The hyperspace of the regions below of continuous maps is homeomorphic to c_0

Zhongqiang Yang

Department of Mathematics, Shantou University, Shantou, Guangdong 515063, PR China

Received 7 December 2004; received in revised form 16 June 2005; accepted 9 December 2005

Abstract

For a compact metric space (X, d), we use $\downarrow USC(X)$ and $\downarrow C(X)$ to denote the families of the regions below of all upper semi-continuous maps and the regions below of all continuous maps from X to $I = [0, 1]$, respectively. In this paper, we consider the two spaces topologized as subspaces of the hyperspace $Cld(X \times I)$ consisting of all non-empty closed sets in $X \times I$ endowed with the Vietoris topology. We shall show that $\downarrow C(X)$ is Baire if and only if the set of isolated points is dense in X, but $\downarrow C(X)$ is not a $G_{\delta\sigma}$-set in $\downarrow USC(X)$ unless X is finite. As the main result, we shall prove that if X is an infinite locally connected compact metric space then $(\downarrow USC(X), \downarrow C(X)) \approx (Q, c_0)$, where $Q = [-1, 1]^{\omega}$ is the Hilbert cube and $c_0 = \{(x_n) \in Q: \lim_{n \to \infty} x_n = 0\}$.

MSC: 54B20; 57N20; 54E45

Keywords: The hyperspace; The Vietoris topology; Regions below; Upper semi-continuous; The Hilbert cube; c_0; Absorber

1. Introduction

For a metric space X, the hyperspace $Cld(X)$ is the set consisting of all non-empty closed subsets in X endowed with the Vietoris topology which is generated by $\{U^-, U^+: U \subset X$ is open\} as a subbase, where

$$U^- = \{A \in Cl(X) | A \cap U \neq \emptyset\} \quad \text{and} \quad U^+ = \{A \in Cl(X) | A \subset U\}.$$

It is well known that $Cld(X)$ with this topology is metrizable if and only if X is a compactum (i.e. a compact metric space) [11, Theorem I.3.4]. For a compactum $X = (X, d)$, the Vietoris topology of $Cld(X)$ is induced by the Hausdorff metric d_H defined as follows:

$$d_H(A, B) = \max_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b).$$

The Curtis–Schori–West Hyperspace Theorem is a celebrated theorem in infinite-dimensional topology which states that $Cld(X)$ is homeomorphic to (\approx) the Hilbert cube $Q = [-1, 1]^{\omega}$ if and only if X is a non-degenerate Peano

✩ This work was supported by Nation Natural Science Foundation of China (No. 10471084) and by Guangdong Provincial Natural Science Foundation (No. 04010985).

E-mail address: zqyang@stu.edu.cn (Z. Yang).

0166-8641/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
As a subspace of \(Cld_X \) unless \(X \) is an infinite non-locally-connected compactum. And also, in [21], it was proved that, although \(X \) is an infinite non-locally-connected compactum, the hyperspace \(\text{Cld}_f(Y) \) endowed with the so-called Fell topology and its some natural subspaces, for example, the subspace consisting of all compact subsets. Particularly, they proved a result similar to the Curtis–Schori–West Hyperspace Theorem.

For a compactum \((X,d)\), we consider the sets \(C(X) \) and \(\text{USC}(X) \) which consist of all continuous maps and all upper semi-continuous maps from \(X \) to \(I = [0,1] \), respectively. In [20], a map \(f : X \to I \) is carried by a bijection to its region below \(\downarrow f = \{(x,\lambda) \in X \times I: \lambda \leq f(x)\} \) in the space \(X \times I \). For a family \(A \subseteq \text{USC}(X) \), let \(\downarrow A = \{ \downarrow f: f \in A \} \). As a subspace of \(\text{Cld}(X \times I) \), \(\downarrow A \) is a metric space. Let \(\text{USC}(X,\{0,1\}) \) be the set of all upper semi-continuous from \(X \) to \(\{0,1\} \). When we identify a subset of \(X \) with its characteristic function, we may think \(\text{USC}(X,\{0,1\}) = \text{Cld}(X) \cup \{ \emptyset \} \).

Thus the Curtis–Schori–West Hyperspace Theorem can be rewritten as \(\downarrow \text{USC}(X,\{0,1\}) \setminus \{ \emptyset \} \approx Q \) if and only if \(X \) is a non-degenerate Peano continuum, where, such as \(\downarrow \text{USC}(X), \downarrow \text{USC}(X,\{0,1\}) \) is topologized as a subspace of \(\text{Cld}(X \times I) \). In [20], the author proved that \(\downarrow \text{USC}(X) \approx Q \) and \(\downarrow C(X) \) is homotopy dense in \(\downarrow \text{USC}(X) \) when \(X \) is an infinite locally connected compactum (see Section 4 in the present paper).

Let \(X \) and \(Y \) be two spaces. For two subspaces \(A \) and \(B \) of \(X \) and \(Y \), respectively, if \(X \) has a homeomorphism \(h : X \to Y \) such that \(h(A) = B \), then \((X,A) \) and \((Y,B) \) are called pair-homeomorphic and denoted by \((X,A) \approx (Y,B) \). In the present paper, we shall prove the following theorems:

Theorem 1. If \(X \) is an infinite locally connected compact metric space then \(\downarrow \text{USC}(X), \downarrow C(X) \approx (Q,c_0) \), where \(Q = [-1,1]^\omega \) is the Hilbert cube and \(c_0 = \{ (x_n) \in Q: \lim_{n \to \infty} x_n = 0 \} \).

Noting that \(c_0 \) is not a Baire space, the following Theorem 2 shows that Theorem 1 need not be true for any non-locally-connected compactum. And also, in [21], it was proved that, although \(\downarrow \text{USC}(X) \approx Q \), \(\downarrow C(X) \) is homeomorphic to neither \(c_0 \) nor \(R^\omega \), where \(R \) is the set of all real numbers with the usual topology, even though \(X \) is a convergent sequence with its limit, which implies that the structure of \(\downarrow C(X) \) would be a little complicated when \(X \) is an infinite non-locally-connected compactum.

Theorem 2. For a compactum \(X \), \(\downarrow C(X) \) is Baire if and only if the set of isolated points is dense in \(X \).

Let \(C_p(X) \) and \(C_u(X) \) be the spaces of \(C(X) \) topologized by the pointwise convergence topology and the uniformly convergence topology, respectively. In [7] (cf. [15, Theorem 6.3.8]), it was proved that \(C_p(X) \) is not a \(G_{\delta_0} \)-set of \(I^X \) unless \(X \) is discrete. In [20], we proved that if \(X \) is an infinite compactum then \(\downarrow C(X) \) is not a \(G_{\delta} \)-set of \(\downarrow \text{USC}(X) \). Here, we have

Theorem 3. No \(\downarrow C(X) \) is a \(G_{\delta_0} \)-set of \(\downarrow \text{USC}(X) \) for any infinite compactum \(X \).

Trivially, \(f \mapsto \downarrow f \) gives a bijection from the set \(C(X) \) onto \(\downarrow C(X) \). Notice that \(d(f,g) = \sup\{|f(x) - g(x)|: x \in X\} \) is an admissible metric on \(C_u(X) \) if \(X \) is a compactum. It is trivial that \(d_H(\downarrow f, \downarrow g) \leq d(f,g) \) for all \(f,g \in C(X) \). Thus \(f \mapsto \downarrow f \) is also continuous from the space \(C_u(X) \) onto \(\downarrow C(X) \) for every compactum \(X \). And it is also a homeomorphism from \(C_p(X) = C_u(X) \) onto \(\downarrow C(X) \) if \(X \) is finite, but we shall prove the following corollary of Theorems 2 and 3:

Corollary 1. For any infinite compactum \(X \), no pair among \(C_p(X), \downarrow C(X) \) and \(C_u(X) \) is homeomorphic.

In Section 2 we shall recall some necessary fundamental concepts and facts on hyperspaces and the uniqueness on absorbers which are the main instrument to prove the pair-homeomorphism. In Section 3, we shall prove Theorem 2, 3 and Corollary 1. And the last section contains proof of Theorem 1.

2. Preliminaries

All spaces under discussion here are assumed to be separable and metrizable.

1 A Peano continuum is a connected and locally connected compact metrizable space.
In this section we recall some necessary fundamental concepts and facts. For more information on them, please refer to [14, 15].

A closed subset A of a space X is said to be a Z-set if for every continuous map $\varepsilon : X \to (0, \infty)$ there is a continuous map $f : X \to X \setminus A$ with $d(f(x), x) < \varepsilon(x)$ for every $x \in X$. It is trivial that every Z-set is closed nowhere dense but the converse is not necessarily true. If X is compact then obviously ε map can be replaced by an arbitrary positive real number ε. A Z_σ-set in a space is a countable union of Z-sets. A space is called a Z_σ-space if it is a Z_σ-set in itself. A Z-embedding is an embedding with a Z-set image. We say that a subspace Y of X is homotopy dense in X provided that there exists a homotopy $h : X \times I \to X$ such that $h_0 = \text{id}_X$ and $h_t(X) \subset Y$ for every $t > 0$.

Let \mathcal{M}_0 denote the class of compacta, and for a topological class C let (\mathcal{M}_0, C) denote the class of the pairs (Z, C) such that $Z \in \mathcal{M}_0$ and $C \in C$ with $C \subset Z$.

Definition 1. Let X be a copy of Hilbert cube Q. We say that a subspace Y of X is strongly C-universal in X provided that for every $(M, C) \in (\mathcal{M}_0, C)$, every continuous map $f : M \to X$, every closed subset K of M such that $f|K : K \to X$ is a Z-embedding and every $\varepsilon > 0$ there is a Z-embedding $g : M \to X$ such that $g|K = f|K$, $g^{-1}(Y) \setminus K = C \setminus K$ and $d(g(m), f(m)) \leq \varepsilon$ for $m \in M$.

