
 Procedia Computer Science 78 (2016) 587 – 594

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the ICISP2015
doi: 10.1016/j.procs.2016.02.105

ScienceDirect

International Conference on Information Security & Privacy (ICISP2015), 11-12
 December 2015, Nagpur, INDIA

Anti-Hijack: Runtime Detection of Malware Initiated Hijacking in
Android

Venkatesh Gauri Shankar
a,*, Gaurav Somani

a

a
Department of Computer Science and Engineering, Central University of Rajasthan, Ajmer, Rajasthan, India

Abstract

According to studies, Android is having the highest market share in smartphone operating systems. The number of Android apps (i.e.
applications) are increasing day by day. Consequent threats and attacks on Android are also rising. There are a large number of apps which
bypass users by hiding their functionalities and send users sensitive information and data across the network. Due to flexibility and openness of
Android operating system, attack surfaces are being introduced every other day.

In this paper, we are addressing detection of two fatal malware attacks; intent based hijacking and authenticated session hijacking. We have
used the concept of honey-pot in detection of these two authentication hijacking problems. In order to achieve this, we have tested various apps
and their interaction with the honey-pot maintained by real device or an emulator. We have designed benign app as a honey framed app. We
argue that hijacking malware can be detected with higher accuracy using our method at run-time as compared to the traditional machine learning
methods. Our approach, Anti-Hijack, which has provided the detection accuracy as high as 96%. This has been highly accurate to detect the
unwanted interaction between hijacking malware and designed benign app. We have tested our approach on a strong data-set of Android apps for
experiment and identifying vulnerable points. Our detection method Anti-Hijack is a novel contribution in this area which provides light weight,
device operated run-time detection at hijacking malware.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the ICISP2015.

Keywords: Android malware; Anti-Hijack; intent; vulnerabilities; smartphone; security; honey-pot.

1. Introduction
Mobile operating system, like the desktop operating system has a major impact in the operating system market 16. Popular

and largest market share holder operating systems in the smartphone market are Android and iOS. Google Android was released
as a flexible and open source operating system being adapted by many hardware vendors. It covers approximate 90% market
share in Q4 of 2014 18. Popularity of Android operating system is due to many features like access to wide variety of Personally
Identifiable Information (PII), wide array of hardware, application integrated Google services, good user widget, large number of
apps in many app stores, flexible and also openness in availability 17, 18. As soon as number of apps and activation of Android
devices are increasing parallel attacks and vulnerable points are also increasing 14.

* Corresponding author. Tel.: +91-8769196918 ; fax: +0-000-000
 E-mail address: venkateshgaurishankar@gmail.com

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the ICISP2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82023213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.02.105&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.02.105&domain=pdf

588 Venkatesh Gauri Shankar and Gaurav Somani / Procedia Computer Science 78 (2016) 587 – 594

Vulnerabilities are weak points which reduce systems information security assurance. It is an intersection of three linked
element which are system flaws, attack access to system flaws and attacker capability to exploit the flaw. When an attacker uses

application tool or techniques then this vulnerable point is used as an attack surface
24

.

2. Related Work

Chin, Erika et al.
23

 analyse Android apps execution and identify hijack risks in apps components. They develop a tool
ComDroid that identifies app’s communication vulnerability. Their analysis provides that developer usually use the robust field
of a component like logic instead of explicit logic of the intent, which has the unusual disadvantages of making intent public.

Kelly Casteel,Owen Derby, Dennis Wilson
27

 build a working exploit which takes advantages of intent based vulnerability &
develop a statically arranged Android analysis framework to impose an app for malign content infected parts. Sebastian H¨obarth
and Rene Mayrhofer provide additional access to application permanent privilege escalation is required. They present a

framework that can uses arbitrary temporary exploits on Android de-vices to achieve permanent root capabilities.Roee Hay
26

presents a new found vulnerability in Android which breaks its sandbox process. This vulnerability uses many apps also system

intent apps. Adam Cozzette
24

 focuses on Intent spoofing attacks, by taking an attack scenario where a vulnerable application

has components which only expects to receive intents from other component of same application. Okolie C.C et al.
20

