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Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in
the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost
cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage
the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell
fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regener-
ative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional pro-
grams. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed
generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of
these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory
non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and
putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated reg-
ulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate.
This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues
for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differ-
entiation, Metabolism and Contraction.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Coronary artery disease is the most frequent cardiovascular disor-
der, which typically leads to acute myocardial infarction and ulti-
mately heart failure. Heart failure is one of the major causes of
morbidity and mortality worldwide. According to the latest report
from the American Heart Association, one in nine death certificates
in the United States in 2008 mentioned heart failure as the cause of
death [1]. Despite the constant development of new drugs and
device-based therapies, no approach currently exists to reverse the
loss of functional myocardium. The only option for end-stage heart
failure remains heart transplantation. However, organ transplant
will not be able to meet the increasing demand due to the relative
scarcity of donor hearts [2]. Heart failure is thus evolving into a global
epidemic for which medicine has no viable solution.

One area that has engendered considerable interest over the last
decade is the premise of promoting cardiac regeneration in the mam-
malian heart [3,4]. Several ways can be envisaged to induce de novo
replenishment of lost cardiac cells post injury. Indeed, despite the
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post-mitotic nature of differentiated cardiomyocytes, recent studies
provided evidence for a mitotic activity in the adult myocyte popula-
tion under normal conditions and during the adaptation to stress
[5–7]. In addition, resident cardiac progenitor cells, sharing properties
with other adult stem cells, and demonstrating a capacity to differen-
tiate into functional cardiomyocytes in vitro and in vivo have been
identified in the heart [3,4]. Altogether, this suggested that myocytes
could be replaced through a process involving cell replication and dif-
ferentiation. Therefore, two main strategies are currently evaluated.
First, pathways that are important for the mobilization, activation
and differentiation of resident cardiac stem cells are being identified.
These pathways will represent attractive therapeutic targets for stim-
ulating cardiac regeneration in situ. Second, cell replacement therapy
can be envisaged. In this case, cardiac precursor cells are transplanted
in the damaged heart to induce healing.

2. Cardiac regeneration: many avenues for repair

Cardiac regeneration in adulthood is observed in lower ver-
tebrates such as certain amphibians and fish [8,9]. For example,
zebrafish are able to regenerate their cardiac muscle after injuries
such as cryoinjury [10–12], ventricular resection [9] or genetic abla-
tion of cardiomyocytes [13]. Lineage tracing experiments revealed
that dedifferentiated cardiomyocytes are the major source of the
newly generating cardiac muscle. In response to injury, pre-existing
mature cardiomyocytes undergo a process of sarcomeric disassembly,
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dedifferentiation, reentry into the cell cycle and proliferation to re-
plenish the lost myocardium [14,15]. This process is associated with
minimal fibrosis. In addition to zebrafish, it has recently been demon-
strated that early during the post-natal period, mice also exhibit a
comparable regenerative capacity [16]. This regenerative plasticity is
strictly confined to the first week after birth; a period in which
cardiomyocytes have not terminally exited the cell cycle. Once the
cardiomyocytes completed terminal differentiation, the myocardium
undergoes a maladaptive reparative process associated with fibrosis
following injury [16]. These findings do, however, support the notion
of a dormant regenerative capacity in mammals, which could poten-
tially be reactivated in the adult heart.

Alternatively, one might want to target endogenous cardiac stem
cells in the adult heart. For instance, using high-throughput screen-
ing, we have identified the Notch pathway as activated in the hy-
pertrophic and failing adult hearts. This pathway is known to be
implicated in cardiac development and in the regeneration of adult
self-renewing organs, suggesting that it could play a similar role in
the adult heart [17]. Briefly, we have shown that Notch prevents car-
diogenic differentiation and favors cardiac precursor expansion [18].
Furthermore, our recent data suggest that the Notch pathway is piv-
otal in a complex network of interactions between cardiomyocytes
and mesenchymal cells, including multipotent stromal cells. Through
regulating fibrogenesis and cardiogenesis, Notch is able to switch car-
diac tissue repair mechanisms from a profibrotic default pathway to a
procardiogenic pathway. Altogether, our results suggest that the
Notch pathway represents a unique therapeutic target that can be
manipulated to improve the cardiac response to stress and regenerate
the damaged myocardium via mobilization of cardiac precursor cells
[19].