Definition 2. We say that a subset Y is a C-absorber in X if

(a) $Y \in C$,
(b) Y is contained in a Z_σ-set of X, and
(c) Y is strongly C-universal in X.

Lemma 1. [2, Theorem 8.2] (cf. [3]) If X and Y are C-absorbers in a copy M of Q, then $(M, X) \approx (M, Y)$.

In this paper we are concerned with the class $F_{\sigma\delta}$ of absolute $F_{\sigma\delta}$ spaces. It was proved that $c_0 = \{(x_n) \in Q: \lim_{n \to \infty} x_n = 0\}$ is a $F_{\sigma\delta}$-absorber in Q in [8]. The proof of the fact that $c_0 = \{(x_n) \in Q: \lim_{n \to \infty} x_n = 0\}$ is strongly $F_{\sigma\delta}$-universal in Q in [9] (cf. [15, Theorem 6.12.15]) can easily be modified to show the following lemma.

Lemma 2. Let $Q_u = [0, 1]^\omega$ and $c_1 = \{(x_n) \in Q_u: \lim_{n \to \infty} x_n = 1\}$. Then c_1 is strongly $F_{\sigma\delta}$-universal in $Q_u \approx Q$.

In the following, \mathbb{N} denotes the set of all natural numbers and, as stated before, \mathbb{R} denotes the set of all real numbers and $I = [0, 1]$. We assume that (X, d) is a compactum. Then, $d((x, \lambda), (y, \mu)) = \max\{d(x, y), |\lambda - \mu|\}$ is an admissible metric on $X \times I$ and so d_H is on the hyperspace $\text{Cld}(X \times I)$. Let \overline{A} and $\text{Int}(A)$ denote the closure and the interior of a set A in a space, respectively and let $B(a, \varepsilon) = \{x \in X: d(a, x) < \varepsilon\}$. Let $\phi : A \to B$ be a map from a set A to a set B. If $A \subseteq \text{USC}(X)$ and/or $B \subseteq \text{USC}(Y)$ for spaces X and Y. We may define a corresponding map $\downarrow \phi: \downarrow A \rightarrow \downarrow B$ or $\downarrow \phi: A \rightarrow \downarrow B$ or $\downarrow \phi: \downarrow A \rightarrow B$ as $\downarrow \phi(\downarrow f) = \downarrow (\phi(f))$ or $\downarrow \phi(f) = \downarrow (\phi(f))$ or $\downarrow \phi(\downarrow f) = \phi(f)$, respectively.

3. Proofs of Theorems 2 and 3

If X is finite, then Theorem 2 is trivial and Theorem 3 does not apply. Hence, in this section, we assume that X is an infinite compactum and X_0 denotes the set of all isolated points of X.

Lemma 3. If $X_0 = X$ then $\downarrow C(X)$ is a Baire space.

Proof. Let $\mathcal{A} = \{A \subseteq X_0: A$ is finite$\}$. For $A \in \mathcal{A}$ and $n \in \mathbb{N}$, let

$$U_{A,n} = \left\{ \downarrow f \in \downarrow \text{USC}(X): f(x) < \frac{1}{n} \text{ for all } x \in X \setminus A \right\}.$$
Then \(U_{A,n} = ((A \times I) \cup ((X \setminus A) \times [0, \frac{1}{n}]))^+ \cap \downarrow \text{USC}(X)\) is open in \(\downarrow \text{USC}(X)\). Let \(U_n = \bigcup \{U_{A,n} : A \in \mathcal{A}\}\). Then \(U_n\) is a dense open set in \(\downarrow \text{USC}(X)\). We only need to verify that \(U_n\) is dense in \(\downarrow \text{USC}(X)\). For \(f \in C(X)\) and \(\varepsilon > 0\), since \(\overline{X_0} = X\) there exists \(A \in \mathcal{A}\) such that \(d_H(\{(a, f(a)) : a \in A\}, G(f)) < \varepsilon\), where \(G(f) = \{(x, f(x)) : x \in X\}\). Let
\[
g(x) = \begin{cases} f(x) & x \in A, \\
0 & x \in X \setminus A.
\end{cases}
\]
Then \(\downarrow g \in U_n\) and \(d_H(\downarrow g, \downarrow f) < \varepsilon\). It follows from the density of \(\downarrow \mathcal{C}(X)\) in \(\downarrow \text{USC}(X)\) that \(U_n\) is dense in \(\downarrow \text{USC}(X)\).

For later use, we shall show a stronger result than the converse of Lemma 3. We first show two technical lemmas.

Lemma 4. For every continuous map \(\varepsilon : \downarrow \mathcal{C}(X) \rightarrow (0, 1)\) and for every \(a \in X \setminus X_0\) there exists a map \(\varphi : \mathcal{C}(X) \rightarrow \mathcal{C}(X)\) such that the map \(\downarrow \varphi : \downarrow \mathcal{C}(X) \rightarrow \downarrow \mathcal{C}(X)\) is continuous and also for every \(f \in \mathcal{C}(X)\),

(a) \(d_H(\downarrow f, \downarrow \varphi(\downarrow f)) < \varepsilon(\downarrow f)\);

(b) \(\varphi(f)(a) = 0\).

Proof. For \(f \in \mathcal{C}(X)\), define
\[
\delta(\downarrow f) = \sup \{\eta > 0 : d_H(\downarrow f, \downarrow f \cap ((X \setminus B(a, \eta)) \times I)) < \varepsilon(\downarrow f)\}.
\]
Then \(\delta(\downarrow f) > 0\) since \(a \in X \setminus X_0\) and \(f\) is continuous.

We shall prove that \(\delta : \downarrow \mathcal{C}(X) \rightarrow \mathbb{R}\) is lower semi-continuous and then there exists a continuous function \(\zeta : \downarrow \mathcal{C}(X) \rightarrow \mathbb{R}\) such that \(0 < \zeta(\downarrow f) < \delta(\downarrow f)\) for each \(f \in \mathcal{C}(X)\) [10,13] (cf. [15, Corollary A.7.6]). Define \(\varphi : \mathcal{C}(X) \rightarrow \mathcal{C}(X)\) by
\[
\varphi(f)(x) = \min \left\{1, \frac{d(x, a)}{\zeta(\downarrow f)}\right\} f(x),
\]
for \(f \in \mathcal{C}(X)\) and \(x \in X\). It is easy to verify that \(\varphi\) is as required.

It remains to show that \(\delta\) is lower semi-continuous. For every fixed \(f \in \mathcal{C}(X)\) and \(\eta \in (0, \delta(\downarrow f))\), since \(\delta(\downarrow f) - \frac{\eta}{2} < \delta(\downarrow f)\),
\[
d_H(\downarrow f, \downarrow f \cap \left((X \setminus B(a, \delta(\downarrow f) - \frac{\eta}{2})) \times I\right)) < \varepsilon(\downarrow f),
\]
and hence there exists \(n \in \mathbb{N}\) such that
\[
d_H(\downarrow f, \downarrow f \cap \left((X \setminus B(a, \delta(\downarrow f) - \frac{\eta}{2})) \times I\right)) < \frac{n - 1}{n} \varepsilon(\downarrow f).
\]
Choose \(\xi \in (0, \min\left\{\frac{1}{2n} \varepsilon(\downarrow f), \frac{\eta}{2}\right\})\) such that \(|\varepsilon(\downarrow g) - \varepsilon(\downarrow f)| < \frac{1}{2n} \varepsilon(\downarrow f)\) for every \(\downarrow g \in B(\downarrow f, \xi) \cap \downarrow \mathcal{C}(X)\). We shall prove that \(\delta(\downarrow g) \geq \delta(\downarrow f) - \eta\) holds for every \(\downarrow g \in B(\downarrow f, \xi) \cap \downarrow \mathcal{C}(X)\). In fact, for every \((x_1, \lambda_1) \in (B(a, \delta(\downarrow f) - \eta)) \times I\) \(\cap \downarrow g\), there exists \((x_2, \lambda_2) \in \downarrow f\) such that \(d_H((x_1, \lambda_1), (x_2, \lambda_2)) < \xi\) since \(d_H(\downarrow f, \downarrow g) < \xi\). Then \((x_2, \lambda_2) \in (B(a, \delta(\downarrow f) - \frac{\eta}{2})) \times I\) \(\cap \downarrow f\) and hence there exists \((x_3, \lambda_3) \in ((X \setminus B(a, \delta(\downarrow f) - \frac{\eta}{2})) \times I) \cap \downarrow f\) such that \(d((x_2, \lambda_2), (x_3, \lambda_3)) < \frac{n - 1}{n} \varepsilon(\downarrow f)\). Using \(d_H(\downarrow f, \downarrow g) < \xi\) again there exists \((x_4, \lambda_4) \in \downarrow g\) such that \(d((x_3, \lambda_3), (x_4, \lambda_4)) < \xi\) which implies that \((x_4, \lambda_4) \in ((X \setminus B(a, \delta(\downarrow f) - \eta)) \times I) \cap \downarrow g\). It is not hard to verify that
\[
d((x_1, \lambda_1), (x_4, \lambda_4)) \leq \varepsilon(\downarrow g).
\]
By the definition of \(\delta(\downarrow g)\) we have \(\delta(\downarrow g) \geq \delta(\downarrow f) - \eta\). This shows that \(\downarrow \delta\) is lower semi-continuous. \(\Box\)
Lemma 5. Let $F = E \cup Z \subset \downarrow C(X)$ be closed. If Z is a Z-set in $\downarrow C(X)$ and for every $\downarrow f \in E$ there exists $a \in X$ such that $f(a) = 0$, then F is a Z-set in $\downarrow C(X)$.

