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Abstract

The centers of the generic central simple algebras with involution are interesting objects
in the theory of central simple algebras. These fields also arise as invariant fields for linear
actions of projective orthogonal or symplectic groups. In this paper, we prove that when the
characteristic is not 2, these fields are retract rational, in the case the degree is 8m andm
is odd. We achieve this by proving the equivalent lifting property for the class of central
simple algebras of degree 8m with involution. A companion paper [D.J. Saltman, Invariant
fields of symplectic and orthogonal groups, preprint] deals with the case ofm, 2m, and 4m
where stronger rationality results are proven.
 2002 Elsevier Science (USA). All rights reserved.
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In this paperF will always be an infinite field of characteristic not 2. LetG
be an algebraic group overF andV an algebraicF representation, by which we
mean there is an algebraic group morphismG → GLF (V ). There is considerable
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interest in the structure, and more specifically in the rationality, of the invariant
fieldF(V )G , whereG has its natural action on the field of rational functionsF(V )

of V . For specific groups andV , this question has particular significance. For
example, considerG = PGLn(F ) = GLn/F ∗ andV = Mn(F) ⊕ · · · ⊕ Mn(F)

(r times) where the action ofPGLn(F ) onV is induced by diagonal conjugation.
Then the invariant fieldF(V )PGLn is the center of a generic division algebra
UD(F,n, r) (e.g. [LN, Section 14]).

In PGLn there are subgroups and for some of these subgroups the correspond-
ing invariant field is also of importance. We will be particularly interested in the
projective orthogonal groupsPOn and projective symplectic groupsPSpn (for n
even). Since we do not assumeF is algebraically closed, let us be precise here.
Let On(F) ⊂ GLn(F ) be the group of orthogonal matrices. That is,On(F) is
the group of matrices whereAAT = I , where T is the transpose. LetSpn(F ) be
the group of symplectic matrices, that is the group of matrices whereAAS = I

and S is the standard symplectic involution. For our purposes we can then define
POn(F ) andPSpn(F ) to be the image ofOn(F) andSpn(F ) in PGLn(F ). Note
that, with this choice,POn(F ) andPSpn(F ) may not be the group ofF ratio-
nal points of the corresponding algebraic group, because the quotient groups may
haveF points not in the image of the group ofF points ofOn or Spn. To remedy
this one could replaceOn andSpn by GOn andGSpn, the corresponding groups
of similitudes (e.g. [K-T, p. 153]). However, for our purposes none of this matters.
Our definition ofPOn(F ) andPSpn(F ) yield a Zariski dense set of points in the
corresponding groups over the algebraic closure ofF , and so the invariant rings
and fields are the same no matter what definition we take.

In, for example, [R1, p. 183] there is a definition of generic algebras
UDt (F,n, r) andUDs(F,n, r) with involution of orthogonal, respectively sym-
plectic, type. By [P, pp. 377–378],F(V )POn is the center,Zt(F,n, r), of
UDt (F,n, r) while F(V )PSpn is the center,Zs(T ,n, r), of UDs(F,n, r). Thus
the invariant fields ofPOn andPSpn play the role in the theory of central simple
algebras with involution that the invariant field ofPGLn plays in the theory of
central simple algebras. In particular, these invariant fields are natural objects to
consider.

Though the original question we asked was about rationality, there is a weaker
property which is closely tied to properties of central simple algebras. We say a
field extensionK/F is retract rational if and only if the following holds.K is
the field of fractionsq(S) of an F algebra domainS, and there is a localized
polynomial ringF [�x](1/s) = F [x1, . . . , xn](1/s) with F algebra mapsf :S →
F [�x](1/s) andg :F [�x](1/s)→ S such thatg ◦ f :S → S is the identity.