As an alternative to inducing regeneration in situ, the utilization of
exogenous sources of stem cells for cellular therapy constitutes a
major avenue under investigation (Fig. 1) [3,4]. The field can be concep-
tually organized into working with adult stem cells or with embryonic
stem cells (and analogous stem cells such as induced pluripotent stem
cells). The first cell type to attract clinical interest was bone marrow-
derived cells [20]. Subsequent follow-up studies suggested, however,
that improvements in ventricular function upon cellular administration
were likely to be as a consequence of beneficial paracrine signaling
[21,22]. Nevertheless, it cannot be rule out that the beneficial effects
of transplanted cells reflect a recruitment of resident cardiac progeni-
tors that contribute in turn tomyocardial repair [23]. Therefore, interest
began to shift from bone marrow-derived cells when several investiga-
tors reported the isolation of resident cardiac progenitor cellswithin the
postnatal heart. Cardiac progenitor cells cannot be easily recognized in
cardiac tissues since no truly specific markers are currently available.
Therefore, surrogatemarkers, which are expressed on the surface of he-
matopoietic stem cells, such as the stem cell antigen (Sca)-1 or the stem
cell factor receptor c-kit, are used to identify cardiac progenitor cells in
the mouse heart [20,24,25]. Although these preliminary results are
encouraging, adult stem cells maintain inherent drawbacks. Argu-
ably their most serious limitation is their lack of ability to be easily
expanded to produce homogenous cardiac progenitor populations.
In principle, this limitation does not apply to embryonic stem cells
(ESCs), and induced pluripotent stem cells (iPSCs). ESCs and iPSCs
can be expanded indefinitely while retaining robust capacity to dif-
ferentiate into almost all cell types. Additionally, patient-specific
iPSCs represent a convenient source of autologous precursors. In
vivo, ESC- and iPSC-derived cardiomyocytes are able to engraft with-
in the heart, and form islands of nascent, proliferating myocardium
[26–30]. However, although the cardiogenic potential of ESCs and
iPSCs is without doubt, their pluripotency and unique origins pose
different barriers to their utilization in cellular therapy. Indeed,
their specification to the cardiogenic lineage and differentiation
into mature cardiomyocytes need to be tightly controlled not to pro-
duce unwanted cell types. Therefore, a clear understanding of the
differentiation steps leading to cardiomyocyte production is a pre-
requisite to the use of stem cells in cell therapy.

Finally, a novel approach to cardiac regenerative medicine that has
recently attracted excitement is the direct reprogramming of somatic
cells into cardiovascular cells. Conceptually this is not a new idea and
seminal workfifteen years ago demonstrated the ability of a singlemas-
ter regulatory transcription factor, MYOD1, to convert different cell
types into skeletal muscle cells [31]. This work was then expanded
uponwhen itwas shown that the introduction of three core cardiac reg-
ulatory transcription factors, namely GATA4, Mef2C and Tbx5, was able
to reprogram fibroblasts into cardiomyocyte-like cells [32,33]. These
findings raised the possibility of reprogramming scar-forming fibro-
blasts into cardiomyocytes within the infarcted zone itself. Two groups
of investigators have now confirmed this possibility using retroviruses
to deliver the core-cardiac transcription factors directly to the injured
heart [34,35]. Both studies demonstrated that one month after treat-
ment, reprogrammed cardiomyocyte-like cells contributed to up to
35% of all cardiomyocytes in the infarct border zone. Treated mice
exhibited significantly improved cardiac function in support of a regen-
erative response [34,35].

3. Non-coding RNAs in gene regulatory networks

Although the discussed regenerative avenues have distinct charac-
teristics, they all fundamentally depend on overlapping cellular and bi-
ological processes. Indeed, these regenerative processes are under the
control of complex gene regulatory networks, which rely on core cardi-
ac transcription factors (e.g.: Mesp1, Nkx2.5, Mef2c, GATA4) [36]. These
transcription factors interact in a combinatorial manner at target
cis-regulatory modules to elicit specific temporal and spatial gene ex-
pression programs. This integrated modulation of protein coding gene
expression is ultimately responsible for cellular fate, phenotype and be-
havior (Fig. 2). However, the notion of the gene regulatory networks
being primarily protein-based regulatory systems has been somewhat
premature. A number of recent studies have convincingly demonstrated
that non-coding RNA networks participate to the control of gene ex-
pression. Non-coding RNAs (ncRNAs) appear to control every aspect
of gene regulatory network activity, including transcriptional control,
post-transcriptional gene regulation and epigenetic targeting [37–41].

From an evolutionary perspective, the repertoire of protein coding
genes has remained relatively static when compared to the non-coding
portion of the genome,whichhasmarkedly increasedwith evolution. In-
deed, a number of recent high throughput transcriptomic screens have
revealed that eukaryotic genomes transcribe up to 90% of their genomes
[42,43]. Most of the transcripts derived from the non-coding portion of
the genome are expressed dynamically during development and in re-
sponse to environmental stimuli and stress, suggesting that some
ncRNAs carry regulatory functions [40,44–48]. Therefore, ncRNAs can
be classified into infrastructural and regulatory ncRNAs. Infrastructural
ncRNAs tend to bemore constitutively expressed and include transfer, ri-
bosomal, small nuclear and small nucleolar RNAs. Regulatory non-coding
RNAs include the small microRNAs (miRNAs), piwi-interacting RNAs
(piRNAs), small interfering RNAs (siRNAs) and the larger long non-
coding RNAs (lncRNAs) [49]. Within the lncRNAs, also exists a novel
class of enhancer derived RNAs (eRNAs or edRNAs) [50]. In this review,
we will focus on highlighting the characteristics and biological roles of
two classes of regulatory non-coding RNAs, i.e. miRNAs and lncRNAs,
with a particular emphasis on their known and putative roles in cardiac
homeostasis and regeneration.