 maintain
glide checking of Android smartphones with the help of an app process maturation to change some configure methods for
compiling data and vulnerable intent. In this paper, a phenomenon is given to test and indicating the strong network of the
Android using the new slide testing and hijacking tool related to Linux. The result identifies that there is an identification in the
security range of the different Android device versions but version 4.2 is more robust than the others. Mansfield-Devine, Steve
29

 describe the week points of Android Architecture by using MWR’s exploitation framework mercury. They analyse cross
application exploitation, Inter app communication and SQL-Injection vulnerability with the existing modules of mercury

framework. Enck, William and Gilbert et al.
25

 maintain how third-party app’s uses their private data for processing. They uses a
new concept as TaintDroid, an e cient system-range dynamic taint detection and analysis system providing of simultaneously
identifying multiple sources of user’s sensitive data. TaintDroid provides

realtime analysis by using Android virtualized execution environment.
` 19

present an Android app T.BIeasing et al.
sand-boxing technique which is used to find static as well as dynamic analysis with Android apps to ineluctably notice malign
app’s. Static analysis is used to find the app’s for malign activity with no runnable instance. Dynamic anal-ysis is used to install
an app in a block of isolated environment which is sandbox. Sandbox performs and maintains app identification with the

Android device for execution. Cerbo et al.
21

 demonstrate logic for smartphone activity based execution, to notice malign app’s
which are hiding their activities. This logic is mainly imposed with the Android device and applies on its secure component

specially permissions in each app’s. Je Lessard and Gary C. Kessler
28

 present an experiment in acquiring information from an
Android device using multiple methods dd analysis with FTK, creating a dd image of memory, examination of Memory,
recovered documents, logical examination, logical analysis of specific databases, data extraction with the CelleBrite UFED.

We have designed a runtime malware detection framework named Anti-Hijack which is working on two fatal malware
attacks related to intent and session. We have used the technique of honey-pot based environment to identify session and intent
based malware. The accuracy of Anti-Hijack is as high as 96% in Subsection 6.1. Anti-Hijack generates less false positive
because no legitimate or benign application uses honey-pot log file. We have measured efficiency of Anti-Hijack using tenfold
cross validation after calculating precision, recall and H-mean in Subsection 6.2. The statistical comparison of Anti-Hijack with
other existing related work is in Table 1.

Framework/Tools Accuracy (in %) H-Mean
ComDroid 70 -
Kelly et al. 80 -
SandBox 85 .783
Adam et al. 84 -
TaintDroid 90 .801
Cerbo et al. 86 .79
Je et al. 81 -
Anti-Hijack 96 .834

Table 1: Statistical comparison of Anti-Hijack with existing related work

589 Venkatesh Gauri Shankar and Gaurav Somani / Procedia Computer Science 78 (2016) 587 – 594

3. Intent and Session Based Vulnerabilities

3.1. Intent Based Vulnerabilities

Intents are the mechanism part for the parallel communication between components of Android
3
. Intents are the

special feature used to bind services, passing notification to broadcast receiver and to start activities and services. In
Android, a component may receive intents from the other parts in the same Android app. Attackers can configure the

attribute of manifest file android: exported which allows to accept intent from outside
4
. One more security concern is

intent interception. It allows a malicious app to receive an intent that was not intended for it. Due to the intent
interception, there is a high chance of sensitive data leakage. For example, if a malign activity intercepted an intent then it

would appear on the screen as a benign or legitimate activity
24

. Following are the three different types of attacks, which
come under intent based hijacking.

3.1.1. Activity Hijacking
Activity hijacking occurs when an intent is sent out implicitly and malicious attacker wants to filter that intent.

For example, in an app, where user searches for an item and the app opens up the search results in a browser. The
hijack attacker will intercept the URL before passing the intent to the real browser. The attacker is now capable of

tracking user activity and attaches any data with the URL
24

.

3.1.2. Service Hijacking
Service hijacking happens when multiple services can handle only one intent then the Android operating system

resolves the destination, not by prompting user but based on which app was installed first. It is an option for
attacker to get a malicious app on to the smartphone before the benign or legitimate app. Attacker can access data,

spoof results and also hijack the whole session
24

.