Proof. For every continuous map $\varepsilon : \downarrow C(X) \to (0, 1)$, choose a map $\psi : C(X) \to C(X)$ such that $\downarrow \psi : \downarrow C(X) \to \downarrow C(X)$ is continuous, $\downarrow \psi(\downarrow C(X)) \cap Z = \emptyset$ and $d_H(\downarrow \psi(\downarrow f), \downarrow f) < \frac{1}{2} \varepsilon(\downarrow f)$ for all $f \in C(X)$. Define $\varphi : C(X) \to C(X)$ by

$$\varphi(f)(x) = \max \left\{ \psi(f)(x), \min \left\{ \frac{1}{2} \varepsilon(\downarrow f), \frac{1}{2} d(\downarrow \psi(\downarrow f), Z) \right\} \right\}$$

for $f \in C(X)$ and $x \in X$. Then $\downarrow \varphi : \downarrow C(X) \to \downarrow C(X)$ is continuous, $d(\downarrow \varphi, \text{id}) < \varepsilon(\downarrow f)$ and $\downarrow \varphi(\downarrow C(X)) \cap F = \emptyset$. We are done. □

Using the above two lemmas, we shall prove the following lemma:

Lemma 6. If $\overline{X}_0 \neq X$ then $\downarrow C(X)$ is a Z_σ-space and hence it is not a Baire space.

Proof. Choose a countable set $D = \{d_1, d_2, \ldots \}$ such that $\overline{D} = X \setminus X_0$. For $n, m \in \mathbb{N}$, let

$$F_{n,m} = \left\{ \downarrow f \in \downarrow C(X) : f(d_n) \geq \frac{1}{m} \right\}.$$

Then $F_{n,m}$ is a Z-set in $\downarrow C(X)$. In fact, it is trivial that $F_{n,m}$ is closed. Moreover, for every $n \in \mathbb{N}$ and every continuous function $\varepsilon : \downarrow C(X) \to (0, 1)$, by Lemma 4, there exists a continuous function $\downarrow \varphi_n : \downarrow C(X) \to \downarrow C(X)$ such that

(a) $d_H(\downarrow f, \downarrow \varphi_n(\downarrow f)) < \varepsilon(\downarrow f)$;
(b) $\varphi_n(f)(d_n) = 0$

for $f \in C(X)$. Hence $\downarrow \varphi_n(\downarrow C(X)) \cap F_{n,m} = \emptyset$ for all $n, m \in \mathbb{N}$.

Now let $F = \bigcap_{n=1}^{\infty} \bigcap_{m=1}^{\infty} (\downarrow C(X) \setminus F_{n,m})$. Then F is also a Z-set in $\downarrow C(X)$. To this end, by Lemma 5, it suffices to verify that $f(a) = 0$ for all $\downarrow f \in F$ and all $a \in X \setminus \overline{X}_0$ since $X \setminus \overline{X}_0 \neq \emptyset$. Note that $g(a) = 0$ for $a \in X \setminus \overline{X}_0$ and $\downarrow g \in \bigcap_{n=1}^{\infty} \bigcap_{m=1}^{\infty} (\downarrow C(X) \setminus F_{n,m})$. Let $\downarrow f \in F$ and $a \in X \setminus \overline{X}_0$. Then there exists $\delta > 0$ such that $B(a, \delta) \subset X \setminus \overline{X}_0$. For every $\varepsilon \in (0, \delta)$, choose $\downarrow g \in \bigcap_{n=1}^{\infty} \bigcap_{m=1}^{\infty} (\downarrow C(X) \setminus F_{n,m})$ such that $d_H(\downarrow f, \downarrow g) < \varepsilon$. Then there exists $(x, \lambda) \in \downarrow g$ such that $d((x, \lambda), (a, f(a))) < \varepsilon$. It follows from $\lambda \leq g(x) = 0$ that $f(a) < \varepsilon$. Hence $f(a) = 0$.

Finally, note that $\downarrow C(X) = F \cup \bigcup_{n,m=1}^{\infty} F_{n,m}$. We finish the proof. □

Proof of Theorem 2. It follows from Lemmas 3 and 6. □

Remark. Notice that we in fact proved the stronger statement that $\downarrow C(X)$ is a Z_σ-space if and only if it is not Baire if and only if $\overline{X}_0 \neq X$.

Now we turn to prove Theorem 3. We first give two lemmas.

Lemma 7. Let $F_n \subset \downarrow \text{USC}(X)$ be closed for each $n \in \mathbb{N}$ and $\bigcup_{n=1}^{\infty} F_n \supset \downarrow \text{USC}(X) \setminus \downarrow C(X)$. Then there exists $n_0 \in \mathbb{N}$ such that $\{ f \in C(X) : \downarrow f \in F_{n_0} \}$ has a non-empty interior in $C_u(X)$.

Proof. For convenience, let $F_0 = \emptyset$. For $n \in \mathbb{N}$, put $E_n = \{ f \in C(X) : \downarrow f \in F_n \}$. Assume that $\text{Int} E_n = \emptyset$ in $C_u(X)$ for every $n \in \mathbb{N}$. We shall derive a contradiction.

Pick an arbitrary element $x_\infty \in X \setminus X_0$ and a sequence $(x_n)_{n \in \mathbb{N}}$ in $X \setminus \{ x_\infty \}$ converging to x_∞ and choose a sequence of positive numbers $(\varepsilon_n)_{n \in \mathbb{N}}$ such that $B(x_n, \varepsilon_n) \cap (B(x_m, \varepsilon_m) \cup \{ x_\infty \}) = \emptyset$ for all $n \neq m$.

We shall by induction on n define sequences of continuous functions $(f_n : n \in \mathbb{N})$ and $(g_n : n \in \mathbb{N} \cup \{ 0 \})$, a sequence of positive real numbers $(\delta_n : n \in \mathbb{N})$ and a sequence of integers $1 \leq i(1) < i(2) < \cdots$ such that the following conditions are satisfied:

2913

(a) \(g_0 \equiv 1 \);
(b) \(\delta_0 = \frac{2}{3} \) and \(\delta_n \leq \frac{\delta_n - 1}{2} \);
(c) \(f_n(x_i(n)) = 0 \);
(d) \(f_n|X \times B(x_i(n), \epsilon_i(n)) = g_{n-1}|X \times B(x_i(n), \epsilon_i(n)) \);
(e) \(g_n(x) \geq 1 - \frac{1}{3} \sum_{m=1}^{n} \frac{1}{2^m} \) for \(x \in X \times \bigcup_{m=1}^{n} B(x_i(m), \epsilon_i(m)) \);
(f) \(g_n(x_i(m)) \leq \frac{1}{3} \sum_{i=1}^{n} \frac{1}{2^i} \) for \(m \leq n \);
(g) \(d(g_n, f_n) < \frac{\delta_n - 1}{4} \);
(h) \(d_H(\downarrow f_n, \downarrow g_{n-1}) < \frac{\delta_n - 1}{4} \);
(i) \(\downarrow g_n \notin F_n \);
(j) \(B(\downarrow g_{n-1}, \delta_n) \cap F_{n-1} = \emptyset \),

for \(n \geq 1 \).

Let \(g_0 \equiv 1 \) and \(\delta_0 = \frac{2}{3} \). Then, for every \(n \), there exists \(h_n \in C(X) \) such that \(h_n \leq g_0 \) and

\[
 h_n(x) = \begin{cases}
0 & x = x_n, \\
 g_0(x) & x \in X \setminus B(x_n, \epsilon_n).
\end{cases}
\]

Then \(\downarrow h_n \to \downarrow g_0 \). It follows that there exists \(i(1) \in \mathbb{N} \) such that \(d_H(\downarrow h_{i(1)}, \downarrow g_0) < \frac{\delta_0}{4} \). Let \(f_1 = h_{i(1)} \). Then \(f_1 \notin \text{Int}E_1 \) and hence there exists \(g_1 \in C(X) \) such that \(d(f_1, g_1) < \frac{\delta_0}{4} \) and \(g_1 \notin E_1 \). It is clear that \(f_1, g_1, i(1) \) and \(\delta_0 \) satisfy the above conditions.

Assume that \(f_n, g_n, i(n) \) and \(\delta_n-1 \) have been determined. Since \(F_n \) is closed in \(\downarrow \text{USC}(X) \) and \(\downarrow g_n \notin F_n \) there exists \(\delta_n \in (0, \frac{\delta_n - 1}{4}) \) such that \(B(\downarrow g_n, \delta_n) \cap F_n = \emptyset \). As above, for every \(m > i(n) \), there exists \(k'_m \in C(X) \) such that

\[
 k'_m(x) = \begin{cases}
0 & x = x_m, \\
 g_n(x) & x \in X \setminus B(x_m, \epsilon_m).
\end{cases}
\]

Let \(k_m(x) = \min\{k'_m(x), g_n(x)\} \) for each \(x \in X \). Then \(k_m \in C(X) \) and \(\lim_{m \to \infty} \downarrow k_m = \downarrow g_n \). It follows that there exist \(i(n+1) > i(n) \) and \(f_{n+1} = k_{i(n+1)} \in C(X) \) such that \(d(\downarrow g_n, \downarrow f_{n+1}) < \frac{\delta_n}{4} \).

