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Abstract

We establish an inversion formula and a convolution–backprojection algorithm for the k-plane transform (0 < k < n) based on
the wavelet theory. If k = n − 1, the proposed convolution–backprojection algorithm provides a novel method for the inversion of
the Radon transform. We demonstrate that the proposed algorithm is easy to implement for global image reconstruction as well as
local image reconstruction with the Lemarie–Mayer’s wavelets.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The k-plane transform of a function f in Rn is its integral on k-dimensional planes of Rn. Assume that π is a
k-dimensional plane of Rn. The k-plane transform of f is

Rπf (x′′) = Rf (π,x′′) =
∫
π

f (x′ + x′′)dx′, (1)

where x = x′ + x′′ is the orthogonal direct sum decomposition of x ∈ Rn, x′ ∈ π and x′′ ∈ π⊥. The inversion of the
k-plane transform is to find the function f given all Rf (π,x′′). All the k-dimensional subspaces in Rn forms the
Grassmann manifold Gn,k . The k-plane Radon transform Rf (π,x′′) of a function f ∈ L2(Rn) is defined on a fibre
bundle T (Gn,k) with base space Gn,k and fibres isomorphic to Rn−k . When k = n − 1 or k = 1, Gn,k = Sn−1. Hence,
for k = n − 1, Eq. (1) is the conventional Radon transform [9], Rf (ω,p) = ∫

x·ω=p
f (x)dx = ∫

ω⊥ f (x′ + pω)dx′.
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Wavelet transform has been applied to find the inversions of the k-plane transforms in [1,6,10,12,13]. The recent
developments of so-called ridgelet transforms have been promoted by D. Donoho, E.J. Candés and their collaborators
[2,4]. Let ψ be a proper wavelet. The wavelet transform of Rπf (x′′) is

WψRπf (a, b) =
∫

π⊥

Rπf (x′′)ψa,b(x′′)dx′′ = |a|− n−k
2

∫
Rn

f (x)ψ

( |x − x′ − b|
a

)
dx, (2)

which is called the k-plane ridgelet transform of f . A Parseval-like relation for this transform in case k = n − 1
has been established independently by Murata [7], Candés [2] and the author [10], from the perspective of neural
networks, approximation theory and the inversion formula of Radon transform, respectively. Rashid-Farrokhi and et
al. [11] proposed an algorithm to reconstruct the local image using local data and extra margin data in discrete wavelet
case based on some wavelet bases with sufficiently many vanishing moments.

In the present paper, we developed a Parseval-like relation of the k-plane ridgelet transform equation (2). We
derived a wavelet inverse formula for the k-plane transforms and established a convolution–backprojection algorithm
for the k-plane transform. It is a generalization of the classical convolution–backprojection algorithm [5] in both forms
and dimensional numbers and different from those in [12,13]. For R2, the algorithm can be used to reconstruct local
image as well as global image and is easier to implement utilizing less margin data than the algorithm in [11].

The paper is organized as follows. In Section 2, we derive the wavelet inversion formula and convolution–
backprojection algorithm for the k-plane transform. In Section 3, we discuss implementation aspects and provide
stimulation results for R2.

2. The wavelet inversion and convolution–backprojection algorithm for the k-plane transform

In this section, we first prove an inversion formula for the k-plane ridgelet transform equation (2) in L2(Rn), and
then a wavelet inversion formula and derive a convolution–backprojection algorithm for the k-plane transform. In

this paper, for a fixed k, if x = (x1, . . . , xn), we let x̄ = (xk+1, . . . , xn) and |x̄| =
√

x2
k+1 + · · · + x2

n . We assume that

the wavelet function ψ(s) ∈ L2(R) ∩ L1(R) is an even function. Assume that Ψ (x̄) = ψ(|x̄|). The Fourier transform
of Ψ (|x̄|) with respect to x̄ is Ψ̂ (ξ) = ∫

Rn−k ψ(|x̄|)e−2πix·ξ dx̄. It is easy to show that ψ̂(ξ) is radially symmetric,
i.e., Ψ̂ (ξ) = Ψ̂0(|ξ |) for some function Ψ̂0. For a fixed k, the admissible condition of the wavelet ψ(|x̄|) is Cψ,k =∫ ∞
−∞

|Ψ̂0(a)|2
|a|k+1 da < ∞. Let ψa,b(x) = |a|− n−k

2 ψ
( |x−b|

a

)
.

