 3) u(s, O)CP)(Y) 

= (U(b, O)cp)(y) = 4Yr b), 

a contradiction. Thus u is a subsolution. 
The proof that u is a supersolution is similar. Assume not, so that there 

isa(y,b)EVx(O,T] anda (p,a)~V*xRsuchthat both 

u(x, t)3u(y, b)+(p,x-y)+a(t-b)fo(Jx-yl + It-61) (4.20) 

and there is a y > 0 and a 4 E B& such that 

a+H(y,b,~)+(q,5)-(P,5)6 -311 for all r E BLz. (4.21) 
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Proceeding as above, we find that for every strategy t: 

a + f&q4 3, Y), 4 4) + (4,5(q)) - (P, t(4)) Q -2Y, (4.22) 

where q denotes the corresponding constant element of Q, provided only 
that s < t < b and b-s is sufficiently small. Integration of (4.22) over 
s < t d b and use of (4.8), (4.20), and then (4.12) yield 

U(Y, b) < @If, s, v), 3) - jb (fW-(~ 9 3, Y), t, 4) + (9, t(4)(t))) dt - Y 
s 

< inf sup (u(X(b, s, y), s) 
5s S.h Y l QT., 

- 
5 

’ (ff(JTc s, YL 2, q(t)) + (s(t), ttdt))) dt) 

s 

= (Vb, s) 4.9 S))(Y) = (Wb, s) W, O)CP)(Y) = 4x b), 

a contradiction. Thus u is a viscosity solution and has all the claimed 
properties in the case of (CP). 

In the case of (SP), the analogous considerations succeed. One still has 
(4.4) (independent of t) and defines H, as in (4.5). The value function 

s 

m 

U(X) = inf sup e+f(X(t, xl, t(s)(T), q(T)) dr 
SEE ysQ 0 

now obeys the dynamic programming principle in the form 

(i 

f 
u(x)= inf sup e-‘f(JXz, x), 5tq(t)), q(T)) dz + u(X(t, xl) e-’ 

CEB qeQ o > 
, 

where X(t, x) = X(t, 0, x), Q is the set of controls on [0, co), and 2 is the 
set of strategies on [0, co) (where < is a strategy if whenever controls p and 
q agree on an interval [0, t) then so do r(q) and r(p)). Then one (for 
example) writes the statement that u is not a viscosity subsolution, mul- 
tiplies this by e-‘, integrates over a small interval 0 6 t < b, and reaches a 
contradiction as above. 

We remark here about the case in which H(x, t, r, p) depends on r. If H 
is Lipschitz in (x, r, p) and nondecreasing in r then 

H(x, C r, p) 
=inf{H(x,t,s,q)+L(r-s)++LIp-ql:sER,qEV*} 

= inf sup {~tx,~,s,q)+8(r-s)-(z,p-q)}. (4.23) 
(s/j) E R x V’ (0,~) E CO,Ll x BL 
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One can use this formula to obtain a solution for (CP) and (SP) via dif- 
ferential games as was done above in the r-independent case, but the com- 
plexity becomes unpleasant. 

We conclude this section with a variety of comments. All of the above 
presentation holds in a general Banach space V-no geometrical 
assumptions were invoked and conditions (C) played no role. In this 
generality, however, the value of the results is not clear. No uniqueness 
results are available. If one wants to pass beyond the context of RN spaces, 
it seems likely that the notion of strict viscosity solutions [ 10, Appendix] 
or a variant is appropriate rather than the notion used here. Indeed, in the 
language of [lo], D’u(x) and D-u(x) may be empty for all x; hence the 
simple notion becomes useless. Moreover, the uniqueness of the solutions 
constructed above even when V is RN and (C) holds does not follow at 
once, since (H3) may fail. For example, for H(x, p) = 1 pi, (H3) is 
equivalent to the existence of a constant C such that Id, + d,l 6 C Ix - yI 
for x, YE V, and this is not implied by the assumptions. However, one can 
replace d by d(x, y) = d(x - y, 0), and d does satisfy this condition. Using 
the uniform approximability of uniformly continuous H(x, p) by Lipschitz 
continuous functions, one can extend existence to the case of uniformly 
continuous Hamiltonians. 

5. VARIANTS, EXAMPLES, AND REMARKS 

In this section we attempt to provide some feeling for the assumptions 
used in this paper and [lo]. Let us begin by reviewing what various 
assumptions mean in the event that V is a real Hilbert space, d(x, y) = 
Ix-A, and 

H(x, PI = (b(x), PI -f(x) (5.1) 

is an affine Hamiltonian. Here ( , ) denotes the inner product on V and we 
have identified V and I’*. Note that in this case 

d,(x, y) = -d,.(x, y) = (x - I’) ‘(x - y). 