The basic properties of retract rational field extensions are developed in [S].
Let us note one here. DefineK, K ′ to be stably isomorphic (overF ) if and only
if the following holds. For somea, b, the fieldsK(x1, . . . , xa) andK ′(y1, . . . , yb)

are isomorphic overF , where thex ’s andy ’s are transcendence bases. It is shown
in [S] that ifK,K ′ are stably isomorphic, andK/F is retract rational, thenK ′/F
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is retract rational. In particular, stably rational (i.e., stably isomorphic to a rational
extension) implies retract rational (but not conversely). Because of the above fact,
we will talk about the retract rationality of the stable isomorphism class of a field
extensionK/F .

Let us break to explain a little notation. The statementA/K is a central
simple algebra of degreen means thatA is a simple algebra of dimensionn2

over its centerK. If we sayD/K is a division algebra, we also meanK is
its center. IfA/K is central simple, we will writeK(A) to mean the function
field of the Severi–Brauer variety ofA. That is,K(A) is the Amitsur generic
splitting field ofA. Finally, supposeA/K andA′/K ′ are central simple algebras
andK(x1, . . . , xa) ∼= K ′(y1, . . . , yb) as in the definition of stable isomorphism.
If some such isomorphism extends to an isomorphismA ⊗K K(x1, . . . , xa) ∼=
A′ ⊗K ′ K ′(y1, . . . , yb), we sayA/K andA′/K ′ are stably isomorphic.

As mentioned above,F(V )POn andF(V )PSpn are the centers of the so-called
generic algebras with orthogonal respectively symplectic involution. In particular,
these fields are centers for generic objects for the class of central simple algebras
with orthogonal respectively symplectic involutions. It follows that these are
also generic objects for the class of central simple algebras of order dividing 2
in the Brauer group. This last fact is reflected in the result from [BS] we are
about to quote in Theorem 1, describingF(V )POn andF(V )PSpn as extensions of
F(V )PGLn . Furthermore, in Theorem 2, we will confront more precisely what it
means to be a generic object for a class of central simple algebras.

To state it the result from [BS] we need, letr be the number of direct summands
in V andUD(F,n, r)/Z(F,n, r) the generic division algebra of degreen in r

variables. AbbreviateUD/Z = UD(F,n, r)/Z(F,n, r). Let Bo be the central
simple algebra of degreen(n + 1)/2 in the Brauer class ofUD ⊗Z UD andBs

the central simple algebra in the same class of degreen(n− 1)/2. Note thatBo is
written s2UD andBs is writtenλ2UD in [K-T, p. 33].

Theorem 1. For anyn, F(V )POn = Zt(F,n, r)=Z(Bo). If n is even(so PSpn is
defined), F(V )PSpn =Zs(F,n, r)=Z(Bs).

Let D′ be the division algebra in the class ofUD ⊗Z UD. Then, by, e.g., [LN,
p. 93],Z(Bo) andZ(Bs) are, when defined, rational overZ(D′). In particular,
Z(Bo) is isomorphic to a field rational overZ(Bs). Thus, to save ink, we will
frequently only discussF(V )POn =Zt(F,n, r) since the other field is equivalent.

The goal of this note is a result on retract rationality, which we prove by
relating retract rationality to a property of algebras. To this end, letA2,n be the
class of Azumaya algebrasA/R of degreen whereR ⊃ F andA⊗R A∼=Mt(R)

for the appropriatet . Note that this is a linear class in the sense of [LN, p. 76]. We
sayA2,n has the lifting property [LN, p. 77] if and only if the following holds.
AssumeT is a local commutativeF algebra with residue fieldK andA/K is
in A2,n. Then there is an AzumayaB/T ∈A2,n with B ⊗T K ∼=A.
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Lifting is important because of Theorem 2 to follow. But before we state the
result, we recall a few notions from [LN, Section 11].UDt = UDt (F,n, r) can
be identified withUD ⊗Z Z(Bo) and the center of both these algebras can be
identified withF(V )POn . SupposeA/S is an Azumaya such thatq(S)= F(V )POn