Let {e1, . . . , ek} be an orthonormal system in Rn. The matrix W formed by W = (e1, . . . , en) is an orthogonal
matrix. Let π0 be the subspace of Rn spanned by {e1, . . . , ek}. {e1, . . . , ek} is an orthonormal basis of π0. Because
x′ ∈ π and x′′ ∈ π⊥, we let

x = x′ + x′′ = π0(t1, . . . , tk)
T + (ek+1, . . . , en)(tk+1, . . . , tn)

T ,

where ti = eT
i x, i = 1, . . . , n. Hence, x′ = π0π

T
0 x and Eq. (2), the wavelet transform of Rπf (x′′), can be written as

Tf (π0, a, b) = |a|− n−k
2

∫
Rn f (x)ψ

( |x−π0π
T
0 x−b|

a

)
dx.

Lemma. [14] Let f (x) ∈ L1(Rn). Then
∫
Rn f (x)dx = ∫

Gn,k

∫
π⊥ f (x)|x|k dx dμ.

Theorem 1. Let f ∈ L2(Rn) have compact support and g belong to the Schwartz space S(Rn). Then∫
Gn,k

dμ

∞∫
−∞

da

∫
π⊥

Tf (π0, a, b)T g(π0, a, b)
db

|a|n+1
= Cψ 〈f,g〉, (3)

and

f (x) = C−1
ψ

∫
Gn,k

dμ

∞∫
−∞

da

|a|2n−k+1

∫
π⊥

∫
π⊥

Rπf (x′′)ψ
( |x′′ − b|

a

)
dx′′ ψ

( |x − π0π
T
0 x − b|

a

)
db (4)

weakly in L2. At any continuous point of f , the equality (4) holds in pointwise.
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Proof. In Eq. (3), let x = Wz and b = Wb′. Because b ∈ π⊥, we let b′ = (0, . . . ,0, b′
k+1, . . . , b

′
n) and so

x − π0π
T
0 x − b = (ek+1, . . . , en)(z − b′). (5)

Using the Parseval equality with respect to variable z̄ in the following, we then obtain

Tf (π0, a, b) = |a|− n−k
2

∫
Rn

f (Wz)ψ

( |z − b′|
a

)
dz = |a| n−k

2

∫
Rn−k

f̂ (Wξ ′)Ψ̂0
(
a|ξ |)e−2πib′·ξ dξ, (6)

where ξ ′ = (0, . . . ,0, ξk+1, . . . , ξn)
T and z · ξ = z · ξ ′. In the left-hand side of Eq. (3), we interchanged the integral

orders with respect to z and b by Fubini’s theorem and get∫
π⊥

e−2πib·ξψ
( |y − b′|

a

)
db =

∫
Rn−k

e−2πib·ξψ
( |y − b′|

a

)
db′ = |a|(n−k)e2πiy·ξ ′

Ψ̂0
(
a|ξ |) (7)

and
∞∫

−∞

|ψ̂0(a|ξ |)|2
|a|k+1

da = |ξ |k
∞∫

−∞

|Ψ̂0(a)|2
|a|k+1

da = Cψ,k|ξ |k.

By Lemma, we find that the left-hand side of Eq. (7) is equal to

Cψ,k

∫
Gn,k

∫
Rn−k

f̂ (Wξ ′)ĝ(Wξ ′)|ξ |k dξ ′ dμ = Cψ,k

∫
Rn

f (x)g(x)dξ. (8)

Therefore Eq. (3) holds. Because the Schwartz space S(Rn) is dense in L2(Rn), it follows that Theorem 1 holds
by letting α tend to zero for a Gaussian function g(x) = gα(x), where α is the standard variance of the Gaussian
function. �

We also have the following convergent result in L2(Rn).