3.1.3. Broadcast Hijacking
Broadcast can easily be captured by malicious components because it does not require receiver signature. On

other hand, due to not setting receiver signature priority, manifest file can easily be manipulated by malicious

software. Attacker can access data and produces denial of service
24

.
Intent hijacking tactics is shown in Fig. 1(a) without response and Fig. 1(b) shows intent hijacking tactics with

attacker response.

(a) Intent hijacking tactics (b) Intent hijacking with response (c) Session hijacking tactics

Fig. 1: Session and intent hijacking

3.2. Session Hijacking Vulnerabilities
In session based hijacking, attacker can filtrate, command and control the whole user defined targeted device. In such type of

hijack, a malign activity is imported in place of legitimate activity. The malign activity registers to get an app’s implicit intents
and started in place of designated activity. When activity hijack is successful then the user component may be opened to a
secondary false response attack and activity attacker can return malign response such as valuable information of device to
invoking app. Fig. 1(c) shows the activity hijacking tactics.

3.3. New Malware Family Related to Session and Intent Vulnerability
The importance of out work become high, as there is a significant increase in intent/session hijacking based mal-ware

recently. In Q3 and Q4 of year 2014, Android malware
22

 samples related to the intent based vulnerability and session
hijacking have been identified as new malware families in Table 2. The intensity of malware is identified as low, high or
risky. Risky intensity malware can be harmful to the user for some time.

590 Venkatesh Gauri Shankar and Gaurav Somani / Procedia Computer Science 78 (2016) 587 – 594

Intent Based Family Session Based Family Intensity
FakeBank DroidSleep Low
VMWol FaceNi High
FakeJobO er FakeAV Risky
CarBerp FakeFlash High
Cawitt FakeMarket Risky
Cosha Obad High
CruseWind DroidDeluxe High

Table 2: Current intent and session hijack based Android malware

4. Honey-pot and Proposed Methodology

4.1. Honey-pot and Honey-net
Honey-pot is an information collecting and suspicious measurement framework which captures anything with

maliciousness and new tools for identifying attack too. It is used in network unit as a controlled network where every
packet entering and leaving is monitored, captured and analysed. It is also the phenomenon of detection, protection and
defence. This concept can be applied to mobile system network to catch suspicious malign mobile users. Honey-pots are
basically two types. First one is physical honey-pot which is actual computer or mobile device that are set-up with more
logging and security features. On the other hand, virtual honey-pots are a software package that allows you to fake many
computer or mobile devices distributions at various places over the network from one mobile device or computer. Honey-
net is the collection of more than one honey-pot on the mobile device or computer. The main scenario of honey-pot is in
Fig. 2.

 Fig. 2: Honey-pot methodology

4.2. Proposed Methodology
As it is clear in Section 3 that intent and session hijack attacks benign app by trapping their intent and session.

Therefore an enhancement of honey-pot methodology fit here. In our scenario, honey-pots are real devices or an emulated
environment which is used to monitor intercepted system call between test app and our specially designed honey framed
benign app. All the interactions are stored in a log. This log file (SysCall) is used for monitoring, detecting and analysing
vulnerable Android apps in complete functionalities of Anti-Hijack. As shown in Fig. 3, we have deployed single system
as honey-pot. We have started monkey runner tool to record system call separately for tested app and designed benign
app.

4.2.1. Android Based SDK Tools Used
5

ADB
2
: We have used ADB which is a robust tool that communicate with an Android emulator or Android

virtual device. It contains five components:
Client: This runs on our developer machine. We can search client from a shell by using an adb command.
Server: This executes as a hide process on our developer machine. The server basically creates and control

 interaction between the client and the adb daemon running on Android virtual device.
Daemon: This runs as a back ground on each emulator or Android device instances.

DumpSys
1
: It runs on the device and dumps fascinating information about the status of system services. Monkey

Runner
13

: This tool is used for tracing system call of the tested app as well as benign app at runtime.