With this choice of d, (H3) is equivalent to requiring that f E UC( V) and 
that there be a c>O such that 

(NX)-~(.Y),X-Y)3 -~lX-Y12 for x, y E V; (5.2) 

that is, x-b(x) + cx is monotone. The condition (Hl) is automatically 
satisfied since H is i’ndependent of u, and (HO) is equivalent to the uniform 

580’65.3-8 
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continuity of b on bounded sets. Finally, (H2) is equivalent to the existence 
of a c, ER such that 

(b(x), Wx)) > ---cl for x E V, (5.3) 

where v is a function satisfying (1.4). 
It is easy to see that some condition like (5.3) is necessary for uniqueness 

even in the linear case. Indeed, set b(x) = -Lx for some I > 0 and f = 0. 
Clearly (5.2) holds with c = -L, the other assumptions hold as well, and 
(SP) becomes 

-1.(x,D24)+u=0 in V. (5.4) 

If E, > 1, (5.4) has the distinct uniformly continuous viscosity solutions u = 0 
and u = 1x1 I”. 

We turn to the condition (H4) and its role in the study of (SP). First, let 
us give two examples of functions F. If we take 

F(a, b) = C( 1 + b) + @(a), (5.5) 

where C> 0 and b -+ @P(b) is continuous and nondecreasing, then we may 
choose 

G(r) = C( 1 + u) + Q(C). 

Observe that this choice of F is appropriate for the situation in which V is 
a Hilbert space, d(x, y) = Ix - yl, and H(x, p) E UC( V x Bz) for all R > 0; 
indeed, we then have 

and 

IH(x, PI-Wx,O)l G@(IPl) for X, y E V 

for a suitable constant C and a nondecreasing function @, and so 

w Y, - Ad,) - w, W) 

d H( y, -Ad,, - H( y, 0) + H( y, 0) - H(x, 0) + H(x, 0) - H(x, /Id,) 

<C(l+Ix-y()+2@(zG). 

A second F of interest for which (H4) is verifiable is 

F(a, b) = c,ab + cl b” + c2 for a, b 20, (5.6) 

where c1 E (0, 11, and cO, c2 3 0. Then (H4) holds if cool < 1, for we can then 
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use G(r) = cl( 1 - c,,c()-‘Y~ + c2. In fact, the curious relation QOI < 1, which 
was used without further explanation in Ishii [17] (a somewhat related 
condition also occurs in [8]) is necessary here, as the next example shows. 
In this example, (HOk(H3) hold, and the estimate of (H4) holds with 
F(1, d) = Ad+ d, but cOcl = 1 in this case and there are no uniformly con- 
tinuous solutions of (SP). 

Let V= R, H(x, p) =b(x)p- 1x1, and choose b as follows: set 
x, = (n + 1 )(n + 2) for integral n 3 0 and 

b(x) = 0 if x 6 0, 

=x-xx, if x,dxdx,+(n+ l), 

=x,+,-x if x,+n+ 1 <x<x~+~. (5.7) 

Clearly (HO)-(H3) hold and the first inequality of (H4) holds with 
&‘(A, d) = Ad+ d. Here c,,a = 1 and we can show that (SP) does not have a 
uniformly continuous solution. Indeed, if such a solution exists, it is easy to 
show that it is given by 

u(x) = fa IX(t, x)1 e-’ dt, 
0 

where X(t, x) is the solution of the Cauchy problem k= b(X), X(0)=x. 
Obviously u(x,) = 0 while for h E (0, 1) 

u(x,,+h)~SIX(t,x,,+h)e~‘dt, 
0 

where s=log((n+ 1)/h). Since X(t,~,,+h)=x,+e~h for O<t<s we 
deduce that 

u(x, + h) - u(x,) 2 hs = h log(n + 1 )/h) 

and this contradicts the uniform continuity of u. 
Part of the complexity of the proofs we have presented here and in [lo] 

arises from the need to first bound (in the case of (SP)) quantities like 
U(X) - u(y) (in the case of moduli) or u(x) - u( y) (for comparison pur- 
poses) for d(x, y) < 1 where u, u are solutions of (SP) before obtaining the 
final estimates. Thus when dealing with bounded solutions the arguments 
can be simplified and assumptions weakened. For instance, in order to 
guarantee the existence of a unique solution in BUC( V) for (SP) or in 
BUC,( Vx [0, T]) for (CP), (H2) and (H3) need only be assumed on 
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bounded r-sets. More interestingly, we can weaken the requirements on v in 
(1.4) of (C) to 

v(x) --f 00 as Ix(-+co. (1.4)’ 

Let us denote this variant of (C) by (C)‘. If (H2) and (H3) hold on boun- 
ded Y sets and in (H2) the function v satisfies (C)’ rather than (C), we will 
say (H2)’ and (H3)’ are satisfied. These conditions guarantee uniqueness of 
such bounded solutions. The existence of bounded solutions will depend on 
further assumptions. A simple case arises if 

M=sup~/H(x,~,O,O)J:.uEV,O~f~T)<x. (5.8) 

Under these conditions we have: 

THEOREM 5.1. Let (HO), (Hl), (H2)‘, (H3)‘, and (5.8) hold. Then 

(i) For cp E BUC( V), (CP) has a unique solution UE BUC,( Vx 
Kh Tlh 

(ii) The problem (SP) has a unique solution u E BUC( V). 