4. Gene silencing by miRNAs

The first miRNAs, lin-4 and let-7, were identified two decades ago
in Caenorhabditis elegans [51,52]. Since then, approximately 20,000
miRNAs have been identified in the genome of animals, plants and vi-
ruses, representing about 1 to 2% of the genome. Among the large
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class of non-coding RNAs, miRNAs are characterized by a short length
of about 22 nucleotides. These small RNAs regulate messenger RNA
(mRNA) expression post-transcriptionally by degradation or transla-
tional repression. Sequence complementary between miRNAs and
their target mRNAs is the principle that mediates repression. In
plants, perfect pairing leads to mRNA degradation whereas animal
miRNAs use both transcript degradation and repression of gene trans-
lation, which requires mismatch bulges between the miRNA and its
target [53]. However, base pairing between the seed sequence, i.e. nu-
cleotides 2 to 7 at the 5′ end of the miRNA, and the 3′ untranslated
region of the target gene is the basic requirement for efficient
inhibition.

MiRNAs are transcribed by RNA polymerase II into a primary
transcript, the pri-miRNA, which is processed by the RNase Drosha
into a 60- to 70-nucleotide precursor named pre-miRNA. The
pre-miRNA is then exported into the cytoplasm by exportin-5,
where it is further processed by Dicer, another RNase, into the
22-nucleotide miRNA duplex. The strand with the weakest base
pair at its 5′ end is incorporated into the RNA-induced silencing
complex (RISC) to repress target gene expression. The other strand
is released and degraded. However, both strands can be loaded in
to the RISC when they show similar stability, increasing the number
of putative target genes associated with a single miRNA gene [54].
Although the mechanisms of repression are still unclear, it seems
that the protein components of the RISC execute mRNA silencing.
Argonaute proteins recruit the repression machinery, promoting
translation inhibition, deadenylation and decapping [55,56]. Addi-
tionally, the protein GW182 directs the RISC to cytoplasmic mRNA
processing foci (or P bodies), which are enriched in enzymes
involved in degradation [57,58]. Finally, miRNAs are released by
the RISC, and degraded by microRNases.

Computational analyses predict that approximately half of the pro-
teins could be targets of miRNAs [59]. Interestingly, many miRNAs tar-
get more than one protein and many proteins can be the target of
several miRNAs. Despite this broad network of interactions, data dem-
onstrate thatmiRNA-mediated inhibition usually results in amodest re-
duction of protein expression. Therefore, miRNAs are viewedmainly as
modulators to reinforce specific pathways during key biological pro-
cesses. Typically, miRNAs could play important roles tomaintain specif-
ic function in cells subjected to stressful conditions. Moreover, miRNA
networks have been shown to be part of positive and negative feedback
loops, which are crucial in cell fate decision during development. Im-
portantly, although it is expected that expression of miRNAs and their
putative targets being negatively correlated, high throughput profiling
also predicts positive correlations between miRNAs and their specific
target proteins. These findings have implications that are discussed
below.

5. Role of miRNAs in cardiac homeostasis

Many studies have revealed a central role for miRNAs as core regula-
tors of gene expression during cardiac disease, with the integration of
miRNAs into the regulatory circuitry of the heart providing regulatory in-
teractions to control cardiac gene expression. Several recent reviewshave
discussed the importance of miRNAs in the normal adaption of the heart
to biomechanical stress [60,61]. The prototypicmiRNAs that aremodulat-
ed in animalmodel of cardiac hypertrophy and failure aswell in the heart
of cardiac patients are miR-1 and miR-133 [62,63]. MiR-1 appears to be
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downregulated in the diseased heart, and overexpression attenuates
cardiomyocytes hypertrophy, possibly by targeting calmodulin and
Mef2a [64]. Similarly, cardiac miR-133 expression is decreased under
stress. ThismiRNA is thought to reduce the extent of cardiac hypertrophy
by targeting the RhoA pathway [65]. In contrast, miR-23 andmiR-195 are
upregulated in several forms of cardiac hypertrophy [66]. MiR-23a pro-
motes cardiomyocyte hypertrophy via downregulation of the muscle-
specific RING-finger protein 1, an anti-hypertrophic protein [67]. In addi-
tion, miR-195 appears to induce apoptosis by inhibiting the anti-
apoptotic factor Bcl-2 [68]. In the damaged heart, a family of miRNA,
namely miR-208a, miR-208b and miR-499, controls the switch from α-
to β-myosin heavy chain (MHC) expression (encoded by the Myh6 and
Myh7 gene respectively). Interestingly, the intronic sequences of the
Myh6 gene contain miR-208a, which targets the T3 receptor associated
protein-1, a transcriptional repressor of Myh7 expression. Inhibition of
miR-208a using anti-miR-208a inhibitor in Dahl hypertensive rats pre-
vents pathological myosin switching and cardiac remodeling while im-
proving cardiac function [69]. Similarly, miR-208b and miR-499 are
embedded in intronic sequences of theMyh7 and the closely related iso-
form Myh7b. Transcriptional repressors of Myh7 and Myh7b, i.e. Sox6,
Purβ and Sp3, are preferential targets of these miRNAs, which thereby
reinforce slow skeletal muscle gene expression [70,71].