Theorem 2. If function f (x) ∈ L2(Rn) has compact support, then

lim
A1→0

A2,B→∞

∥∥∥∥∥f (x) − C−1
ψ,k

∫
Gn,k

dμ

∫
A1<|a|<A2

da

|a|k+1

×
∫

π⊥∩{|b|<B}

∫
π⊥

Rπf (x′′)ψ
( |x′′ − b|

a

)
dx′′ψ

( |x − π0π
T
0 − b|

a

)
db

∥∥∥∥∥
L2

= 0.

The proof of Theorem 2 is the same as the proof of Property 1.4.1 of [3]. It is skipped due to the space limit.
By Theorems 1 and 2, we obtain the following two theorems.

Theorem 3. Assume f ∈ L2(Rn) have compact support. Then

lim
A→∞

∥∥∥∥∥f (x) −
∫

Gn,k

dμ

∫
π⊥

Rπf (x′′)qA

(
x − π0π

T
0 x − x′′)dx′′

∥∥∥∥∥
L2

= 0, (9)

at any continuous point of f , and limA→∞ |f (x) − ∫
Gn,k

dμ
∫
π⊥ Rπf (x′′)qA(x − π0π

T
0 x − x′′)dx′′| = 0, where

FA(a) = 2C−1
ψ,k

∫ ∞
2a
A

|Ψ̂0(s)|2
sk+1 ds, qA(t) = 2|Sn−k−2| ∫ ∞

0 FA(a)an−1h(2πat)da.
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Theorem 4. Assume that the function f ∈ L2(Rn) has compact support. Then

lim
A→∞

∥∥∥∥∥f (x) −
∫

|ω|=1

dω

∞∫
−∞

Rf (t,ω)qA(x · ω − t)dt

∥∥∥∥∥
L2

= 0, (10)

at any continuous point of f , and limA→∞ |f (x) − ∫
|ω|=1 dω

∫ ∞
−∞ Rf (t,ω)qA(x · ω − t)dt | = 0, where FA(a) =

2C−1
ψ,n−1

∫ ∞
2a/A

|ψ̂(ξ)|2
ξn dξ and qA(t) = 2

∫ ∞
0 FA(a)an−1 cos(2πat)da.

3. Implementation and simulation results in R2

Wavelet windows can be selected in various ways. Here we choose the wavelets such that supp [ψ̂(ξ)] ∈ [−1,1]
and ψ̂(ξ) ∈ C∞. Hence FA(a) ∈ C∞. FA(a) is different from the window functions of the classical convolution–
backprojection that are discontinuous at the endpoints of the windows [5]. It turns out in the following that the smooth-
ness of ψ̂(ξ) is critical for local image reconstruction. Therefore we choose one of Lemarie–Mayer’s wavelets [8].
Let

α(t) =
{

e
1

1−|t |2 , |t | < 1
0, |t | � 1

, α1(t) = C1α

(
t
π
3

)
, α2(t) = C2α

(
t

2π
3

)
,

where Ci is the constants such that
∫ ∞
−∞ αi(t)dt = π

2 , θi(t) = ∫ t

−∞ αi(τ )dτ and si(t) = sin θi(t), i = 1,2. Let b1(t) =
s1(t − π)s2(−t + 2π) and ψ̂1(ξ) = b1(ξ)ei

ξ
2 . ψ̂1 ∈ C∞. Let ψ̂(ξ) = ψ̂1

( 8π
3 ξ

)
. Then supp ψ̂ ⊂ [−1,1].

The left- and right-hand sides of Fig. 1 are 512 × 512 pixel image of the original Shepp–Logan head phantom and
reconstructed image respectively by our algorithms using global data.