There are a variety of ways to prove this result-the uniqueness follows 
from [ 10, Theorem 31 and we just remark here that our entire existence 
program can be carried out as before, using at all stages an a priori bound 
from above by M’= MT+ sup{ Iq(x)l: XE V} (which is always a super- 
solution) and from below by -M’ (which is a subsolution) for (CP) and 
by *M for (SP). 

As is seen from this sketch of proof, it is not (5.8) which is crucial to the 
existence of bounded solutions, but rather the ability to find suitable boun- 
ded sub- and supersolutions. 

To illustrate what is gained by replacing (C) by (C)’ we consider again 
the case of the linear Hamiltonian given by (5.1) in a real Hilbert space V. 
Let b(x) be uniformly continuous on bounded sets and satisfy (5.2). As the 
example of nonuniqueness shows, we cannot deduce from these 
assumptions that (5.3) holds for some v satisfying (1.4). However, v(x) = 
(l/2) log(1 + 1~1~) satisfies (C)’ and (5.2) with y = 0 implies. 

(b(x),. Wx)) = (b(x), x/(1 + Ixl’)) b --c + (b(O), x)/(1 + 1x1’) 

and the right-hand side of this expression is clearly bounded. We conclude 
that BUC solutions of u+ (b(x), Du)-f(x) =0 are unique whenever b 
satisfies the above conditions. This assertion does not contradict the non- 
uniqueness of solutions of (5.4) exhibited above, since the second solution 
was unbounded. 
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We want to examine this situation further. We next present a class of 
examples that indicate that even in the case of BUC solutions some 
assumption like (H2)’ is needed-indeed, the example shows that this con- 
dition is rather sharp. Consider the equation 

-g(x) lu’l”+u=O, (5.9) 

where O<cc< 1 and 

g E UC(R) is odd, nondecreasing, g(s) > 0 for s > 0 (5.10) 

and 

(5.11) 

The uniqueness of BUC(R) solutions of (5.9) is determined by whether or 
not 

(5.12) 

is finite. Indeed, if I is finite one easily checks that the odd function given 
by 

l--am 1 
u(x)= - ( J 

-%/(I -a) 
-ds+ 1 

a x g(s)“” 1 
for x>O (5.13) 

is a BUC solution together with u = 0, so BUC solutions are nonunique. 
For example, if g(x) = x and CI = i, then u(x) =x/( 1 + 1x1) and u is even 
Lipschitz continuous. It follows that if I is finite then there is no v satisfying 
(C)’ such that (H2) holds for H(x, p) = -g(x) lpi”. However, if I is 
infinite, then 

4x1 = jl’~y’ -$ ds on IxI> 1 

satisfies (C)’ and (H2) holds. In this class of examples, (H2)’ is necessary 
and sufficient for uniqueness in BUC. 

We continue dissecting the role of (H2). As mentioned above, it played a 
dual role in first obtaining bounds on dg 1 and then again in getting 
refined estimates in d d 1. We can split the assumption into pieces designed 
to handle these tasks separately. To obtain the preliminary bounds it is 
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enough to know that there is a function v satisfying (C) (in particular, 
(1.4)) such that 

(H2), For each R>O there is a constant C, such that 

H(x, t, r, p) - H(x, t, Y, p + ADV) ,< c, 

for (x, t, r) E Vx [0, T] x R, IpI 6 R and 0 6 2 < R holds. 
In order to continue to the second stage, one only needs that there is a p 

which satisfies the requirements of (C)’ (in particular, (1.4)’ in place of 
(1.4)) in place of v such that 

(H2), There is a local modulus gH such that 

H(x, 6 r, P) - w-5 4 r, P + w4x)) d a,(k IPI ) 

whenever 0 d ;i < 1, (x, r, t, p) EQ x [0, T] x R x V*. 
Then the existence and uniqueness results remain valid with (H2) 

replaced by (H2), and (H2),. Examples show that this is an interesting 
generality. Indeed, if H is bounded on Vx [0, T] x R x Bz for each R, 
then (H2), is automatically satisfied. Hence H(x, P) = 
max((min( -(x, p), IpI), -IpI) satisfies (H2),. It also satisfies (H2), with 
,u(x) = log( 1 + 1x1’) when V is Hilbert. Another example, with the same p, 
is given by H(x, p) = cos((x, p)). Neither satisfies (H2). 
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