In the stressed myocardium, fibroblasts differentiate into
myofibroblasts in response to cytokines and growth factors such
as TGF-β and its downstream target CTGF, and are responsible for fi-
brosis production. Several miRNAs have been described to regulate
the development of cardiac fibrosis, in particular miR-21, miR-29
and miR-30. For instance, miR-21 targets sprouty homology 1, a
negative regulator of the ERK pathway in cardiac fibroblasts, and
thereby facilitates FGF-2-dependent fibroblast proliferation [72].
As expected, inhibition of miR-21 after antagomir delivery attenu-
ated cardiac hypertrophy in the transaortic constriction (TAC)
model [73]. Although the importance of miR-21 was recently chal-
lenged in experiments using miR-21 knockout mice [74], the role
of miR-21 in fibrosis was further supported by independent studies
[75]. Moreover, miRNAs belonging to the miR-29 family are mainly
expressed in cardiac fibroblasts in which they target matrix
proteins. Since these miRNAs are downregulated in the heart in re-
sponse to stress, this downregulation promote extracellular matrix
deposition [66,76]. Similarly, miR30 has been found to target CTGF
[77]. Therefore, the picture emerging is that miR-21, miR-29 and
miR-30 are required to balance extracellular matrix turnover during
cardiac pathological remodeling. When the expression of these
three miRNAs is decreased, the repression of pro-fibrotic genes is
relieved and enhanced matrix synthesis is observed.

The importance of miRNAs in angiogenesis and endothelial cell
function was recently revealed using conditional Dicer knockouts.
Endothelial-specific deletion typically resulted in a reduced angiogenic
response to exogenous VEGF [78,79]. Specific miRNAs such as miR-126,
themiR-17–92 cluster and themiR-23–27–24 cluster have been shown
subsequently to regulate endothelial cell function by targeting multiple
growth factors and their cognate receptors [80,81]. For instance,
miR-126 is encoded by the EGF-like-domain multiple 7 gene, which is
highly expressed in endothelial cells. This miRNA blocks the expression
of a negative regulator of growth factor-induced angiogenesis, and ex-
erts a pro-angiogenic action by enhancing the VEGF and FGF cascades
[82]. Mice lacking miR-126 expression exhibit an increased mortality
after myocardial infarction due to defective cardiac neovascularization
[83]. In contrast, the miR-17–92 cluster inhibits angiogenesis and
endothelial cell migration [81,84]. Accordingly, treatment targeting
miR-92a leads to enhanced blood vessel growth in the border zone of
the infarct and improves cardiac performance. Similarly, inhibition of
miR-24 in the heart reduces the infarct size by preventing endothelial
cell apoptosis [85,86]. Finally, miR-21 was also shown to exert
anti-angiogenic function via inhibition of endothelial cell proliferation
and migration [87].

6. Role of miRNAs in cardiac regeneration

The regulatory circuits that are operational during development are
thought to be reactivated as regenerative networks in the damaged
heart. Many of them implicate miRNAs. The prominent role of miRNAs
in heart development has been highlighted in Dicer-null mice. These
mutants demonstrate developmental arrest, in part because of cardiac
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defects, suggesting that blockade of themiRNA-mediated silencingma-
chinery affects cardiomorphogenesis [88]. MiR-1 andmiR-133 are good
examples of the importance of miRNAs in cardiac development. In the
mouse, miR-133a1, miR-133a2, and miR-133b are clustered with
miR-1–2,miR-1–1 andmiR-206, [89,90]. Then,miR-133 negatively con-
trols cardiomyocyte proliferation by targeting cyclinD2 and SRF. On
the other hand, miR-1 promotes cardiac precursor differentiation into
functional cardiomyocytes by inhibiting the expression of Hand2, a
basic-loop-helix transcription factor involved in ventricle myocyte ex-
pansion [91–94]. During development, the bonemorphogenetic protein
(BMP) signaling pathway controls cardiac progenitor differentiation in
the secondary heart field. Interestingly, BMP2 and 4 directly regulates
the miR-17–92 cluster. In turn, these miRNAs downregulate Isl1 and
Tbx1 expression, thereby promoting myocardial differentiation and
formation of the outflow tract [95]. In the mouse, the miR-15/miR-195
family has been shown to regulate withdrawal of cardiomyocytes
from the cell cycle after birth. In particular, miR-195 inhibits the expres-
sion of cell cycle genes around the first week of age [96]. Accordingly,
overexpression of miR-195 in the embryonic heart is associated with
ventricular hypoplasia and septal defects, whereas knockdown of
miR-15 family by anti-miRNAs inhibitors is associated with an in-
creased number of mitotic cardiomyocytes [96].