andA ⊗S F (V )
POn = UDt . If B/R ∈ A2,n, we sayφ :S → R realizesB if and

only if B ∼=A⊗φ R. Note that⊗φ means that we treatR as anS module viaφ.
We say UDt /Z(Bo) representsA2,n (see [LN, p. 76]) if and only if the

following holds. There is anA/S Azumaya such thatS is finitely generated as
an F algebra,q(S) = Z(Bo), A ⊗S Z(Bo) ∼= UDt , and further the following
holds. Assume 0�= s ∈ S and B/K ∈ A2,n with K a field. Then there is a
φ :S(1/s)→ K realizingB/K. Note that ifA/S is as above, andS′ ⊂ F(V )POn

satisfiesq(S′) = F(V )POn , then for some 0�= s′ ∈ S′ and someA′/S′(1/s′),
A′/S′(1/s′) satisfies the same property. This is why we can view “representing”
as a property of the algebraUDt /Z(Bo)= UDt /F (V )

POn . Also, it is clear that if
UDt /F (V )

POn is stably isomorphic to aA/K, andA/K representsA2,n, then
so doesUDt /F (V )

POn . Thus we can talk of the stable isomorphism class of
UDt /F (V )

POn as representingA2,n.
Another idea we recall is called “local projectivity” in [S], or (a slight variant)

property v) in [LN, p. 76]. We will use the version of this property from [LN], but
the name local projectivity from [S]. LetA/S be such thatq(S)= F(V )POn and
A⊗S F (V )

POn = UDt . SupposeB ′/T ∈ A2,n andT is a local ring with residue
field K. SetB = B ′ ⊗T K. ThenA/S is locally projective if and only if for any
suchB ′/T etc., and anyφ :S →K realizingB/K, there is aφ′ :S → T realizing
B ′/T such that the compositionS → T → K is φ. Note that ifA/S is locally
projective then so isA(1/s)/S(1/s) for any 0 �= s ∈ S. Thus once again it is
fair to talk aboutUDt /F (V )

POn being locally projective. Also it is clear that the
property of being locally projective is preserved by stable isomorphisms. Thus,
once again, we can talk about the stable isomorphism class ofUDt /F (V )

POn as
being locally projective.

In [S] and [LN, Section 11] a general framework is described along with
a result connecting lifting properties with retract rationality. This framework
applies here and so we can show the following theorem.

Theorem 2. The stable isomorphism classes ofF(V )POn/F = Zt(F,n, r)/F or
(whenn even) F(V )PSpn/F = Zs(F,n, r)/F are retract rational if and only if
A2,n has the lifting property.

Proof. By [LN, p. 77] it is enough show thatUDt /F (V )
POn representsA2,n

and is locally projective. By the above observations, we can replaceZ(Bo) =
F(V )POn by K = Z(UD ⊗Z UD), and UDt by D = UDt ⊗Z(Bo) K, because
K/Z(Bo) is rational (e.g. [LN, p. 93]).

In [S1] was defined a generic central simple algebraD′/K ′ of degreen and
order dividingt . In that paperD′/K ′ was shown to represent the class of Azumaya
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algebras with the same property. In the case oft = 2, it follows from [S2, p. 344]
thatD′/K ′ is rational overD/K, and soD/K representsA2,n.

In [LN, p. 105] it is shown thatUD/Z is locally projective for the class of
Azumaya algebras of degreen. Let A′/S′, q(S′) = Z, be an Azumaya algebra
that realizes this property. DefineS ⊃ S′ to be the affine ring of an affine open
subset of the Severi–Brauer scheme ofA′ ⊗S ′ A′ (e.g. [V]) and setA=A′ ⊗S ′ S.
Thenq(S)=Z(UD ⊗Z UD)=K by the naturality of the Severi–Brauer scheme.
Furthermore, clearlyA⊗S K =D. We claim that usingA/S one sees thatD/K

is locally projective.
SupposeB ′/T is in A2,n, T is local with residue fieldK, andB = B ′ ⊗T K.

