
 Procedia Computer Science 70 (2015) 757 – 763

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICECCS 2015
doi: 10.1016/j.procs.2015.10.114

ScienceDirect

4thInternational Conference on Eco-friendly Computing and Communication Systems

Different Obfuscation Techniques for Code Protection

Chandan Kumar Beheraa*, D. Lalitha Bhaskari b
a,bDepartment of Computer Science & Systems Engineering, Andhra University, Visakhapatnam, India

Abstract

With the advancements in digital technology, the threat of unimaginable level of duplicating and illegal reproducing of software
also increases. Therefore the piracy rate is increasing proportionally. This scenario has clearly placed the threat for the software
manufacturers and leads to the development of numerous software protection techniques. The numerous software protection
techniques have been developed and one of such software protection techniques is code obfuscation. The code obfuscation is a
mechanism for hiding the original algorithm, data structures or the logic of the code, or to harden or protect the code (which is
considered as intellectual property of the software writer) from the unauthorized reverse engineering process. In general, code
obfuscation involves hiding a program’s implementation details from an adversary, i.e. transforming the program into a
semantically equivalent (same computational effect) program, which is much harder to understand for an attacker. None of the
current code obfuscation techniques satisfy all the obfuscation effectiveness criteria to resistance the reverse engineering attacks.
Therefore the researchers as well as the software industries are trying their best to apply newer and better obfuscation techniques
over their intellectual property in a regular process. But unfortunately, software code is not safe, i.e. still it can be cracked. This
paper presents some of the obfuscation methods, which can help to protect the sensitive code fragments of any software, without
alteration of inherent functionalities of the software. The proposed obfuscation techniques are implemented in assembly level
code, with taking care of the theory of optimizing transformations. The assembly code represents the data dependencies and
comfort to analyse the data after disassembling the executable as compared to the decompiled code.

© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Conference on Eco-friendly Computing and
Communication Systems (ICECCS 2015).

Keywords: Program obfuscation; software protection; code transformation; Assembly code; byte level manipulation.

* Corresponding author.

E-mail address:ckb.iitkgp@gmail.com

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICECCS 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82023211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.10.114&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.10.114&domain=pdf

758 Chandan Kumar Behera and D. Lalitha Bhaskari / Procedia Computer Science 70 (2015) 757 – 763

1. Introduction

IT industries spend billions of dollars annually for preventing from security attacks such as tampering and
malicious reverse engineering. Because of huge application and development on internet technologies and
multimedia, the vast necessity for research on security and protection has been formed. Every organization is having
its own intellectual property and it’s a big challenge for them to protect their data, i.e. software piracy or injection of
malicious code etc. And also, their data processing through the application is confidential, so its uncovering may
damage the software purchaser’s business directly. There are two general ways to protect the intellectual property,
legally or technically. Legally means getting copyrights or signing legal contracts against creating duplicates etc.
And technically means the owners of the software will give the solution for protection with that particular software.
Previously, securing data means use of firewalls and gateways in the operating system itself or on the network. But,
for defending from outsiders, the better idea is to use these mechanisms or methods within the application software.
One of those types of methods is obfuscation, which is a novel area of research in the field of software protection
and gaining more importance in this present digital era.

Obfuscation consists of code transformations that make a program more difficult to understand by changing its
structure, while preserving the original functionalities, not suitable also to reverse-engineering. Encryption and
firewalls are some of the common solution to diminish the threat of the attackers who try to crack the application.
But, these approaches do not help to protect the software, when the attacker is him/herself the end-user. Among the
various techniques available for protecting code from different attacks, code obfuscation is one of the most popular
alternative, for preventing from code comprehension, code tampering etc. So, code obfuscation is a largely adopted
solution, and many different obfuscation approaches has been proposed. This is also a type of software protection
against unauthorized reverse-engineering.

However, a determined attacker, after spending enough time to inspect obfuscated code, might locate the
functionality to alter and succeed in her/his malicious purpose. For this reason, obfuscation techniques are
implemented with other approaches, such as code replacement/update, code tampering detection, protections
updating (by that the attackers get a limited amount of time to complete their objective) etc. Practically, encryption,
protection by server-side, hardware-based security solutions, different signed native codes, tamper proofing,
watermarking, software aging, packing are some of the most commonly used methods to avoid or challenge the
detection engines. However, the provider should estimate how long the obfuscation would resist, i.e., the time taken
by an attacker to understand the code. According to that, some other obfuscation methods can be implemented on the
original code, so that; the adversary will not be able to get the algorithm or logic of the code.