591 Venkatesh Gauri Shankar and Gaurav Somani / Procedia Computer Science 78 (2016) 587 – 594

4.2.2. Experimental Setup
After installing SDK, we have deployed test app, honey framed benign app, monkey runner tool, targeted android API in
a single form. All these makes a system used as honey-pot.
After deploying single system as honey-pot, we have started monkey runner tool to record system call separately for
tested app and benign app. At this time this system behaves as a stand alone isolated system.
After recording system call, we have measured any interception between tested app and honey framed benign app. We
found any interception in the form of intent or session based information flow leakage in the SysCall. In SysCall, this will
be immediately detected by Anti-Hijack.
If there is no suspicious part in SysCall log file means app is benign. On the other hand if any suspicious pat is recorded
then app is malicious in nature. Proposed framework is shown in Fig. 3.

Intent based and session based novel algorithms are given below in Algorithm. 1 and Algorithm. 2.

Fig. 3: Anti-Hijack: Proposed honey-pot framework for Android apps

4.3. Proposed Algorithm

Data: Tested App, Benign App
Result: Malicious or benign app

initialization: Android Virtual Device, Monkey;
while App is executed with emulated or real environment do

Execute tested app and Benign app;
Start monkey runner tool;

end
while Read SysCall do

Monitor benign and Analysing tested app;
Intent or session attack detected;
if (activity or Services or IntentFltr S ysCall)then

Monitor benign and Analysing tested app; Intent
or session attack detected;
Tested app is “malign“;

else
Tested app is “Benign“;

end
end

Algorithm 1: Anti-Hijack: Intent based novel algorithm

592 Venkatesh Gauri Shankar and Gaurav Somani / Procedia Computer Science 78 (2016) 587 – 594

Data: Tested App, Benign App
Result: Malicious or benign app

initialization: Android Virtual Device, Monkey;
while App is executed with emulated or real environment do

Execute tested app and Benign app;
Start monkey runner tool;

end
while Read SysCall do

Monitor benign and Analysing tested app;
Intent or session attack detected;
if (Permission or BroadCR S ysCall)then

Monitor benign and Analysing tested app;
Intent or session attack detected;
Tested app is “malign“;

else
Tested app is “Benign“;

end
end

Algorithm 2: Anti-Hijack: Session based novel algorithm

4.4. Honey Framed Benign App Design

We have designed a honey framed benign app for malign app interception and monitoring, analysing the behaviour of

malicious or malign app. In order to do this, we have developed a benign app which contains user input, network ping operation,

network service operation, traffic analysis, set theme concept and also include legitimate receiver in it. We have included user

input in benign app for monitoring any type of user sensitive information flow leakage (Intent) and network related code for

network based behaviour (Session). We have also included theme concept for monitoring non profitable behaviour of app and

legitimate receiver for monitoring runtime intent based update attack.

5. Dataset

We have collected a large set of intent based family apps and session hijacking based apps from GNOME
7
,

Chinese app store
8
, Virus total detected apps

12
 as in Table 3, Table 4.

Intent Based Family # Of Apps
FakeBank 40
VMWol 30
FakeJobO er 30
CarBerp 25
Cawitt 60
Cosha 50
CruseWind 40

Session Based Family # Of Apps
DroidSleep 50
FaceNi 60
FakeAV 50
FakeFlash 80
FakeMarket 70
Obad 60
DroidDeluxe 60

Table 3: Intent hijack: Android malware data set Table 4: Session hijack: Android malware data set

We have also collected unknown apps and some benign apps from Google app store
9
, Baidu app store

10
, Amazon app

store
6
 and Samsung app store

11
 to check the efficiency of our modules as in Table 5.

Apps Collection # Of Apps
Intent based apps 275
Session hijack
based apps 430
Unknown 9295
Benign 10000

Table 5: Combined data set including benign and unknown

593 Venkatesh Gauri Shankar and Gaurav Somani / Procedia Computer Science 78 (2016) 587 – 594

6. Results and Discussion

6.1. Anti-Hijack: Detection Statistics

We have tested all the data set with our proposed honey-pot device. The intent based detection is given in Table
6 and session hijack based detection is given in Table 7. We find there is a lot of impact of honey based architecture
in results. Below Table 8 presents the accuracy of our model and also includes the results of benign apps as well as
unknown apps (M-malign, B-benign).