Assumeφ :S → K realizesB/K. SinceA′/S′ is locally projective, there is a
partial lifting φ′′ :S′ → T which realizesB ′. That is, the restrictionφ|S ′ :S′ →K

can be factored intoS′ → T →K where the first map isφ′′. The full mapφ can
be factored intoS → S ⊗φ′′ T → K. Note that by the naturality of the Severi–
Brauer scheme,S ⊗φ′′ T is the affine ring of the corresponding open subset, call
it U , of the Severi–Brauer scheme ofB ′ ⊗T B ′. Thusφ defines aK point on the
Severi–Brauer variety ofB ′ ⊗T B ′ which can be identified with aK point of the
Severi–Brauer variety ofB ⊗K B. There is a transitive action by(B ⊗K B)∗ on
theseK points, and(B ′ ⊗T B ′)∗ maps onto(B ⊗K B)∗. By assumption, there is
a T point on the Severi–Brauer scheme ofB ′ ⊗T B ′. It follows that theK point
given byφ is the image of aT point of the Severi–Brauer scheme ofB ′ ⊗T B ′.
SinceT is local, the closure of thisT point includes theφ givenK point, and
so thisT point is also inU . That is, there is a morphismS ⊗φ′′ T → T and the
compositionφ′ :S → S ⊗φ′′ T → T is the required lift forφ. This proves local
projectivity and hence Theorem 2.✷

It is clear how we will use Theorem 2, but before we do that let us make one
final reduction.

Lemma 3. Let n = 2rm wherem is odd. ThenA2,n has the lifting property if
A2,2r has the lifting property.

Proof. If A/K is in A2,n, thenA = A2 ⊗ Am whereA2 has degree 2r andAm

has degreem (e.g. [LN, p. 35]). SinceA has order 2 in the Brauer group, andAm

has order dividingm, it follows thatAm must be split. That is,A∼=Mm(A2). It is
now obvious that ifA2,2r has the lifting property then so doesA2,n. ✷

We remark that the converse is also true, but to prove this would take us too far
afield. To outline the argument, ifB/T is an Azumaya algebra over a local ring,
thenB ∼=Ms(D) whereD has no nontrivial idempotents. Moreover, there is only
one suchD, up to isomorphism, in the Brauer class ofB. With this, one can copy
the usual proof over a field, and show thatB ∼= B1 ⊗T · · · ⊗T Bs where all theBi

have prime power degree. With this background, the converse is clear.
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We can now state the following theorem.

Theorem 4. SupposeF is an infinite field of characteristic not2 and n = 8m
wherem is odd. Then the stable isomorphism classes ofF(V )PSpn andF(V )POn

are retract rational overF . Equivalently, the stable isomorphism classes of the
centersZt(F,n, r) and Zs(F,n, r) of the generic algebras with orthogonal,
respectively, symplectic involution are retract rational overF .

Before we prove Theorem 4, we begin with another lemma. LetR be a
commutative ring. Ifbi ∈ R are finitely many elements, defineR(b1/2

1 , . . . , b
1/2
s )

to be R[x1, . . . , xs]/〈x2
i − bi | i = 1, . . . , s〉. Note that we make the above

definition even if some of thebi are squares. In particular, ifR is a field,
R(a

1/2
1 , . . . , a

1/2
s ) may not be a field but is a direct sum of fields. We recall the

next lemma.

Lemma 5. Let T be a localF algebra with residue fieldK. Supposeai ∈ K∗
anda′

i ∈ T are preimages. ThenS = T (a
′1/2
1 , . . . , a

′1/2
s ) is a semilocalF algebra

which, modulo its Jacobson radical, is isomorphic toL = K(a
1/2
1 , . . . , a

1/2
s ). In

particular, S∗ maps ontoL∗. S/T is Galois with Galois group we can identify
with the Galois group ofL/K. Call this groupG. There is an isomorphism
H 2(G,S∗)∼= Br(S/T ).