Unlike the mammalian heart, certain fish retain a robust capacity for
regeneration in the adult life. This capacity is a consequence of the differ-
ential utilization of regenerative genetic circuits, many of which are ab-
sent in the adult mammalian heart. To systematically characterize these
regulatory circuits, we have generated global gene and miRNA expres-
sion profiles in the poorly regeneratingmouse heart aftermyocardial in-
farction and the regenerating zebrafish heart following ventricular apex
resection. We have developed a novel integrated bioinformatic ap-
proach to identify differentially regulated miRNA dependant genetic
programs in the mouse and zebrafish injury models. Many well charac-
terized miRNA networks implicated in cardiac fibrosis (miR-133, -29,
-30, -21, -208, -499) and hypertrophy (miR-1, -133, -208) were differ-
entially modulated in the two species, highlighting the fundamentally
different response of the mouse and zebrafish to cardiac injury at the
miRNA level. Additionally, this global characterization has allowed us
to identify novel miRNA regulatory circuits potentially involved in criti-
cal biological pathways. These pathways are implicated in the regenera-
tive response, including extracellular matrix deposition, cell cycle
control, cytokinesis and sarcomeric disassembly (unpublished data).

Several types of progenitor cells have been studied for their ability to
differentiate into cardiomyocytes. In particular, ESCs have substantial
potential to generate large numbers of functional cardiomyocytes
[3,97]. In ESCs, a tight control of gene expression is required tomaintain
stemness on one hand and to induce specification towards the appro-
priate cell type. In this context, miRNAs have been highlighted as inte-
gral part of gene networks that regulate self-renewal, pluripotency
and specification in ESCs. For instance, the miR-290 and miR-302 fami-
lies inmice, andmiR-371 andmiR-302 families in humans are themost
expressed miRNAs in undifferentiated ESCs. These miRNAs directly re-
press key inhibitors of the cell cycle to control G1 to S transition,
and thereby self-renewal. Interestingly, expression of these particular
miRNAs is directly regulated by Oct4, Nanog, Sox2 and c-Myc
[98–100]. Since miRNAs regulate pluripotency factors in ESCs, they
have tested for their capacity to generate iPSCs [101]. Overexpression
of miR-291-3p, miR-294 and miR-295 together with the transcription
factors Oct4, Sox2 and Klf4 facilitates iPSC production [101]. Silencing
of let-7 (an anti-stemness miRNA) has been shown to increase the
reprogramming efficiency of murine fibroblasts [102]. Somatic cell
reprogramming by miRNAs has also been recently reported [103].
Overexpression of miR-302 and ‐367, in the presence of a histone
deacetylase inhibitor, induces the formation of iPSCs from embryonic
mouse fibroblasts. Somatic cells can even be reprogrammed to pluripo-
tent stem cells by direct delivery of mature double-stranded miRNAs
(miR-200c, miR-302s, and miR-369s) [104].
Two fundamental steps, necessary to trigger ESC differentiation,
are reduced proliferation and cell lineage commitment. These pheno-
typic changes are associated with upregulation of specific miRNAs.
Among those, the “anti-stemness” miRNA let-7 represses G1/S and
G2/M cycle progression by targeting CDK6, CDC25A and CCND2, and
activates cell differentiation by inhibiting pluripotency factor expres-
sion [102]. Moreover, several miRNAs, namely miR-21 miR-134,
miR-296, and miR-470, target Oct4, Nanog and Sox2 [105]. Lineage
specification is driven by the combination of specific transcription
factors and by miRNAs that reinforce the differentiation program.
For instance, miR-1 and miR-133 have been reported to play impor-
tant roles in cardiac progenitor cell differentiation. Specifically, miR-
1 and miR-133 suppress neural differentiation in ESCs. In particular,
the Notch ligand Delta-like-1 is repressed by miR-1. The Notch path-
way controls a binary cell fate decision between the mesoderm and
the neuroectoderm lineages in ESCs [106]. Downregulation of the
Notch pathway facilitates specification to the mesodermal and car-
diogenic lineages. Similarly, miR-145 and miR-143 cooperatively
targeted a network of transcription factors, including Klf4, myocardin
and Elk-1 to repress proliferation and promote differentiation of
smooth muscle cells [107,108].

Asmentioned above, CPCs have been identified in the adultmamma-
lian heart. However, the regenerative potential of resident CPCs is limit-
ed, in part because of their poor capacity to be expandedupon injury and
meet the high demand to replenish lost cardiomyocytes. In particular,
CPCs isolated from adult cardiac biopsies demonstrated reduced prolif-
eration as compared to neonatal CPCs. In adult CPCs, expression of spe-
cific miRNAs (miR-1, -103, -130a, -130b, -185, -200b, -208b and ‐486),
targeting proteins implicated in cell proliferation, contributes to limit
precursor expansion [109]. MiRNAs appear to be also involved in CPC
differentiation. Interestingly, miR-1 has been suggested to promote car-
diac specification whereas miR-133 represses cardiac markers and in-
creases proliferation [89]. This function is reminiscent to that observed
during heart development. AnothermiRNA important for differentiation
in CPCs is miR-499. Although barely detectable in undifferentiated pre-
cursors, it is strongly induced in postmitotic cardiomyocytes. In human
CPCs, miR-499 enhances cardiogenesis by repressing Sox6 and Rod1.
Importantly, CPCs overexpressing miR-499 have increased potential to
regenerate the damagedmyocardium in an animal model of myocardial
infarction [110]. It is noteworthy that the cardiogenic potential of
miR-499 is not restricted to CPCs. Indeed, overexpression of miR-499
in bone marrow mesenchymal stem cells increased the expression of
cardiac-specific genes, such as Nkx2.5, GATA4 and Mef2C [111].