Intent Based Family # Of Apps Anti-Hijack Detection
FakeBank 40 38
VMWol 30 27
FakeJobO er 30 28
CarBerp 25 21
Cawitt 60 57
Cosha 50 47
CruseWind 40 36

Table 6: Intent hijack: Data set results

Session Based Family # Of Apps Anti-Hijack Detection
DroidSleep 50 46
FaceNi 60 54
FakeAV 50 48
FakeFlash 80 77
FakeMarket 70 66
Obad 60 56
DroidDeluxe 60 57

Table 7: Session hijack: Data set results

Apps Collection # Of Apps Anti-Hijack Detection
Intent based apps 275 254
Session hijack
based apps 430 404
Unknown 9295 8831 (M-5332,B-3499)
Benign 10000 9677

Table 8: Combined data set including benign and unknown app results

6.2. Anti-Hijack: Ten-Fold Cross Validation

We have measured our approach efficiency on the basis of tenfold cross validation using precision, recall and f-
measure (H-mean). We have calculated metrics on the basis of tenfold cross validation as in Table 9. Below Fig. 4
presents the accuracy and ability of our proposed frame work Anti-Hijack.

0.84

0.835
0.83

0.825

M
et

ri
cs

 0.82
0.815

0.81

0.805
0.8 Recall

0.795 H-Mean
 Precision

0.79
1 2 3 4 5 6 7 8 9 10

 Groups

Group Recall Precision H-Mean
G1 0.79 0.80 0.794
G2 0.80 0.81 0.804
G3 0.81 0.80 0.804
G4 0.81 0.82 0.814
G5 0.80 0.79 0.794
G6 0.82 0.83 0.824
G7 0.80 0.81 0.804
G8 0.83 0.82 0.824
G9 0.81 0.82 0.814
G10 0.82 0.84 0.834

Fig. 4: Anti-Hijack: Precision, Recall and H-Mean Table 9: Anti-Hijack: Accuracy and ability (10-fold)

Ques:1 Why we used honey-pot based technology?
Honey-pot based technology assist low enforcement to track malign app and shut down bot-nets. It perform
parallely on Android device or emulator using the concept of honey-net. This is very efficient for collecting
malicious app information and detection.

Ques:2 What are the advantages of Anti-Hijack?
Anti-hijack produces less false positive because no legitimate or benign app uses honey-pot log file and there is
a no need of known app’s signature so this is free from training phase.

594 Venkatesh Gauri Shankar and Gaurav Somani / Procedia Computer Science 78 (2016) 587 – 594

7. Conclusion
Proposed approach is a strong assessment framework for exploitation vulnerabilities using run-time analysis. Primary

aim of honey-pot based model is to allow malicious apps to do its activities freely. This information is used for protection
of benign apps and detection of malicious apps. In this paper, we made two key contributions, first, detecting intent
hijacking malware and, second, detecting session hijacking malware using our framework Anti-Hijack. In future we
would like to implement some more approaches to detect root exploits and scripts which violate sandbox to gain special
privileges. In terms of exploiting vulnerabilities, we used all the known vulnerabilities whose status is complete in latest
SDK version of Android 4.4. Therefore, we would like to test more vulnerabilities which are not known with the latest
version of Android SDK 4.4.

8. Acknowledgements

It is my privilege to express my sincere thanks to William Enck from NC State University, USA and Kevin Allix
from University of Luxembourg, Luxembourg for supporting us during the implementation of this work. We wish
to extend our gratitude to Amar Bhosale from Carnegie Mellon University for his support and consideration of our
research work for appraisal.