Further, obfuscation methods include code re-ordering, transformation to replace meaningful identifier names in
the original code with meaningless random names (identifier renaming), junk code insertions, unconditional jumps,
conditional jumps, transparent branch insertion, variable reassigning, random dead code, merge local integers, string
encoding, generation of bogus middle level code, suppression of constants, meshing of control flows and many
more.

Basically, obfuscation is different from encryption in many ways. Primarily, it does not require any inverse
transformation. Next, it’s not necessary for an attacker to look for the original code all the time, because the attack
can be succeed without having the original code of the software. And at last, cipher text will be worthless without the
key, as an obfuscated program can perform without any additional information.

If we discuss another aspect, mostly, software code is portable and distributed across the networks, which can be
un-trusted also. So the protection mechanism must be included within the software, but it should be hardware
independent also. The primary function of any software protection techniques is to detect the pirate, corrupt or
misuse of the code or application. Based on this, it is supposed that ‘code obfuscation’ is the simple and foremost
source code protection tool in the area of software protection and security. The main idea behind these obfuscation
techniques are to hide the original code from the adversary, as the code will be transformed, but its functionality will
be similar to the original code; but much more difficult to analyse or understand.

For analyzing a code, any disassemblers or de-compiler is needed to use on the executable code. But, it’s
obvious that the disassembled code will be not similar to the original code, as it is not possible to get back with all
same functionalities. As most of the code analysis techniques have been researched and experimented on Assembly

759 Chandan Kumar Behera and D. Lalitha Bhaskari / Procedia Computer Science 70 (2015) 757 – 763

code or with low level code; so, Assembly level programming is considered in this paper. In the next section, few
obfuscation techniques are discussed.

According to Collberg et al [1], Code obfuscation refers to a class of techniques that transform a source program
into a target program, such that both programs have the same behaviour, but the targeted program is difficult to
reverse engineer by any attacker. The above observations motivated us to design the obfuscation schemes, which
protect sensitive code fragments with satisfying all efficiency criteria mentioned in [1]. It is also possible to combine
more than one obfuscation techniques such that we may achieve better strength. The idea moved towards
obfuscation, because of these following remarks.

 Obfuscated application software never goes through any interruption due to network limitations. Also it
does not need any hardware to encrypt or decrypt the code. So there is no requirement of digital signature
for software application to authenticate, whether the application is having secure code from the reliable
source or not.

 Encryption techniques need some specific hardware to act effectively, with the signed code to put some
restriction, which should not be dependent on hardware platform. This use of dedicated hardware, also
expend the cost to the software purchaser.

 De-compilation will be harder for the obfuscated code, even after spending enough effort and time. But it
is possible to get back the algorithms and data structures. So, the main intention is to increase the time
and effort, by that it is efficiently infeasible for an adversary to reverse engineer the obfuscated code or
software.

 By obfuscation, it is possible to entangle the code and eliminate the majority of logical links, so that, the
transformed code becomes complex enough for analysis and unauthorized modifications.

 There are so many complex encryption algorithms, which are not possible to implement, because of the
limitations of memory and the bandwidth over network.

 In the recent progresses, the theory of obfuscation still in need of evaluation of the quality of practical
obfuscating transformations in a quicker and easier way.

By putting together, some of the above mentioned aspects in software protection techniques, it can be considered
that the ‘code obfuscation’ concept may be a stronger as well as a better tool for securing the software.

To analyze the code, it is very much necessary to find the order in which all the instructions are executed. That
order of execution can reveal by control flow graph. Generally, if the control flow graph is complicated, that means
the code of the program is also complicated. But, the important point is the control flow graph is useful, if loops and
conditional statements are available in the program. In another case, if there are no conditional statements or loops
in the code, then the whole code will be treated as one block. In this paper, the mentioned code obfuscation
techniques will be useful for fraction of code (if there is no conditional statement) or the code within a basic block.
So, it is believed that, our obfuscation techniques can be implemented to those parts of code, for which making
control flow graph is not possible or there is no conditions available.