Finally, one of themajor hurdles to achieve long-term improvement
of heart function through stem cell therapies is the low survival rate of
the injected stem cells in the hostile environment of the damagedmyo-
cardium. AmiRNAcocktail has recently been shown to increase viability
of transplanted cells. Cardiac progenitors overexpressing miR-21,
miR-24 and miR-221 survive significantly longer after transplantation
in the infarcted heart and, thus, induce better recovery. Bioinformatic
analysis identified many pro-apoptotic genes as targets of these
miRNAs. In particular, Bim (also named Bcl2l11), a potent activator of
the apoptotic pathway, is a common target of all three miRNAs [112].
Altogether, these studies demonstrated the critical role of miRNAs in
guiding stem cell differentiation and survival.

7. Long non-coding RNAs (lncRNAs)

In addition to the small ncRNAs (miRNAs), several studies utilizing
high-throughput genomic screens have demonstrated that mammali-
an genomes produce thousands of long transcripts that have no sig-
nificant protein coding potential [42,50,113–115]. These transcripts
are collectively known as long (or large) non-coding RNAs (lncRNAs)
because these RNA molecules are more than 200 nucleotides long.
They are typically Polymerase II transcribed, 5′-capped, alternatively
spliced and polyadenylated. Despite these shared characteristics,
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lncRNAs are typically less conserved (at least at the exonic level) and
less expressed compared to mRNAs. However, they are extremely tis-
sue and cell specific with their expression, about 10-fold more specif-
ic versus mRNA [113]. On the basis of their genomic properties,
lncRNAs have been tentatively classified. For example, one recognizes
sense or antisense lncRNAs that overlap known protein coding genes,
intronic lncRNAs that are encoded within introns of protein coding
genes, and long intergenic ncRNAs that are encoded completely with-
in the intergenic genomic space between protein coding genes [116].
Current studies have shown that lncRNAs represent key modulators
of cell behavior. In addition, they appear dysregulated in various
human diseases, including cardiovascular disorders [117,118]. Several
recent reviews have discussed the roles of lncRNAs (Fig. 3) [119–121].
Putative functions in the context of cardiac homeostasis and regener-
ation are described below.

8. LncRNAs as molecular guides and structural scaffolds

Recent studies have contributed to understand how the ubiquitously
expressed chromatin-modifying protein complexes, which lack DNA-
binding domains, can recognize their target genomic loci. LncRNAs
could guide chromatin-modifying complexes to their required genomic
destination [115,122]. Once targeted, these ubiquitously expressed pro-
tein complexes can elicit their regulatory effects in a gene and cell spe-
cific manner [41,122]. The exact mechanisms via which this guidance
occurs are unknown. However, lncRNAs could serve as docking stations
for complex recruitment [123]. In addition, lncRNAs have been shown to
be structural components of ribonucleoprotein complexes. These in-
clude those containing splice factors and transcription factors [124]. Al-
though a detailed understanding of how lncRNAs encode such scaffold
functionality is currently lacking, it is likely that lncRNAs contain struc-
turalmodules that allowdistinct interactionswith protein-binding part-
ners [125].

9. LncRNAs function as molecular decoys

Growth arrest specific 5 (Gas5) represents a good example of a
lncRNA acting as decoy for proteins. Gas5 functions as a cis-binding
competitor, directly interacting with the DNA-binding domain of
the glucocorticoid receptor, thereby preventing binding of this nucle-
ar receptor to target gene cis-elements. Therefore, Gas5 serves as a re-
pressor of glucocorticoid receptor signaling. This decoy effect could
lead to significant changes in gene expression controlled by specific
transcription factors [126]. PANDA is another lncRNA that modulates
cell death by binding to the transcription factor NF-YA, therefore ti-
trating it away from chromatin and impacting upon NF-YA dependant
regulatory functions [127].

In addition to functioning as a decoy for regulatory proteins,
lncRNAs can also serve as RNA-binding decoys or competitive endoge-
nous RNAs (ceRNAs) for small non-coding miRNAs [128,129]. Indeed,
recent studies have shown that mammalian lncRNAs can regulate
gene expression programs post-transcriptionally by serving as bona
fide targets for miRNAs. One particular lncRNA, linc-MD1, was shown
to act as a ‘sponge’ for two miRNAs, which regulate the gene regulatory
network governing skeletal muscle differentiation [128]. Interestingly,
the concept of ceRNA networks provides an attractive explanation for
positive correlations between miRNAs and their target proteins, which
are predicted from high throughput screens. Since miRNAs have been
shown to be important regulators of cardiac specification and differen-
tiation, we suspect many cardiac-specific ceRNA networks exist. As a
proof-of principle, we have used a high throughput approach to
identify lncRNAs that are differentially expressed in differentiating
human CPCs. Several hundred lncRNAs were foundmodulated in dif-
ferentiating cells. We also identified miRNA response elements
(MREs) in these lncRNAs. Differentially regulated lncRNAs were sig-
nificantly enriched for specific MREs corresponding to miRNAs with
well characterized regulatory roles in cardiac specification and dif-
ferentiation (Unpublished data).
10. Regulation of gene expression by lncRNAs