Proof. Since thea′
i are invertible, it is easy to seeS/T is Galois and since Galois

extensions are closed under specialization, one can identify this Galois group with
that ofL/K. The Jacobson radical ofS must beMS whereM is the maximal
ideal ofT . SinceL is a direct sum of fields,S is semilocal. Of course, semilocal
local rings have trivial Picard group, soH 2(G,S∗) ∼= Br(S/T ) by, e.g., [LN,
p. 45]. ✷

If A′ is anyT algebra, andT has residue fieldK, then we sayA′ is a lift of
A=A′ ⊗T K. WhenA/K is central simple, we will only callA′ a lift if A′/T is
Azumaya. WhenA/K is a commutative Galois extension with Galois groupG,
we will only sayA′ is a lift if A′/T is Galois with groupG. Thus among the
results of Lemma 5 is thatT (a′1/2

1 , . . . , a
′1/2
s ) is a lift of K(a

1/2
1 , . . . , a

1/2
s ).

Let us also recall that ifR is any commutative ring containing 1/2, and
a, b ∈ R∗, then one can form the Azumaya quaternion algebra(a, b)R = R ⊕
Rα ⊕ Rβ ⊕Rαβ whereα2 = a, β2 = b, andαβ = −βα. As implied,(a, b)R is
Azumaya overR of rank 4 (i.e. degree 2) [LN, p. 49]. By, e.g., [LN, p. 34],(a, b)

defines an element of order 2 in the Brauer group ofR. Furthermore,(a, b)R ∼=
(b, a)R ∼= (a,NS(γ )b)R whereγ ∈ R(a1/2)∗, S = R(a1/2), andNS :R(a1/2) →
R is the norm. IfR is semilocal, then(a, b)∼= (a, c) impliesbc is a norm from
R(a1/2) by Lemma 5.
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Let a ∈ R∗ with R as above, andS = R(a1/2). Then the corestriction
CorS/R : Br(S) → Br(R) is defined (e.g. [LN, p. 55]) and satisfies all the usual
properties. In particular, ifa ∈ R∗ and b ∈ S∗, then CorS/R((a, b)S) is Brauer
equivalent to(a,NS(b))R (e.g. [LN, p. 57]). Furthermore, ifA/R is Azumaya,
CorS/R(A⊗R S) is Brauer equivalent toA⊗R A. Letσ generate the Galois group
of S/R. That is,σ(a1/2) = −a1/2. SupposeB/S is Azumaya and letσ(B) be
theσ twist. That is,σ(B)= B ⊗σ S. We finally have CorS/R(B)⊗R S is Brauer
equivalent toB ⊗S σ (B).

We are finally ready to turn to the proof of Theorem 4. Of course, by Theorem 2
and Lemma 3 it suffices to proveA2,8 has the lifting property. To this end, suppose
T is a localF algebra with residue fieldK, andD/K is a central simple algebra of
degree 8 and order 2 in the Brauer group. We must show that there is an Azumaya
D′/T such thatD′ ⊗T K ∼= D andD′ ⊗T D′ is isomorphic to matrices overT .
Note that sinceT is local, this is equivalent to sayingD′ has order dividing 2 in
the Brauer group.

By [R], D has a maximal subfield of the formK(a
1/2
1 , a

1/2
2 , a

1/2
3 ). The

centralizer ofL = K(a
1/2
1 ) in D is a division algebra of degree 4 with

involution. Thus by, e.g., [LLT, Proposition 5.2], this centralizer has the form
B = (a2, x2)L ⊗L (a3, x3)L.

The corestriction of[B] is Brauer equivalent toD ⊗K D and so must be
trivial. But this corestriction is(a2,NL(x2))K ⊗K (a3,NL(x3))K . In other words,
(a2,NL(x2))K ∼= (a3,NL(x3)). By [T, p. 267] or [A, Lemma 1.7], there is a
y ∈K∗ such that(a2,NL(x2))∼= (y,NL(x2))∼= (y,NL(x3))∼= (a3,NL(x3)). Set
Li = K(NL(xi)

1/2) for i = 2,3 andL23 = K(NL(x2x3)
1/2). Then there are

µi ∈L∗
i andµ23 ∈ L∗

23 such thata2y = NL2(µ2), y = NL23(µ23), anda3y =
NL3(µ3). The idea of this proof is that we can lifta1, then thexi , theny, and then
a2, a3 so that all these relations still hold. The key idea is that we use the relations
to define the lifts.