Then

\[
 f_{n+1}(x) = \begin{cases}
0 & x = x_{i(n+1)}, \\
 g_n(x) & x \in X \setminus B(x_{i(n+1)}, \epsilon_{i(n+1)}).
\end{cases}
\]

By the assumption \(\text{Int}E_{n+1} = \emptyset \) and \(f_{n+1} \notin \text{Int}E_{n+1} \), there exists \(g_{n+1} \in C(X) \) such that \(d(f_{n+1}, g_{n+1}) < \frac{\delta_n}{4} \) and \(g_{n+1} \notin E_{n+1} \). By the definitions of \(\delta_n, E_{n+1}, f_{n+1}, g_{n+1}, (b)(c)(d)(g)(h)(i)(j) \) hold for \(n+1 \). It remains to check (e) and (f). Since \(d(f_{n+1}, g_{n+1}) < \frac{\delta_n}{4} \), \(g_n(x) \geq 1 - \frac{1}{3} \sum_{m=1}^{n} \frac{1}{2^m} \) for every \(x \in X \setminus \bigcup_{m=1}^{n} B(x_i(m), \epsilon_i(m)) \), and

\[
 f_{n+1}|X \setminus B(x_{i(n+1)}, \epsilon_{i(n+1)}) = g_{n+1}|X \setminus B(x_{i(n+1)}, \epsilon_{i(n+1)}),
\]

we have

\[
 g_{n+1}(x) \geq 1 - \frac{1}{3} \sum_{m=1}^{n} \frac{1}{2^m} - \frac{\delta_n}{4} \geq 1 - \frac{1}{3} \sum_{m=1}^{n+1} \frac{1}{2^m}
\]

for every \(x \in X \setminus \bigcup_{m=1}^{n+1} B(x_i(m), \epsilon_i(m)) \). Hence (e) holds. From

\[
 g_{n+1}(x_i(m)) \leq \frac{1}{3} \sum_{i=1}^{n} \frac{1}{2^i}, \quad \text{for } m \leq n,
\]

\[
 f_{n+1}|X \setminus B(x_{i(n+1)}, \epsilon_{i(n+1)}) = g_{n+1}|X \setminus B(x_{i(n+1)}, \epsilon_{i(n+1)}),
\]

we obtain that

\[
 g_{n+1}(x_i(m)) \leq f_{n+1}(x_i(m)) + \frac{\delta_n}{4} = g_n(x_i(m)) + \frac{\delta_n}{4} \leq \frac{1}{3} \sum_{i=1}^{n} \frac{1}{2^i} + \frac{\delta_n}{4} \leq \frac{1}{3} \sum_{i=1}^{n+1} \frac{1}{2^i}.
\]
for every \(m \leq n \), and
\[
\begin{align*}
\varepsilon_{n+1}(x_{i(n+1)}) & \leq \frac{\delta_n}{4} \leq 1 \sum_{i=1}^{n+1} \frac{1}{2^i}.
\end{align*}
\]

Thus (f) holds.

By (g), we have \(d_H(\downarrow g_n, \downarrow f_n) < \frac{\delta_n}{4} \) for every \(n \in \mathbb{N} \). It follows from (h) and (b) that \(d_H(\downarrow g_n, \downarrow g_{n-1}) \leq d_H(\downarrow g_n, \downarrow f_n) + d_H(\downarrow f_n, \downarrow g_{n-1}) \leq \frac{\delta_n}{4} + \frac{\delta_{n-1}}{4} \leq \frac{\delta_n}{2} \) for every \(n \in \mathbb{N} \). Thus, \((\downarrow g_n)_{n \in \mathbb{N}} \)

is a Cauchy sequence in \(\downarrow \text{USC}(X) \) and hence \(\lim_{n \to \infty} \downarrow g_n = G \) exists in \(\downarrow \text{USC}(X) \). We shall show that \(G \in \downarrow \text{USC}(X) \setminus \downarrow C(X) \), but \(G \notin \bigcup_{n=1}^{\infty} F_n \), which contradicts \(\bigcup_{n=1}^{\infty} F_n \supset \downarrow \text{USC}(X) \setminus \downarrow C(X) \).

Let \(G = \downarrow g \), where \(g \in \text{USC}(X) \). To show \(G \in \downarrow \text{USC}(X) \setminus \downarrow C(X) \), it is enough to verify that \(g(x_{i(n)}) \leq \frac{1}{2} \)

for all \(n \) but \(g(x_{\infty}) \geq \frac{2}{3} \). Trivially, \(g(x_{\infty}) \geq \frac{2}{3} \) since \(g(x_{\infty}) \geq \lim_{n \to \infty} g_n(x_{i(n+1)}) \geq \frac{2}{3} \). Fix \(m \in \mathbb{N} \). From (b), (d), (g), we have that \((g_n|B(x_{i(m)}, \varepsilon_{i(m)}))_{n \geq m} \)

is a Cauchy sequence in \((C(B(x_{i(m)}, \varepsilon_{i(m)})), d) \) and hence \(k = \lim_{n \to \infty} g_n|B(x_{i(m)}, \varepsilon_{i(m)}) \) exists in \(C(B(x_{i(m)}, \varepsilon_{i(m)})) \). It follows from (f) that \(k(x_{i(m)}) \leq \frac{1}{4} \). Thus there exist \(\delta \in (0, \varepsilon_{i(m)}) \) and \(N \in \mathbb{N} \) such that \(g_n(x) < \frac{1}{2} \)

for every \(x \in B(x_{i(m)}, \delta) \) and \(n > N \). Hence \(g_n \notin (B(x_{i(m)}, \delta) \times (\frac{1}{2}, 1]^\circ) \)

for \(n > N \). It follows from \(\lim_{n \to \infty} \downarrow g_n = \downarrow g \) that \(\downarrow g \notin (B(x_{i(m)}, \delta) \times (\frac{1}{2}, 1]^\circ) \). We have \(g(x_{i(m)}) \leq \frac{1}{2} \).

For every \(n \in \mathbb{N} \), we consider
\[
\begin{align*}
d(\downarrow g_n, G) \leq d(\downarrow g_n, \downarrow g_{n+1}) + d(\downarrow g_{n+1}, \downarrow g_{n+2}) + \cdots + \frac{\delta_n}{2^n} + \frac{\delta_{n+1}}{2^{n+1}} + \cdots < \sum_{i=1}^{\infty} \frac{1}{2^i} = \delta_n.
\end{align*}
\]

Then by (j), \(G \notin F_n \). It follows that \(G \notin \bigcup_{n=1}^{\infty} F_n \). We are done. \(\square \)

Corollary 2. For every \(G_\delta \)-set \(G \) of \(\downarrow \text{USC}(X) \), if \(G \subset \downarrow C(X) \) then \(\{ f \in C(X) : \downarrow f \in G \} \) is not dense in \(C_a(X) \).

For each \(f \in C(X) \) and each \(a \in (0, \frac{1}{2}) \), if \(1 - a \geq f(x) \geq a \)

for all \(x \in X \) then for every \(\varepsilon \in (0, a] \), let
\[
[f - \varepsilon, f + \varepsilon] = \{ \downarrow g \in \downarrow \text{USC}(X) : \| f(x) - g(x) \| \leq \varepsilon \text{ for all } x \in X \}.
\]

Lemma 8. For each \(f \in C(X) \) and each \(a \in (0, \frac{1}{2}) \), if \(1 - a \geq f(x) \geq a \)

for all \(x \in X \) then for every \(\varepsilon \in (0, a] \), there exists a bijection \(\Phi : [f - \varepsilon, f + \varepsilon] \to \downarrow \text{USC}(X) \) such that \(\Phi \) is an order-preserving pair-homeomorphism from \(([f - \varepsilon, f + \varepsilon], \downarrow C(X) \cap [f - \varepsilon, f + \varepsilon]) \)

onto \((\downarrow \text{USC}(X), \downarrow C(X)) \).

Proof. Let \(Y = \{ (x, t) : x \in X, f(x) - \varepsilon \leq t \leq f(x) + \varepsilon \} \) and define \(\varphi : Y \to X \times I \) as follows
\[
\varphi(x, t) = \left(x, \frac{1}{2 \varepsilon} (t - f(x) + \varepsilon) \right),
\]

for \((x, t) \in Y \). It is trivial to verify that \(\varphi \) is a continuous bijection and hence a homeomorphism by the compactness of \(Y \). Moreover, obviously, for every \((x, t_1), (x, t_2) \in Y \), if \(t_1 \leq t_2 \), then \(\varphi(x, t_1) \leq \varphi(x, t_2) \).

Define \(\Phi : [f - \varepsilon, f + \varepsilon] \to \downarrow \text{USC}(X) \) by,
\[
\Phi(\downarrow g) = \{ \varphi(x, t) \in X \times I : (x, t) \in \downarrow g \cap Y \},
\]

for every \(\downarrow g \in [f - \varepsilon, f + \varepsilon] \). Then \(\Phi(\downarrow g) \in \downarrow \text{USC}(X) \). It is easy to see that \(d_H(\Phi(\downarrow g_1), \Phi(\downarrow g_2)) \leq \frac{1}{2} d_H(\downarrow g_1, \downarrow g_2) \)

for \(\downarrow g_1, \downarrow g_2 \in [f - \varepsilon, f + \varepsilon] \). Then \(\Phi \) is a homeomorphism since \(\varphi \) is. Moreover, for every \(\downarrow g \in \downarrow \text{USC}(X) \cap [f - \varepsilon, f + \varepsilon] \), obviously, \(\varphi(\downarrow g) \in \downarrow C(X) \) if and only if \(g \in C(X) \). Hence \(\Phi : ([f - \varepsilon, f + \varepsilon], \downarrow C(X) \cap [f - \varepsilon, f + \varepsilon]) \to (\downarrow \text{USC}(X), \downarrow C(X)) \)

is a pair-homeomorphism. At last, it follows from the definition of \(\Psi \) that, for all \(\downarrow g_1, \downarrow g_2 \in [f - \varepsilon, f + \varepsilon], \downarrow g_1 \subset \downarrow g_2 \) implies that \(\Phi(\downarrow g_1) \subset \Phi(\downarrow g_1), \) that is, \(\Phi \) is order-preserving. We complete the proof. \(\square \)

Now we give a proof of Theorem 3. It is similar to the corresponding result in [7] (cf. [15, Theorem 6.3.8]).