2. Different Code Obfuscation Techniques

In this section, the code fraction, which mentioned italic, are tried to obfuscate.

i) By data transformation:

760 Chandan Kumar Behera and D. Lalitha Bhaskari / Procedia Computer Science 70 (2015) 757 – 763

 In the obfuscated code, the machine code is written for 'Mov DL'. The binary form of the number 75 is
01001011. For decrementing the content a register, the instruction is '01001reg' and the register BX represented as
'011'. So the binary number can be replaced as the assembly code 'Dec BX'.

ii) By reflecting of carry:

In the above example, in place of JLE, jump with no carry (JNC) is used. If the carry flag is clear, then JNC

transfers the control to the level. It should be only taken care of the boundary, which is in between -128 to +127.
According to this the both mentioned programs give the same output.
iii) By using indirect addressing:

In the original program, the content of the register CH will be moved to DL. So the output is 'I'. In the obfuscated

program, by the instruction 'Mov DL, BL', the value of BL, which is 70, should be moved to DL. But, because of
'Add CS: [SI+1], AH', the content of AH will be added to BL. So, 72 should be stored in BL. But, the instruction
jumps to the next two instructions. So the content of CH moves to DL and the output will be 'I' in place of H.
iv) Use of register addressing:

761 Chandan Kumar Behera and D. Lalitha Bhaskari / Procedia Computer Science 70 (2015) 757 – 763

The output of the above original code is the contents of the registers AL and BH. According to the above
example, the values are 180 and 186 respectively. In the obfuscated program, register BH is not used and in place of
that, the register AH is used and for storing the content of AH, the register CH is used. The content of AL and BH in
the original program are stored in the register AX of the obfuscated program, i.e. the single value 47796 can be
calculated as (186 X 256 + 180). This is by calculated as content (AH) X 28 + content (AL). In the original code, the
register BH is used in place of the register AH.

v) Combining binary instructions with Assembly code:

In the above programs, it is shown that, machine code and the decimal numbers are converted into assembly

code. The machine code ‘10111010’ mentioned in the obfuscated code can be read as' 1011-1-010'. i.e. 'Mov DX',
according to the format '1011wreg number'. Again, the 'number' of the format can be converted into some assembly
code. According to this example 1000101011010001 is the binary form of 35537and can be read as 100010-10-11-
010-001 of the format 'Mov-dw-11-DL-CL'. i.e. 'Mov DL,CL'. There are some other examples mentioned below:

vi) By combining binary and decimal numbers with Assembly code instructions:

In the original program, according to the instruction 'Mov BL,178', the binary code of 'Mov BL' is 10110011,

which is mentioned in the obfuscated code. The binary form of 178 is 10110010, which can be elaborated as '1011-
0-010' and it is 'Mov DL' as the assembly code. So, there is a binary instruction, then an assembly code instruction
and after that a decimal number is there in the obfuscated program, which is similar to the italic assembly code
instructions of the original program.

762 Chandan Kumar Behera and D. Lalitha Bhaskari / Procedia Computer Science 70 (2015) 757 – 763

vii) Use of decimal numbers in between Assembly code instruction:

In the original program, the binary form of the italic assembly code 'Mov DL' is 10110010 and its decimal value

is 178, which is used in the obfuscated code (mentioned italic).

viii) Using binary instructions in place of Assembly code:

In the original code, by the instruction ‘Mov DL, CL’, the content of one register moves to another register. The

machine code of this is '100010dw 11reg1,reg2'. i.e. Mov represents 100010, d=1(for correct) and w=0 (for byte). So,
the machine code 10001010 is generated, which is mentioned in the obfuscated program. The next part of the binary
instruction is '11reg1,reg2'. In this example, the registers DL and CL are used. The machine codes for DL and CL are
010 and 001 respectively. i.e. the machine code for '11DL, CL' is '11010001', which is mentioned in the second
italic code of obfuscated program.

ix) Use of binary instructions in between Assembly code:

In the first binary instruction, first 4 bits represent ‘Mov’ and the next 4 bits represent to the register DL. The

second binary instruction is a numerical value 178(calculated as 11 X 16 + 2).