Choosea′
1 ∈ T ∗ a preimage ofa1. SetS = T (a

′1/2
1 ), soS is a lift of L. Choose

x ′
i ∈ S∗ preimages of thexi . Of course,NS(x

′
i ) is a preimage ofNL(xi). Set

Si = T (NS(x
′
i )

1/2) andS23 = T (NS(x
′
2x

′
3)

1/2). Of course, theSi andS23 are lifts
of theLi andL23, respectively. Chooseµ′

i ∈ S∗
i andµ′

23 ∈ S∗
23 preimages of the

µi andµ′
23, respectively.

Set y ′ = NS23(µ
′
23). Clearly y ′ ∈ T ∗ is a preimage ofy. For i = 2,3, set

a′
i = NSi (µ

′
i )y

′−1 ∈ T ∗. Clearly, thea′
i are preimages of theai . Set B ′ =

(a′
2, x

′
2)S ⊗S (a

′
3, x

′
3)S . Of course,B ′ is a lift of B. The corestriction CorS/T (B ′)

is Brauer equivalent to(a′
2,NS(x

′
2))T ⊗T (a′

3,NS(x
′
3))T . But (a′

2,NS(x
′
2))

∼=
(y ′,NS(x

′
2))

∼= (y ′,NS(x
′
3))

∼= (a′
3,NS(x

′
3)). It follows that CorS/T (B ′) is trivial.

Tensoring up toS, we haveB ′ ⊗S σ (B
′) is trivial whereσ generates the Galois

group ofS/T . Of course this meansB ′ andσ(B ′) are Brauer equivalent. Since
S is semilocal, using [D] we have thatB ′ ∼= σ(B ′). Alternatively, we can make
the following argument. BothB ′ andσ(B ′) are split byV = S(a

′1/2
2 , a

′1/2
3 ). More
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precisely, bothB ′ andσ(B ′) are crossed products (e.g. [OS, pp. 88–90]) with
respect toV/S. By [LN, p. 45], the corresponding cocycles are cohomologous,
and soB ′ ∼= σ(B ′).

The isomorphismB ′ ∼= σ(B ′) can be equivalently expressed as the existence
of an α : B ′ ∼= B ′ such thatα is σ semilinear. Sinceα2 is anS automorphism,
andS is semilocal,α2 is an inner automorphism given by, say,c ∈ B ′∗ (e.g. [LN,
p. 16]).

Form the algebraA′ = B ′ ⊕B ′u whereub = α(b)u for all b ∈ B ′ andu2 = c.
Using, e.g., [LN, p. 12] it is easy to see thatA′/T is Azumaya overT of degree 8,
and the centralizer, inA′, of S ⊂ B ′ is B ′. Thus (e.g. [LN, p. 24])A′/T defines
a preimage ofB ′ in the Brauer group ofT . In particular,A′ ⊗T A′ is Brauer
equivalent to CorS/T (B ′) and soA′ has order 2 in the Brauer group.

If A = A′ ⊗T K, thenA andD have equal images in the Brauer group ofL.
That is,M2(A)∼=D ⊗K (a1, d) for somed ∈K∗. Let d ′ ∈ T be a preimage ofd
and setA′′ = A′ ⊗T (a′

1, d
′). Of course, the Brauer class ofA′′ is a preimage of

the Brauer class ofD. A′′ contains the subalgebraS ⊗T S. SinceS/T is Galois,
S ⊗T S contains an idempotente such thate(S ⊗T S) ∼= S. Viewing e ∈ A′′, it
is easy to see thatD′ = eA′′e is Azumaya overT of degree 8 and soD′ is a lift
of D.
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