Proof of Theorem 3. Otherwise, put \(\downarrow C(X) = \bigcup_{n=1}^{\infty} G_n \), where \(G_n \) is a \(G_\delta \)-set in \(\downarrow \text{USC}(X) \) and \(G_1 = \emptyset \). We shall derive a contradiction.
For $n \in \mathbb{N}$, let $E_n = \{ f \in C(X) : \downarrow f \in G_n \}$. We shall by induction on n define a sequence of \{ $f_n : n \in \mathbb{N}$ \} in $C(X)$ and a decreasing sequence of positive real numbers \{ $\epsilon_n : n \in \mathbb{N}$ \} such that

(a) $f_1 \equiv \frac{1}{2}$ and $\epsilon_1 = \frac{1}{2}$;
(b) $\epsilon_{n+1} < \frac{\epsilon_n}{2}$;
(c) $[f_{n+1} - \epsilon_{n+1}, f_{n+1} + \epsilon_{n+1}] \subset [f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4}]$; and
(d) $B(f_n, \epsilon_n) \cap E_n = \emptyset$,

for every $n \in \mathbb{N}$. Assume that f_i and ϵ_i have been determined for $i \leq n$. By Lemma 8 we obtain that

$$(\left[f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4} \right] \cup C(X) \cap \left[f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4} \right]) \approx \left(\downarrow \text{USC}(X), \downarrow C(X) \right).$$

And since

$$G_{n+1} \cap \left[f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4} \right] \subset \downarrow C(X) \cap \left[f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4} \right]$$

and $G_{n+1} \cap \left[f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4} \right]$ is a G_δ-set in $\left[f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4} \right]$, it follows from Corollary 2 that $\{ f \in C(X) : \downarrow f \in G_{n+1} \cap \left[f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4} \right] \}$ is not dense in $\{ f \in C(X) : \downarrow f \in [f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4}] \}$, that is, there exist f_{n+1} and $\epsilon_{n+1} \in (0, \frac{\epsilon_n}{4})$ such that

(1) $\downarrow f_{n+1} + \left[f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4} \right] \cap \downarrow C(X);
(2) $[f_{n+1} - \epsilon_{n+1}, f_{n+1} + \epsilon_{n+1}] \subset [f_n - \frac{\epsilon_n}{4}, f_n + \frac{\epsilon_n}{4}]$;
(3) $B(f_{n+1}, \epsilon_{n+1}) \cap E_{n+1} = \emptyset$.

Thus f_{n+1} and ϵ_{n+1} satisfy the above conditions. We completed the inductive definition.

It follows from (b) and (c) that the sequence $(f_n)_n$ converges uniformly to a continuous function $f : X \to I$. For $x \in X$, $n \in \mathbb{N}$, we have

$$|f_n(x) - f(x)| \leq |f_n(x) - f_{n+1}(x)| + |f_{n+1}(x) - f_{n+2}(x)| + \cdots$$
$$\leq \frac{1}{2}(\epsilon_n + \epsilon_{n+1} + \cdots)$$
$$= \frac{\epsilon_n}{2} + \frac{1}{2}(\epsilon_{n+1} + \epsilon_{n+2} + \cdots)$$
$$\leq \frac{\epsilon_n}{2} + \sum_{j=1}^{\infty} \frac{1}{2^j} \epsilon_{n+1},$$

which implies that

$$\sup |f_n(x) - f(x)| \leq \frac{\epsilon_n}{2} + \epsilon_{n+1} < \epsilon_n$$

for $n \in \mathbb{N}$. By (d) we have

$$f \in \bigcap_{n=1}^{\infty} B(f_n, \epsilon_n) \subset C(X) \setminus \bigcup_{n=1}^{\infty} E_n = \emptyset,$$

which is impossible. The proof is finished. \qed

Proof of Corollary 1. The well-known Kadec–Anderson Theorem states that when X is an infinite compactum the space $C_u(X, R) \approx R^\omega \approx I^2$, where $C_u(X, R)$ is the set $C(X, R)$ consisting of all continuous maps from X to R endowed with the uniform convergence topology $\{12,1\}$. As its closed subspace, $C_u(X)$ is topologically complete. The Dobrowolski–Marciszewski–Mogilski Theorem proved that $C_p(X) \approx c_0$ if X is a non-discrete countable metrizable space [9] (cf. [15, Theorem 6.12.15]). Moreover, $C_p(X)$ is not metrizable if X is not countable. As a conclusion, if X is countable, then we have that $C_u(X)$ is topologically complete, $\downarrow C(X)$ is Baire but not topologically complete by Theorems 2 and 3, and $C_p(X) \approx c_0$ is not Baire; if X is not countable, then we have that $C_u(X)$ is topologically complete, $\downarrow C(X)$ is metrizable but not topologically complete, and $C_p(X)$ is not metrizable. \qed
4. Proof of Theorem 1

Let X be an infinite locally connected compactum. Then $X = \bigoplus_{i=1}^{n} X_i$ for a finite family of $\{X_i: i = 1, 2, \ldots, n\}$ of Peano continua and there exists at least one X_i which is non-degenerate. Note that $(Q \times Q, c_0 \times c_0) \approx (Q, c_0)$ and $(I \times Q, I \times c_0) \approx (Q, c_0)$. If we may prove Theorem 1 holds for all non-degenerate Peano continua, then $(\downarrow \text{USC}(X), \downarrow C(X)) \approx (\prod_{i=1}^{n} \text{USC}(X_i), \prod_{i=1}^{n} \downarrow C(X_i)) \approx (Q, c_0)$. This shows that Theorem 1 holds for all infinite locally connected compacta. For every Peano continuum X, there exists an admissible convex metric d (see [5,16]), whence each two points $x, x' \in X$ can be joined by an arc in X isometric to the segment $[0, d(x, x')]$ in \mathbb{R}. Therefore, in the remainder of this section, we assume that X is a non-degenerate Peano continuum with an admissible convex metric d. In [20], we proved the following three lemmas.

Lemma 9. $\downarrow \text{USC}(X) \approx Q$.

Lemma 10. $\downarrow C(X)$ is homotopy dense in $\downarrow \text{USC}(X)$.

Lemma 11. $\downarrow C(X)$ is a $F_{\sigma\delta}$-set in $\downarrow \text{USC}(X)$. Therefore, $\downarrow C(X)$ belongs to $\mathcal{F}_{\sigma\delta}$.

We need two corollaries of them.

Corollary 3. $\downarrow C(X)$ is an AR.

Proof. As well known [17], if Y is a homotopy dense subspace in X then Y is an ANR(AR) if and only if X is. It follows directly from Lemmas 9 and 10 that $\downarrow C(X)$ is an AR. \hfill \Box

Corollary 4. There exists a homotopy $H : \downarrow \text{USC}(X) \times I \to \downarrow \text{USC}(X)$ such that $H_0 = \text{id}_{\downarrow \text{USC}(X)}$, $H_t(\downarrow \text{USC}(X)) \subset \downarrow C(X)$ for each $t > 0$ and $d_H(H(\downarrow f, t), \downarrow f) \leq t$ for each $f \in \text{USC}(X)$ and each $t \in I$.

Proof. It is a combination of [15, Proposition 4.1.7] and Lemma 10. \hfill \Box

Lemma 12. $\downarrow C(X)$ is contained in a Z_{σ}-set of $\downarrow \text{USC}(X)$.

Proof. It follows directly from Lemma 6 and Corollary 4. \hfill \Box

To show that $\downarrow C(X)$ is $\mathcal{F}_{\sigma\delta}$-universal in $\downarrow \text{USC}(X)$, we need some technical lemmas. Let us recall $c_1 = \{(x_n) \in Q_0 : \lim_{n \to \infty} x_n = 1\}$ and c_1 is strongly $\mathcal{F}_{\sigma\delta}$-universal in Q_0.

Lemma 13. For every $x = (x_n) \in Q_0$, define a map $\varphi(x)$ from I to I whose graph is the broken line through points $(1, 1), \left(\frac{1}{2}, 0\right), \left(\frac{1}{2^2}, x_1\right), \left(\frac{1}{2^3}, x_2\right), \ldots, \left(1, x'_0\right)$. Then $\varphi(x) \in \text{USC}(I)$, and $\varphi(x) \in C(I)$ if and only if $x \in c_1$. Moreover, $\downarrow \varphi : Q_0 \to \downarrow \text{USC}(I)$ is an embedding, and for each $a \in (0, 1]$,

$$|\varphi(x)(t) - \varphi(x')(t)| \leq \max\{|x_n - x'_n| : n \leq -\log_2 a + 1\},$$

for all $x, x' \in Q_0$ and all $t \in [a, 1]$.

Proof. The proof is trivial. \hfill \Box

Now we fix a point $x_0 \in X$. Without loss of generality, we may assume that $\sup\{d(x, x_0) : x \in X\} = 1$.