763 Chandan Kumar Behera and D. Lalitha Bhaskari / Procedia Computer Science 70 (2015) 757 – 763

 Although entire software-based methods cannot afford perfect protection, we anticipate that the above
mentioned techniques significantly raise the difficulty for reverse-engineering as well as for signature-based
detection and code detection through pattern matching, especially when these techniques will be combined with the
existing code obfuscation techniques.

Conclusion

Due to the increasing piracy of the software, a novel attempt is made to discuss and implement some of the
obfuscation methods in this paper. Normally after obfuscation, the complexity of the code increases according to
logically as well as structurally because of the insertion, removal or rearrangement of the code. The techniques
presented have been found to be effective. Here the initial step is taken to obfuscate the code without much
increasing the complexity. These mentioned obfuscation techniques have been implemented and analysed.

The future work is aimed at the development of a framework for automation of the presented techniques and to
provide as a plug-in to support other obfuscation techniques. Also, the aim has been set to implement the proposed
idea for large scale software protection and improvement.

References

1. Christian Collberg, C. Thomborson, D. Low, A taxonomy of obfuscating transformations, Technical Report 148, Dept. of Computer
Science, Univ. of Auckland, 1997.

2. Jean-Maries Borello and Ludovic Me, Code Obfuscation Techniques for Metamorphic Viruses, Springer, 2008.
3. C. Collberg, J. Nagra, Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for Program Protection. Addison-Wesley

Professional, 2009.
4. Hideaki Goto, M. Mambo, H.ShiZuya, Y. Watanabe, Evaluation of Tamper-Resistant software deviating from structured programming

rules, ACISP, LNCS 2119, pp-145-158, Springer- verilag Berlin Heidelberg, 2001.
5. P. Mishra, A taxonomy of software uniqueness transformations, master’s thesis, San Jose State University, 2003.
6. LeventErtaul , Suma Venkatesh, JHide - A Tool Kit for Code Obfuscation, Software Engineering and Application, Cambridge, USA,2004.
7. Christopher W. Fraser, Eugene W. Myers, Alan L. Wendt , Analyzing and Compressing Assembly Code, ACM SIGPLAN '84 Symposium

on Compiler Construction SIGPLAN Notice8 VoL 19, No. 8, 1984.
8. D. Libes, Obfuscated C and Other Mysteries. Wiley, 1993.
9. Robbie Harwood, Maxime Serrano, Lecture 26: Obfuscation, 15411: Compiler Design, 2013
10. G. Wroblewski., General method of program code obfuscation. In Proc. International Conference on Software Engineering Research and

Practice (SERP 02), pages 153–159, 2002.
11. N.George, G.Charalambous, Applied Binary Code Obfuscation, 2009.
12. I. V. Popov, S. K. Debray, and G. R. Andrews, Binary obfuscation using signals, In Proceedings of 16th USENIX Security Symposium on

USENIX Security Symposium, pages 19:1–19:16, Berkeley, CA, USA, 2007.
13. Marius Popa ,Binary Code Disassembly for Reverse Engineering, Journal of Mobile, Embedded and Distributed Systems, ISSN 2067 –

4074 , vol. IV, no. 4, 2012.
14. M. Madou, B. Anckaert, B. De Bus, K. De Bosschere, J. Cappaert, B. Preneel, On the effectiveness of source code transformations for

binary obfuscation. In H. R. Arabnia and H. Reza, editors, Software Engineering Research and Practice, pages 527–533. CSREA Press,
2006.

15. Giovanni Vigna, Static Disassembly and Code Analysis, Malware Detection. Advances in Information Security, Springer, Heidelberg, vol.
35, pages. 19 – 42, 2007.

16. C. Linn, S. K. Debray., Obfuscation of executable code to improve resistance to static disassembly, In S. Jajodia, V. Atluri, and T. Jaeger,
editors, ACM Conference on Computer and Communications Security, pages 290–299. ACM, 2003.

17. M. Madou, B. Anckaert, B. De Bus, K. De Bosschere, J. Cappaert, and B. Preneel, "On the Effectiveness of Source Code Transformations
for Binary Obfuscation", Proceedings of the International Conference on Software Engineering Research and Practice & Conference on
Programming Languages and Compilers, SERP, 2006.