Now we discuss the problem of local reconstruction. Suppose f (x) ∈ L∞(R2) has a compact support. Then
Rf (ω, s) ∈ L∞(Z). Let B(x0, t) = {x | |x − x0| � t}. We are to reconstruct the image on B(x0,R) using the pro-
jection data Rf (t, θ) through B(x0,R + τ). Using integration by parts, we get

q(s) = − 2

(2πs)2
+ C(s)

(2πs)m
, (11)

qA(s) = A2q(As) = − 2

(2πs)2
+ C(As)

Am−2(2πs)m
(s → ∞), (12)

for s �= 0 where m is a positive integer, |C(s)| � Cm = ∫ 1/2
0 |mF(m−1)(a) + aF (m)(a)|da. Let

fA(x) =
∫

|ω|=1

dω

+∞∫
−∞

Rf (t, θ)q(x · ω − t)dt, (13)

Fig. 1. (a) Original image, (b) reconstructed image.
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fR(x) =
∫

|ω|=1

dω

R+τ+x0·ω∫
−R−τ+x0·ω

Rf (t, θ)q(x · ω − t)dt. (14)

We have fE(x) = fA(x)−fR(x) = ∫
|ω|=1 dω

∫
|t−x0·ω|�R+τ

Rf (t, θ)q(x ·ω− t)dt . By the convolution–backprojection
algorithm, it follows that fA(x) is the global reconstructed image, fR(x), where x ∈ B(x0,R), is the reconstructed
local image, and fE(x) is the truncated error. Let fE(x) − fE(x0) = R1 + R2,

R1 = − 1

2π2

∫
|ω|=1

dω

∫
|t |>R+τ

Rf (t + x0 · x,ω)

(
1

(t − (x − x0) · ω)2
− 1

t2

)
dt,

R2 = − 2

Am−2(2π)m

∫
|ω|=1

dω

∫
|t |>R+τ

Rf (t + x0 · ω,ω)

(
C(A(t − (x − x0) · ω))

(t − (x − x0) · ω)m
+ C(At)

tm

)
dt.

By Shwartz’s inequality, |R1| � C1(R,R + τ)‖Rf ‖L2(Z), where

C1(R,R + τ) = 1

2π2

( 2π∫
0

∫
|t |�R+τ

(
1

(t − (x − x0) · x)2
− 1

t2

)2

dt dθ

)1/2

is a small number [9]. If x ∈ B(x0,R) and the margin data has k pixels, then

|R2| � 8Cmπ‖Rf ‖L∞(Z)

(m − 2)Am−1(2π)m

1

τm−1
� inf

m>2

4Cm‖Rf ‖L∞(Z)

(m − 1)km−1(2π)m−1d
,

where d is the length of radial sampling interval of the projection data, A = 1/d , R2 depends on Cm and hence
depends on the chosen wavelet. In order to eliminate the unknown constant bias, we extrapolate the projections
continuously by constant extension on the missing projections [11]

(Rf )local(t,ω) =
{

(Rf )(t,ω), if |x0|ω · ω0 − (R + τ) � t � |x0|ω · ω0 + R + τ,

(Rf )(R + τ + x0 · ω,ω), if t > |x0|ω · ω0 + R + τ,

(Rf )(−R − τ + x0 · ω,ω), if t < |x0|ω · ω0 − (R + τ).

We use (Rf )local(t + x0 · ω,ω) as projection data to reconstruct the local image. Now for x ∈ B(x0,R), the local
reconstructed image is given as flocal(x) = ∫

|ω|=1 dω
∫ +∞
−∞ Rflocal(t, θ)q(x · ω − t)dt .

Fig. 2. (a) Original image, (b) reconstructed image.

Fig. 3. (a) Original image, (b) reconstructed image.
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The right- and left-hand sides of Figs. 2 and 3 are the radius 50, 25 pixels local original image of Shepp–Logan
512 × 512 phantom and the reconstructed local images using local data with 4 pixels extra margin, respectively.
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