Lemma 14. The map $M : \downarrow C(X) \times (0, 1) \to I$ defined by

$$M(\downarrow f, t) = \max\{f(x) : d(x, x_0) \leq t\}$$

is continuous.
Lemma 13. By Lemma 2, there exists an embedding \(\phi \) such that \(\phi : X \rightarrow M(\downarrow f_k, t_k) \). Then \(\lim_{k \rightarrow \infty} M(\downarrow f_k, t_k) = \lim_{k \rightarrow \infty} \phi(x_k) \leq f(x) \) and \(x_k \rightarrow x \) for some \(x \in X \) and some subsequence \((x_k) \) of \((x) \), since \(\downarrow f_k \rightarrow \downarrow f \) and \(X \) is compact. It follows from \(t_k \rightarrow t \) that \(d(x, x_0) \leq t \). Thus \(\lim_{k \rightarrow \infty} M(\downarrow f_k, t_k) \leq M(\downarrow f, t) \).

Fact 2. For every \(\varepsilon > 0 \), there exists \(K \in \mathbb{N} \) such that \(M(\downarrow f_k, t_k) \geq M(\downarrow f, t) - \varepsilon \) for \(k > K \).

In fact, choose \(x \in X \) such that \(d(x, x_0) \leq t \) and \(f(x) = M(\downarrow f, t) \). In the case that \(d(x, x_0) < t \), from \(\downarrow f_k \rightarrow \downarrow f \) it follows that there exist \(x_k \in X \) and \(s_k \leq f(x_k) \) such that \(\lim_{k \rightarrow \infty} (x_k, s_k) = (x, f(x)) \). Then \(d(x_k, x_0) \leq t \) for large enough \(k \). Thus, there exists \(K \in \mathbb{N} \) such that \(M(\downarrow f_k, t_k) \geq f(x_k) \geq s_k \geq f(x) - \varepsilon = M(\downarrow f, t) - \varepsilon \) for \(k > K \). In the case that \(d(x, x_0) = t \), from the continuity of \(f \) and the convexity of \(d \) it follows that there exists \(y \in B(x_0, t) \) such that \(f(y) \geq f(x) - \frac{\varepsilon}{t} \). By the above case, there exist \(x_k \in X \) and \(s_k \leq f(x_k) \) such that \(\lim_{k \rightarrow \infty} (x_k, s_k) = (y, f(y)) \). Thus there exists \(K \in \mathbb{N} \) such that \(M(\downarrow f_k, t_k) \geq f(y) - \frac{\varepsilon}{t} \geq f(x) - \varepsilon = M(\downarrow f, t) - \varepsilon \) for \(k > K \).}

Remark. It is not hard to give examples to show that neither \(M : \downarrow \text{USC}(X) \times (0, 1] \rightarrow I \) nor \(M : \downarrow \text{C}(X) \times I \rightarrow I \) is necessarily continuous when we define \(M \) by using the formula in the above lemma.

Now we are in a position to show our key lemma in the section.

Lemma 15. \(\downarrow \text{C}(X) \) is strongly \(\mathcal{F}_{\alpha \delta} \)-universal in \(\downarrow \text{USC}(X) \approx Q \).

Proof. Let \(C \) and \(K \) be a \(\mathcal{F}_{\alpha \delta} \)-subset and a compact set of a compactum \(Y \), respectively. Let \(\Phi : Y \rightarrow \text{USC}(X) \) be a map such that \(\downarrow \Phi : Y \rightarrow \downarrow \text{USC}(X) \) is continuous and \(\downarrow \Phi|K : K \rightarrow \downarrow \text{USC}(X) \) is a \(Z \)-embedding. By [4, Lemma 1.1] and Corollary 3, without loss of generality, we may assume that \(\downarrow \Phi(K) \cap \downarrow \Phi(Y \setminus K) = \emptyset \). For every \(\varepsilon \in (0, 1) \), let \(\delta : Y \rightarrow [0, 1) \) be a map defined by

\[
d(\Phi(y), \Phi(K)) \leq \frac{1}{4} \min\{\varepsilon, d(\Phi(y), \Phi(K))\}.
\]

Then \(\delta \) is continuous and \(\delta(y) = 0 \) if and only if \(y \in K \).

Let \(M : \downarrow \text{C}(X) \times (0, 1] \rightarrow I \) be the map defined in the above lemma and \(H : \downarrow \text{USC}(X) \times I \rightarrow \downarrow \text{USC}(X) \) be a continuous map satisfying the conditions in Corollary 4. For \(y \in Y \setminus K \), let

\[
k(y) = H(\downarrow \Phi(y), \delta(y)), \quad \text{and} \quad m(y) = M(k(y), \delta(y)).
\]

Then \(k : Y \setminus K \rightarrow \downarrow \text{C}(X) \) and \(m : Y \setminus K \rightarrow I \) are continuous. Suppose \(\varphi : Q \rightarrow \text{USC}(I) \) is the map defined in Lemma 13. By Lemma 2, there exists an embedding \(j : Y \rightarrow Q_u \) such that \(j^{-1}(c_1) = C \). Let \(\phi = \varphi \circ j \). Then \(\phi^{-1}(C(k)) = C \) and \(\downarrow \phi : Y \rightarrow \downarrow \text{USC}(I) \) is an embedding. Now we define a map \(\Psi : Y \rightarrow \text{USC}(X) \) as follows: for \(y \in K \), let \(\Psi(y) = \Phi(y) \) and for \(y \in Y \setminus K \), let

\[
\Psi(y)(x) = \begin{cases}
\frac{k(y)(x)}{2(\delta(y) - d(x,x_0) - \delta(y))} m(y) + \frac{d(x,x_0) - 2\delta(y)}{2\delta(y)} k(y)(x), & d(x,x_0) \geq \delta(y), \\
3\delta(y) - 6d(x,x_0) + \frac{6d(x,x_0) - 2\delta(y)}{2\delta(y)} m(y), & \frac{\delta(y)}{2} \leq d(x,x_0) \leq \delta(y), \\
\delta(y)(x) / \frac{2\delta(y)}{\delta(y)}, & 0 \leq d(x,x_0) \leq \frac{\delta(y)}{2}.
\end{cases}
\]

To complete the proof of the lemma, we need the following facts:

Fact 1. \(\Psi(y) \) is well-defined and belongs to \(\text{USC}(X) \) for each \(y \in Y \), and \(\Psi(y) \) is continuous in the set \(X \setminus \{x_0\} \) for each \(y \in Y \setminus K \). This is trivial.
Fact 2. $\downarrow \Psi : Y \to \downarrow \text{USC}(X)$ is continuous\(^2\) at every point $y \in Y$. In the case that $y \in K$, it follows from the following Fact 3. Here we only consider the case that $y \in Y \setminus K$.

Claim A. For every $x \in X$ and every $\gamma > 0$, there exists $\beta > 0$ such that
\[\downarrow \Psi (c) \cap B((x, \Psi (y)(x)), \gamma) \neq \emptyset \] (1)
for each $c \in B(y, \beta)$.

We consider the following cases:

Case a: $d(x, x_0) > \delta(y)$. Then $\Psi (y)(x) = k(y)(x)$. By the continuity of δ, there exists $\beta_1 > 0$ such that $d(x, x_0) > \delta(c) > 0$ for each $c \in B(y, \beta_1)$. Thus, $\Psi (c)(x) = k(c)(x)$ for $c \in B(y, \beta_1)$. Since $\downarrow \Psi : Y \setminus K \to \downarrow \text{USC}(X)$ is continuous and $\downarrow k(y) \cap B((x, k(y)(x)), \gamma) \neq \emptyset$, there exists $\beta \in (0, \beta_1)$ such that $\downarrow k(c) \cap B((x, k(c)(x)), \gamma) \neq \emptyset$ for all $c \in B(y, \beta)$. Hence, (1) holds.

Case b: $\frac{\delta(y)}{2} < d(x, x_0) < \delta(y)$. As the same as in case a, there exists $\beta_1 > 0$ such that $\frac{\delta(c)}{2} < d(x, x_0) < \delta(c)$ for all $c \in B(y, \beta_1)$. Trivially, there exists $\alpha > 0$ such that, for all real numbers a, b, c, d, if $|d(x, x_0) - a| < \alpha$, $|\delta(y) - b| < \alpha$, $|k(y)(x) - c| < \alpha$ and $|m(y) - d| < \alpha$ then
\[\frac{2(b - a)}{b} d + \frac{2a - b}{b} c - \Psi (y)(x) < \gamma. \]

Since $m : Y \setminus K \to I$ and $\delta : Y \setminus K \to (0, 1)$ are continuous, there exists $\beta_2 \in (0, \beta_1)$ such that $|m(y) - m(c)| < \alpha$ and $|\delta(y) - \delta(c)| < \alpha$ if $d(y, c) < \beta_2$. Since $\downarrow \Psi : Y \setminus K \to \downarrow \text{C}(X)$ is continuous, there exists $\beta \in (0, \beta_2)$ such that, for all $c \in B(y, \beta)$, there exist $x(c) \in X$ and $s(c) \leq k(c)(x(c))$ satisfying:

(a) $\frac{\delta(c)}{2} < d(x(c), x_0) < \delta(c)$;
(b) $d(x(c), x) < \gamma$;
(c) $|s(c) - k(y)(x)| < \alpha$;
(d) $|d(x(c), x_0) - d(x, x_0)| < \alpha$.

Let
\[t(c) = \frac{2(\delta(c) - d(x(c), x_0))}{\delta(c)} m(c) + \frac{2d(x(c), x_0) - \delta(c)}{\delta(c)} s(c). \]

Then $t(c) \leq \Psi (c)(x(c))$ and $|t(c) - \Psi (y)(x)| < \gamma$. Thus $(x(c), t(c)) \in \downarrow \Psi (c) \cap B((x, \Psi (y)(x)), \gamma)$ for all $c \in B(y, \beta)$. We have that (1) holds.