Gene regulation is a complex process that requires many cis-binding
factors and chromatin remodeling co-factors [119]. LncRNAs could pro-
mote both gene expression and repression via interaction with various
classes of epigenetic modifying protein complexes [119–121,130,131].
One of the first epigenetic phenomena demonstrated to utilize lncRNAs
was genomic imprinting [132]. Imprinted genes are typicallymaster reg-
ulators in development, and many lncRNAs are expressed adjacently
to imprinted genes [133]. An example of one such lncRNA is Air, which
is expressed from the paternal allele, interacts with a histone
methyltransferase, and guides this protein to the genome to repress
imprinted genes [134]. In addition, another lncRNA, HOTAIR, regulates
the expression of human HOXD genes [135]. Interestingly, HOTAIR
serves as molecular scaffold allowing the formation of the polycomb re-
pressive complex 2 (PRC2) and the LSD1/CoREST regulatory complex at
their endogenous genomic target loci. This lncRNA-dependent targeting
of chromatin modifying complexes is common with many other human
and mouse lncRNAs able to regulate gene expression in trans [136].

Within the human genome, a very important cell-cycle modulating
genomic locus spans approximately 42-kbs on human chromosome
9p21. This region contains three very important tumor suppressors,
p15 (INK4b), p16 (INK4a) and p14 (ARF) [137,138]. Regulation of this
locus is mediated by PRC2 and PRC1 to maintain a transcriptionally
repressed heterochromatin state. ANRIL, a multi-exonic lncRNA ex-
pressed antisense to p15 and p16, binds both to PRC1 and ‐2, targeting
these complexes to this cell-cycle control locus [137,138]. Deletion or
knock-down of ANRIL results in a significant upregulation of p15
and p16, with concomitant decrease in cell-cycle activity. Moreover,
genome-wide association studies have recently implicated ANRIL in ab-
dominal aortic aneurysm and coronary artery disease [117,118]. In this
context, PRC2 has recently been shown to be an important epigenetic
modulator during cardiac development and in the postnatal heart
[139–141]. Specifically, inactivating Ezh2, the catalytic component of
PRC2, in cardiac progenitors in the developing heart, led to a number
of cardiac defects. In particular, mutant heart was characterized by
myocyte hypoplasia, resulting in an atrophied compact myocardium
[139–141]. Arguably and most importantly for the decreased prolifera-
tion observed in PRC2 deficient hearts, is the up-regulation of the cell
cycle inhibitors p16 and p15. Assuming that lncRNAs are important
for targeting PRC2 at specific loci in the genome, identifying
cardiac-specific lncRNAs could provide fundamental insights into how
the cardiac epigenome is programmed.
11. Regulation of alternative splicing by lncRNAs

Alternative splicing of pre-mRNAs represents one of the primary
contributing mechanisms for proteomic complexity by generating sev-
eral protein products with non-overlapping functions from a single
mRNA. LncRNAs are emerging as important modulators of alternative
splicing. For instance, the lncRNAMALAT1 localizes to nuclear speckles,
which are known to be enriched with many alternative splicing-
modulating proteins [142]. UponMALAT1 knock-down, specific subsets
ofmRNAs appear to be spliced in different patterns. Considering the im-
portance of context-specific alternative splicing in biological processes
associated to the cardiac response to stress, lncRNAs regulating splicing
could prove to be interesting therapeutic targets. This, however, will re-
quire the global identification of cardiac lncRNAs associated with splic-
ing factors. RNA co-immunoprecipitation followed by high throughput
deep sequencing (RIP-Seq) on proteins known to be involved in cardiac
alternative splicing should lead to the identification of such lncRNAs.
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12. Regulation of cellular reprogramming by lncRNAs

The regulatory power of lncRNAs has been illustrated in a recent
study, which described the global roles of lncRNAs in modulating
pluripotency and lineage determination circuits in ESCs. Interestingly,
transcription factors important in pluripotency such as Oct4 and Nanog
were found to bind lncRNA promoters [143]. To further elucidate the
roles of lncRNAs in ESCs in a more systematic manner, lncRNAs were
globally knocked down using a shRNAi high-throughput screen [144].
This study demonstrated that 26 lncRNAs are required for maintaining
the pluripotent state in ESCs. Moreover, reprogramming of somatic
cells into iPSCs is one of the most exciting avenues in regenerative med-
icine. One study identified lncRNAs able to efficiently reprogram fibro-
blasts into iPSCs. The authors characterized lincRNA-RoR, which was
significantly upregulated during iPSC generation [145]. Knocking-down
the lncRNA itself severely impaired the ability of fibroblasts to be
reprogrammed to iPSCs. Conversely, overexpressing lncRNA-RoR
increased the efficiency of iPSC-colony formation [145]. One could,
therefore, envisage a situation, in which comparable cardiac lncRNAs
might be used to promote direct reprogramming of cardiac fibroblast
into cardiomyocytes.