References

1. ADB-DUMPSYS, http://source.android.com/devices/tech/input/dumpsys.html, (Online; Last Accessed September 1, 2015).
2. Android Developers - ADB, http://developer.android.com/tools/help/adb.html, (Online; Last Accessed September 6, 2015).
3. Android Developers - Intents, http://developer.android.com/reference/android/content/Intent.html, (Online; Last Accessed August 12, 2015).
4. Android Developers - Manifest, http://developer.android.com/guide/topics/manifest/manifest.html, (Online; Last Accessed July 16, 2015).
5. Android Developers - SDK TOOLS, http://developer.android.com/tools/sdk/tools-notes.html, (Online; Last Accessed December 26, 2014).
6. Amazon Inc, Amazon Appstore for Android, http://amazon.com/mobile-apps/b?ie=UTF8node=2350149011, (Online; Accessed June 27,
 2015).
7. GNOME, Malware Data Set, http://malgenomeproject.org/mobile-apps, (Online; Accessed June 25, 2015).
8. Chinese Apps, Android Malware, http://appinchina.co/the-market, (Online; Accessed May 12, 2015).
9. Google App-Store, Android Application, https://play.google.com/store?hl=en, (Online; Accessed June 02, 2015).
10. Baidu App-Store, Android Apps, https://shouji.baidu.com, (Online; Accessed May 07, 2015).
11. Samsung App-Store, Android Apps, https://findmymobile.samsung.com, (Online; Accessed May 03, 2015).
12. VirusTotal, Android Malware, https://virustotal.org/total/malware.html,(Online; Accessed April 23, 2015).
13. BakSmali, UI/Application Exerciser Monkey, http://developer.android.com/tools/help/logcat.html, (Online; Accessed April, 2015).
14. Android Overview, Open Handset Alliance - Android Overview, http://www.openhandsetalliance.com/androidoverview:html; 2015:
15. OWASP, Projects/owasp mobile security project - top ten mobile risks, https://www.owasp.org/images/9/94/MobileTopTen.pdf, 2014.
16. Wikipedia Mobile OS Marketshare, http://en.wikipedia.org/wiki/File:WorldWideS martphoneS alesS hare:png; 2015:
17. Wikipedia Mobile OS Sales, http://en.wikipedia.org/wiki/File:WorldWideS martphoneS ales:png; 2015:
18. Gartner, Gartner’s annual smart-phone sales in 2014, http://www.gartner.com/newsroom/id/2665715, 2014.
19. T. B`Ieasing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, An android application sandbox system for suspicious software
 detection, In 5th International Conference on Malicious and Unwanted Software (MALWARE 2010), pages 55–62, Nancy, France, October
 2010. IEEE Conference Publications, URL http://eprints.qut.edu.au/58112/.
20. O. C.C, Oladej, F.A.Benjamin, B.C.Alakiri, and H.A.Olisa, Penetration testing for android smartphones, October 2013, URL
 http://www.iosrjournals.org/iosr-jce/papers/Vol14-issue3/P0143104109.pdf?id=7444.
21. F. D. Cerbo, A. Girardello, F. Michahelles, and S. Voronkova, Detection of malicious applications on android os, In H. Sako, K. Franke, and
 S. Saitoh, editors, ICWF, volume 6540 of Lecture Notes in Computer Science, pages 138–149. Springer, 2010, ISBN 978-3-642-19375-0,
 URL http://dblp.uni-trier.de/db/conf/iwcf/iwcf2010.htmlCerboGMV10.
22. M. Chandramohan and H. B. K. Tan, Detection of mobile malware in the wild, http://www.infoq.com/articles/detection-of-mobile-malware,
 2014.
23. E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, Analyzing inter-application communication in android, In Proceedings of the 9th
 International Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages 239–252, New York, NY, USA, 2011. ACM,
 ISBN 978-1-4503-0643-0, 10.1145/1999995.2000018, URL http://doi.acm.org/10.1145/1999995.2000018.
24. A. Cozzette, Intent spoofing on android, http://blog.palominolabs.com/2013/05/13/android-security/, 2013.
25. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, Taintdroid: An information-flow tracking system for realtime
 privacy monitoring on smartphones, In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation,
 OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX Association, URL http://dl.acm.org/citation.cfm?id=1924943.1924971.
26. R. Hay, A new vulnerability in the android framework: Fragment injection, URL https://securityintelligence.com, (Online; Last Accessed
 January 21,2015).
27. D. W. Kelly Casteel, Owen Derby, Exploiting common intent vulnerabilities in android applications, In MIT CSAIL Computer Systems
 Security Group, December 2012, URL http://css.csail.mit.edu/6.858/2012/projects/ocderby-dennisw-kcasteel.pdf.
28. J. Lessard and G. C. Kessler, Android forensics: Simplifying cell phone examinations, September 2010.
29. S. Mansfield-Devine, Android architecture: attacking the weak points, In Network Security, 2012(10):5–12, 2012, URL http://dblp.unitrier.
 de/db/journals/ns/ns2012.html.