Case c: $\frac{\delta(y)}{3} < d(x, x_0) < \frac{\delta(y)}{2}$. As the same as the above cases, there exists $\beta_1 > 0$ such that $\frac{\delta(c)}{3} < d(x, x_0) < \frac{\delta(c)}{2}$ for all $c \in B(y, \beta_1)$. By the continuity of δ and m, there exists $\beta \in (0, \beta_1)$ such that $|\Psi (y)(x) - \Psi (c)(x)| < \gamma$ for each $c \in B(y, \beta)$. Thus (1) holds for $c \in B(y, \beta)$.

Case d: $0 < d(x, x_0) < \frac{\delta(y)}{3}$. Choose $\beta_1 > 0$ such that $d(x, x_0) < \frac{\delta(c)}{3}$ and $\delta(c) \leq \frac{2}{3} \delta(y)$ for all $c \in B(y, \beta_1)$. Then
\[\left| \Psi (c)(x) - \Psi (y)(x) \right| = \left| \delta(c) \phi(c) \left(\frac{3d(x, x_0)}{\delta(c)} \right) - \delta(y) \phi(y) \left(\frac{3d(x, x_0)}{\delta(y)} \right) \right| \leq \left| \delta(c) - \delta(y) \right| + \left| \phi(c) \left(\frac{3d(x, x_0)}{\delta(c)} \right) - \phi(y) \left(\frac{3d(x, x_0)}{\delta(y)} \right) \right| \leq \left| \delta(c) - \delta(y) \right| + \left| \phi(c) \left(\frac{3d(x, x_0)}{\delta(c)} \right) - \phi(y) \left(\frac{3d(x, x_0)}{\delta(c)} \right) \right| + \left| \phi(y) \left(\frac{3d(x, x_0)}{\delta(c)} \right) - \phi(y) \left(\frac{3d(x, x_0)}{\delta(y)} \right) \right|. \]

Let $a = \frac{3d(x, x_0)}{\delta(y)}$. Choose $\beta \in (0, \beta_1)$ such that $|\delta(c) - \delta(y)| < \frac{1}{3} \gamma$, $|\phi(y) - \frac{3d(x, x_0)}{\delta(c)}| < \frac{1}{3} \gamma$ and $|j(c)n - j(y)n| < \frac{1}{3} \gamma$ for all $n \leq -\log_2 a + 1$ and $c \in B(y, \beta)$. By Lemma 13, we have

\(^2\) More careful verification of the continuity of $\downarrow \Psi$ is needed when we note that the map $\downarrow \tau : \downarrow \text{C}(\mathbb{I}) \times \downarrow \text{C}(\mathbb{I}) \to \downarrow \text{C}(\mathbb{I})$ defined by $\tau(f, g) = \frac{1}{2} f + \frac{1}{2} g$ is not continuous. In fact, let $f_n = \frac{1}{2}(1 + \sin nx)$ and $g_n = 1 - f_n$, then $\lim_{n \to \infty} f_n = \lim_{n \to \infty} g_n = 1$ but $\lim_{n \to \infty} \downarrow (\frac{1}{2} f_n + \frac{1}{2} g_n) = \downarrow \frac{1}{2}. $
\[\phi(c) \left(\frac{3d(x, x_0)}{\delta(c)} \right) - \phi(y) \left(\frac{3d(x, x_0)}{\delta(c)} \right) = \varphi(j(c)) \left(\frac{3d(x, x_0)}{\delta(c)} \right) - \varphi(j(y)) \left(\frac{3d(x, x_0)}{\delta(c)} \right) \leq \max \{|j(c)_n - j(y)_n|; n \leq -\log_2 a + 1\} \leq \frac{1}{3} \gamma, \]

since \(\frac{3d(x, x_0)}{\delta(c)} \geq a \) when \(c \in B(y, \beta) \). It follows that (1) holds for \(c \in B(y, \beta) \).

Case c: \(x = x_0 \). Then \(\Psi(y)(x) = \delta(y) \). It follows from the continuity of \(\delta \) that there exists \(\beta > 0 \) such that \(|\delta(c) - \delta(y)| < \gamma \) for all \(c \in B(y, \beta) \). Then \((x, \Psi(c)(x)) \in B((x, \Psi(y)(x), \gamma) \).

Thus, for every \(x \in A \), we have \((x, \Psi(y)(x), \gamma) \) such that \(\delta(c) \neq 0 \) implies that \(\Psi(y) \) is continuous in the set \(X \setminus \{x_0\} \). Since \(d \) is a convex metric, \(A \) is a nowhere dense closed set of \(X \). Moreover, \(\delta(y) > 0 \) implies that \(\Psi(y) \) is continuous in the set \(X \setminus \{x_0\} \). Thus, for every \(x \in A \) and every \(y \in X \), there exist \(x' \in X \setminus (A \cup \{x_0\}) \) and \(y' > 0 \) such that \(B((x', \Psi(y)(x')), \gamma') \subset B((x, \Psi(y)(x)), \gamma) \). By Cases (a)-(d), there exists \(\beta > 0 \) such that \(\cup \Psi(c) \cap B((x', \Psi(y)(x')), \gamma') \neq \emptyset \) for all \(c \in B(y, \beta) \). It follows that (1) holds for every \(c \in B(y, \beta) \).

Claim B. For each convergent sequence \((y_k) \) in \(Y \setminus K \) with the limit \(y \in Y \setminus K \) and each convergent sequence \((x_k, t_k) \) in \(X \times I \) such that \(t_k \leq \Psi(y_k)(x_k) \) and \(\lim_{k \to \infty} (x_k, t_k) = (x, t) \), we have \(t \leq \Psi(y)(x) \).

Case a: \(d(x_k, x_0) \geq \delta(y_k) \) and \(d(x_k, x_0) \geq \delta(y_k) \) for each \(k \). Then \(\Psi(y_k)(x_k) = k(y_k)(x_k) \) and \(\Psi(y_k)(x_k) = k(y_k)(x_k) \) for all \(k \). It follows from the continuity of \(\delta \) and \((x_k, t_k) \in \downarrow \Psi(y_k) \) that \((x_k, t_k) \in \downarrow \Psi(y_k) \). Hence \((x, t) \in \downarrow \Psi(y_k) \) implies that \(t \leq \delta(k(y_k)(x_k)) = \Psi(y_k)(x_k) \).

Case b: \(\frac{\delta(y_k)}{2} \leq d(x_k, x_0) \leq \delta(y_k) \) and \(\frac{\delta(y_k)}{2} \leq d(x_k, x_0) \leq \delta(y_k) \) for all \(k \). Then
\[\Psi(y)(x) = \frac{2\delta(y) - 2d(x, x_0)}{\delta(y)} m(y) + \frac{2d(x, x_0) - \delta(y)}{\delta(y)} k(y)(x) \]
and
\[\Psi(y_k)(x_k) = \frac{2\delta(y_k) - 2d(x_k, x_0)}{\delta(y_k)} m(y_k) + \frac{2d(x_k, x_0) - \delta(y_k)}{\delta(y_k)} k(y_k)(x_k). \]

Since \(\frac{2d(x_k, x_0) - \delta(y_k)}{\delta(y_k)} > 0 \) and \(t_k \leq \Psi(y_k)(x_k) \) for all \(k \), there exist \(s_k \leq k(y_k)(x_k) \) such that
\[t_k = \frac{2\delta(y_k) - 2d(x_k, x_0)}{\delta(y_k)} m(y_k) + \frac{2d(x_k, x_0) - \delta(y_k)}{\delta(y_k)} s_k \]
for all \(k \). By the compactness of \(I \), we assume that \(\lim_{k \to \infty} (x_k, s_k) = (x, s) \) exists. It follows from the continuity of \(\downarrow \Psi: Y \setminus K \to \downarrow C(X) \) that \(s \leq k(y)(x) \). Thus we have
\[t = \lim_{k \to \infty} t_k \leq \Psi(y)(x). \]

Case c: \(\frac{\delta(y)}{2} \leq d(x, x_0) \leq \frac{\delta(y)}{2} \) and \(\frac{\delta(y_k)}{2} \leq d(x_k, x_0) \leq \frac{\delta(y_k)}{2} \) for each \(k \). Then
\[\Psi(y)(x) = 3\delta(y) - 6d(x, x_0) + \frac{6d(x, x_0) - 2\delta(y)}{\delta(y)} m(y) \]
and
\[\Psi(y_k)(x_k) = 3\delta(y_k) - 6d(x_k, x_0) + \frac{6d(x_k, x_0) - 2\delta(y_k)}{\delta(y_k)} m(y_k). \]

Note that
\[(y, x) \mapsto 3\delta(y) - 6d(x, x_0) + \frac{6d(x, x_0) - 2\delta(y)}{\delta(y)} m(y) \]
is continuous map from \((Y \setminus K) \times X \) to \(I \). It follows that \(t = \lim_{k \to \infty} t_k \leq \Psi(y)(x). \)

Case d: \(0 < d(x, x_0) \leq \frac{\delta(y)}{2} \) and \(0 < d(x_k, x_0) \leq \frac{\delta(y_k)}{2} \) for all \(k \). Then
\[\Psi(y)(x) = \delta(y) \phi(y) \left(\frac{3d(x, x_0)}{\delta(y)} \right) \quad \text{and} \quad \Psi(y_k)(x_k) = \delta(y_k) \phi(y_k) \left(\frac{3d(x_k, x_0)}{\delta(y_k)} \right). \]
Note $| \Psi (y_k)(x_k) - \Psi (y)(x)| \leq | \Psi (y_k)(x_k) - \Psi (y)(x_k)| + | \Psi (y)(x_k) - \Psi (y)(x)|$. Since $\frac{3d(x,x_0)}{\delta(y)} > 0$, we have that there exists $a > 0$ such that $\frac{3d(x,x_0)}{\delta(y_k)} \geq a$ for large enough k. Using the same method as in Proof of case d in Claim A, we may show that $\lim_{k \to \infty} | \Psi (y_k)(x_k) - \Psi (y)(x)| = 0$. Since $\Psi (y)$ is continuous at x, $\lim_{k \to \infty} | \Psi (y_k)(x_k) - \Psi (y)(x)| = 0$. Thus, we have $\lim_{k \to \infty} | \Psi (y_k)(x_k) - \Psi (y)(x)| = 0$, that is, $\lim_{k \to \infty} \Psi (y_k)(x_k) = \Psi (y)(x)$. It follows that $t = \lim_{k \to \infty} k \leq \lim_{k \to \infty} \Psi (y_k)(x_k) = \Psi (y)(x)$.