13. Regulation of enhancer activity by lncRNAs

Enhancers are the key information processing units within gene
regulatory networks [146,147]. Chromatin immunoprecipitation
followed by sequencing (ChIP-Seq) analysis of enhancer associated
chromatin marks have recently demonstrated that many enhancer
regions generate lncRNAs [45,47,50,148]. These can take the form of
classical lncRNAs, which are polyadenylated, capped and spliced, or
non-polyadenylated bi-directionally low copy transcripts. Important-
ly, some enhancer-associated lncRNAs were shown to be required for
the transcriptional activation of proximal genes [47,50]. For instance,
HOTTIP has recently been shown to function as an enhancer
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associated lncRNA. HOTTIP directly interacts with the WDR5 protein,
bringing it into spatial proximity via an enhancer-promoter chroma-
tin loop, promoting transcriptional activation. Knocking-down this
lncRNA, without changing the cis-sequence of the enhancer, abolishes
the ability of the enhancer to activate its downstream HOXA genes
[149].

Cardiac-specific developmental enhancers, potentially generating
enhancer-derived lncRNAs, could constitute cardiac-enriched regulato-
ry lncRNAs and ideal regenerative molecular targets. We have recently
attempted to test this assumption through the utilization of a previously
developed cardiac enhancer screen utilizing cardiac-specific p300 en-
richments as readout of enhancer activity [150–152]. This identified
hundreds of bona fide cardiac developmental enhancers, many of
which were putative regulators of important cardiac transcription fac-
tors and structural proteins. We selected several of these enhancers
and found that all generated lncRNAs. Furthermore, expression of
these transcripts was dynamically regulated during cardiac develop-
ment, and the kinetics correlates with specific morphogenetic transi-
tions. More importantly, the expression of enhancer-derived RNAs
(edRNAs) preceded induction of their predicted target genes. These de-
velopmental edRNAswere also expressed in cardiac progenitors derived
frommouse ESCs. Many of these enhancers have orthologous sequences
in human, which are functionally conserved and transcribed. These
human enhancers were expressed in both fetal human hearts and
more importantly from isolated human CPCs. We anticipate that it
should be possible to modulate the activity of cardiac gene regulatory
network, and the regenerative biological processes they control, through
manipulation of these cardiac edRNAs (Ounzain et al. Submitted).

14. Future directions and conclusion

SincemanymiRNAs have been implicated in the development of car-
diac hypertrophy and fibrosis and in the control of neovascularization
during the adaptation of the heart to damage, the pathways that are
regulated by miRNAs represent attractive therapeutic targets. More-
over, new evidence supports a role for miRNAs in the induction of
reprogramming, cell renewal and differentiation. In addition, the poten-
tial of lncRNAs for the understanding of processes associatedwith cardi-
ac homeostasis and regeneration, and therefore identifying novel
strategies for regenerative therapy, is clearly significant. Arguably,
the most important initial step will be a comprehensive systematic
genome-wide lncRNA annotation in cardiac tissues and cells. This
profiling can be carried out using lncRNAmicroarrays ormore desirably
high-throughput RNA-sequencing. LncRNAs are remarkably cell-
specific and likely expressed solely in particular contexts. Ideally, to
aid in functionally characterizing lncRNAs, RNA-seq screens should be
integrated with small RNA-seq (miRNA profiling), protein coding gene
expression profiling (mRNAs) and ChIP-Seq analysis. In particular, inte-
gration ofmiRNA and lncRNA expression profiles would allow the iden-
tification of ceRNA networks. Once lncRNAs have been identified,
functional manipulations need to be executed. These can include gain-
of-function and loss-of-function approaches. A number of genomic
technologies have been adapted and developed formolecular dissection
of lncRNA regulatory functions. RNA-immunoprecipitation followed by
sequencing (RIP-Seq) [153] and direct cross-linking of RNA-protein
(CLIP-Seq) [154] interactions in vivo are highly promising strategies
for the identification cardiac epigenomic targeting lncRNAs. These
methods utilize a protein centric view. However, once lncRNAs are
identified one can take advantage of the recently developed RNA-
centric approach, i.e. chromatin isolation by RNA-purification (ChIRP)
[123]. Based on the key role the epigenome plays in dictating cell-fate
transitions, lncRNA-dependent epigenetic targeting therapies could
also represent a promising approach for modulating regeneration-
associated processes. Over the recent years, it has become clear that
short and long ncRNAs are important orchestrators of gene regulatory
networks. Identification and functional characterization of ncRNAs
involved in cardiac regeneration promise to open up a treasure trove
of new therapeutic targets for inducing efficient cardiac regeneration
in the diseased heart.
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