Case e: $x = x_0$. Since $\delta(y) > 0$ we may without loss of generality assume that $0 \leq d(x_k, x_0) < \frac{\delta(y)}{3}$. Then $t_k \leq \Psi (y_k)(x_k) \leq \delta(y)$. Thus $t \leq \delta(y) = \Psi (y)(x_0)$.

Case f: Otherwise, there exists a subsequence (k_i) of (k) such that x, y, and the sequences $(x_{k_i}), (y_{k_i})$ satisfy the conditions of one of the above cases. Thus, we have that $t \leq \Psi (y)(x)$ holds.

Now we show that $\downarrow \Psi : Y \setminus K \to \downarrow \text{USC}(X)$ is continuous. To this end, it suffices to verify that $(\downarrow \Psi |(Y \setminus K))^{-1}(U^-)$ and $(\downarrow \Psi |(Y \setminus K))^{-1}(U^+)$ are open in Y for all open sets U in $X \times I$. Suppose that U is an open set of $X \times I$.

For every $y \in (\downarrow \Psi |(Y \setminus K))^{-1}(U^-)$, we have $\downarrow \Psi (y) \cap U \neq \emptyset$. Then there exist $(x, t) \in X \times I$ and $\gamma > 0$ such that $(x, t) \in \downarrow \Psi (y) \cap U$ and $B((x, t), \gamma) \subset U$. By Claim A, there exists $\beta > 0$ such that $\downarrow \Psi (c) \cap B((x, \Psi (y)(x)), \gamma) \neq \emptyset$ for all $c \in B(y, \beta)$. It is easy to verify that $\downarrow \Psi (c) \cap U \neq \emptyset$ if $c \in B(y, \beta)$, that is, $c \in \downarrow \Psi |(Y \setminus K))^{-1}(U^-)$. Hence, $(\downarrow \Psi |(Y \setminus K))^{-1}(U^-)$ is open.

If $(\downarrow \Psi |(Y \setminus K))^{-1}(U^+)$ is not open in $Y \setminus K$, then there exists $y \in (\downarrow \Psi |(Y \setminus K))^{-1}(U^+)$ and a sequence (y_k) in $Y \setminus K$ such that $\lim_{k \to \infty} y_k = y$ but no k satisfies $y_k \in (\downarrow \Psi |(Y \setminus K))^{-1}(U^+)$. Thus, $\downarrow \Psi (y) \subseteq U$ but $\downarrow \Psi (y_k) \not\subseteq U$. For every k, choose $(x_k, t_k) \in \downarrow \Psi (y_k) \cap U$. Then $t_k \leq \Psi (y_k)(x_k)$ for each k. Without loss of generality, we assume that $\lim_{k \to \infty} (x_k, t_k) = (x, t)$ exists. Then $(x, t) \in U$. But, by Claim B, we have $t \leq \Psi (y)(x)$, that is, $(x, t) \in \downarrow \Psi (y)$. A contradiction occurs.

Fact 3. $d_H(\downarrow \Psi (y), \downarrow \Phi (y)) \leq 3\delta(y)$ for each $y \in Y$. Therefore, $d_H(\downarrow \Psi, \downarrow \Phi) < \varepsilon$ and $\Phi (Y \setminus K) \cap \Psi (K) = \Psi (Y \setminus K) \cap \Phi (K) = \emptyset$.

Note that $m(y) = M(\downarrow k(y), \delta(y))$ for every $y \in Y \setminus K$. Thus,

$$k(y)(x) \leq m(y) = \max \{ k(y)(z): d(z, x_0) \leq \delta(y) \}$$

for every point $x \in X$ with $d(x, x_0) \leq \delta(y)$. Hence there exists $x_1 \in X$ such that $d(x_0, x_1) \leq \delta(y)$ and $k(y)(x_1) = m(y)$. Let $A = \downarrow k(y) \cap ((X \setminus B(x_0, \delta(y))) \times I)$. Then

$$A \cup \{ x_1 \times [0, m(y)] \} \subset \downarrow k(y) \subset A \cup \left(B(x_0, \delta(y)) \times [0, m(y)] \right).$$

(2)

From $\{ x \in X: d(x, x_0) = \frac{\delta(y)}{3} \neq \emptyset$ and the definition of $\Psi (y)(x)$, it follows that $\Psi (y)(x_2) = m(y)$ for some $x_2 \in X$ with $d(x_0, x_2) = \frac{\delta(y)}{3}$. Hence

$$m(y) \leq \max \{ \Psi (y)(x): d(x, x_0) \leq \delta(y) \}.$$

On the other hand, $\Psi (y)(x)$ is a weighted average value of either $k(y)(x)$ and $m(y)$ or $m(y)$ and $\delta(y)$ if $\frac{\delta(y)}{3} \leq d(x, x_0) \leq \delta(y)$. And $\Psi (y)(x) \leq \delta(y)$ if $d(x, x_0) \leq \frac{\delta(y)}{3}$. It follows that

$$\max \{ \Psi (y)(x): d(x, x_0) \leq \delta(y) \} \leq \max \{ \delta(y), m(y) \}.$$

Since $\Psi (y)(x) = k(y)(x)$ for all $x \in X$ with $d(x, x_0) \geq \delta(y)$, we have that

$$A \cup \{ x_2 \times [0, \max \{ \delta(y), m(y) \}] \} \subset \downarrow \Psi (y) \subset A \cup \left(B(x_0, \delta(y)) \times [0, \max \{ \delta(y), m(y) \}] \right).$$

(3)

It is not hard to check that $d_H(B, C) \leq 2\delta(y)$ for every pair of B and C in the family which consists of the first and the last terms of both (2) and (3). It follows that $d_H(\downarrow k(y), \downarrow \Psi (y)) \leq 2\delta(y)$.

By the definition of k and the properties of H, we have that

$$d_H(\downarrow \Psi (y), \downarrow \Phi (y)) \leq d_H(\downarrow \Psi (y), \downarrow k(y)) + d_H(\downarrow k(y), \downarrow \Phi (y)) \leq 3\delta(y).$$
Fact 4. \(\downarrow \Psi : Y \rightarrow \downarrow \text{USC}(X)\) is a Z-embedding.

Let \(y_1, y_2 \in Y\) with \(y_1 \neq y_2\). We verify that \(\Psi(y_1) \neq \Psi(y_2)\). From Fact 3 we assume that \(y_1, y_2 \notin K\). If \(\delta(y_1) \neq \delta(y_2)\), then \(\Psi(y_1)(x_0) = \delta(y_1) \neq \delta(y_2) = \Psi(y_2)(x_0)\). If \(\delta(y_1) = \delta(y_2) = \delta > 0\) and there exists \(t \in I\) such that \(\Phi(y_1)(t) \neq \Phi(y_2)(t)\). It follows from the convexity of \(d\) that there exists \(x \in X\) such that \(\frac{3d(x, x_0)}{\delta} = t\). Thus, \(\Psi(y_1)(x) = \delta \Phi(y_1)(\frac{3d(x, x_0)}{\delta}) \neq \delta \Phi(y_2)(\frac{3d(x, x_0)}{\delta}) = \Psi(y_2)(x)\). This shows that \(\downarrow \Psi : Y \rightarrow \downarrow \text{USC}(X)\) is an injection. Moreover, note that, for each \(y \in Y \setminus K\), there exists \(x \in X\) such that \(\frac{3d(x, x_0)}{\delta(y)} = \frac{1}{2}\) and hence \(\Psi(y)(x) = 0\). It follows from Lemma 5 that \(\downarrow \Psi(Y)\) is a Z-set in \(\downarrow \text{USC}(X)\).

Fact 5. \(\Psi^{-1}(C(X)) \setminus K = C \setminus K\).

Note that, for each \(y \in Y \setminus K\), \(\Psi(y)\) is continuous in \(X \setminus \{x_0\}\) and it is continuous at \(x_0\) if and only if \(\phi(y) \in C(I)\) if and only if \(y \in C\).

It follows from the above five Facts that \(\downarrow \Psi : Y \rightarrow \downarrow \text{USC}(X)\) is a Z-embedding and satisfies \(\downarrow \Psi|_K = \downarrow \Phi|_K\), \(\downarrow \Psi^{-1}((\downarrow C(X)) \setminus K = C \setminus K\) and \(d_H(\downarrow \Psi(y), \downarrow \Phi(y)) < \varepsilon\) for each \(y \in Y\). This shows that \(\downarrow C(X)\) is strongly \(\mathcal{F}_{\sigma\delta}\)-universal in \(\downarrow \text{USC}(X)\).

Proof of Theorem 1. It follows from Lemmas 1, 11, 12 and 15.

Acknowledgements

We thank Professor J.J. Dijkstra for his advice on an early draft of this paper. Thanks also go to the anonymous referee for the careful reading the original manuscript and giving many valuable suggestions for improvement.

References