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INTRODUCTION

In this paper we study the Dirichlet problem for equation
Lu= —(ayu.),=/f, (%)

where L is a second-order uniformly elliptic operator in a bounded domain
Q and f is taken in the Morrey space L"%, 0<i<n. (For the precise
statement see Section 1).

The solution we consider is a very weak one introduced in [LSW]
because in general the Dirichlet problem for Eq. (*) does not have a weak
(variational) solution under our assumption on f.

The purpose of our work is to study the reguiarity properties of the solu-
tion as the parameter A increases from 0 to n. In fact we prove L? regularity
for 0 < A <n-—2, and that the solution belongs (locally) to the space BMO
if A=n—2. For A>n—2 we prove the local Holder continuity of the
solution.

Furthermore, we consider the cases in which f belongs to some spaces
related to the so-called Stummel-Kato classes which fall in between L' 2
and L"*(1>n—2) obtaining boundedness and continuity of the solution.
The study of the Stumel and L'*(4>n—2) cases is much along the lines
of [CFG] and our previous work [D].

We also show that if f is taken in the Stummel class S (in fact in a
slightly larger one) the solution has its gradient in L*(£2) and then it is a
variational solution. The same is obviously true in the case L'* (A>n—2)
because of the inclusion L4 < § (A>n—2).

Finally we give some regularity results for the gradient of the solution for
A>n~—2 under some regularity hypotheses on Q and (a;(x)).
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1. PRELIMINARY RESULTS

Let 2 be an open bounded subset of R” (n=3). In what follows some
regularity on 022 is needed. Precise assumptions are made in the statement
of the theorems. However, we require at least the following condition to be
satisfied in

34€ 10, 1] : |2,(x)]| = 4 |B.(x)] 0<r<diam Q, (1.1)

where B,(x) is the closed ball centered at x with radius » and
Q,(x):=B(x)nQ.

Here and in the following we set |E| for the Lebesgue measure of a
measurable set £F< R”.

For O<i<n and feL'(Q2) we let |fl;;:=SUPoc,<diume xea’ *
fam lfW) dy. L"4(Q):={feL'(Q):Ifll,,<+oo} is the classical
Morrey space. We also use some other function spaces.

For feLl () we let |fllsmo :=sup §s|f—S5l dx, where the sup is
taken on the closed balls B< Q. Also the symbol § stands for the average
and f5=1{5 f(x) dx. BMO := { fe L}, .(2) : | fllamo < + o0 }. We also set

loc

3@) :={feL1(Q) coup [ 1A x—pl Ty <+ oo}

xef v2(x)
r>0

and

@) ={reL'@)sup [ 1l vyl dy<nin|

xe 2 L(x
r>0

for some increasing function #: JO, diam [ — R™ that lim, ,,#n(r)=0.
Obviously S 5. S and I are variants of the classical Stummel-Kato
classes.
It is easy to show that (see [D])

LY S(Q)s8(@)s L") for O<u<gn—-2<i<n

We also use the Sobolev space Hy”(2)1<p< +o and their duals
H-%9Q) (1/p+1/g=1). Also Hy*(Q)=H(2) and H "*(Q2)=H '(Q).
We consider in 2 the Dirichlet problem for the divergence form equation

Lu= —(ay(x)u,)y =/, (12)
where we assume

a;(x)e L*(Q2), a;(x)=a;(x) for i, j=1,.,n

(1.3)
WeR* v € <a,(x)EE <V I8 VEER,

ae. xin .
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We make various assumptions on the known term f which, for the time
being, we suppose to be an L'(Q) function.

Under this assumption there is, in general, no hope for the existence of
a variational solution to the Dirichlet problem for (1.2).

Then, following [LSW], we give the

DermNiTION 1. Let u be a bounded variation measure in Q. We say that
ue L'(Q) is a very weak soution to the Dirichlet problem in Q for equation
Lu=piff

j uLo dx=j edp  YoeH{(Q)n CYQ)
Q2 Q
such that Lo € C°(Q). (1.4)

It is well known (see [ST]) that under our assumptions (1.1), (1.3)
there is a unique very weak solution. In the case p=4,, ye Q, the corre-
sponding very weak solution g(x, y) is called the Green function for L and
we have (see [ST]) the representation formula

u(x)=L2 g(x, vYdu a.c.in Q.

It is also clear, from the definitions, that a weak solution to the Dirichlet
problem, ie.,

weHYQ): [ au b de= wdu Ve H Q).

whenever it exists, is the very weak solution in the sense of the above
definition.

It is also known [LSW, p. 67] that g(x, y) satisfies the estimate

Cilx—yI> "<glx, y)<Cy(x—p2 7, (1.5)

where C, and C, are positive constants depending only on n and v and the
right-hand side estimate is true under the assumption |x—y| < 1/4 d(y, 0Q).

In their paper [GW] Griiter and Widman give a different definition of
Green function establishing many useful estimates which we need in the
following.

Precisely Griiter and Widman define, in their theorem (1.1), as a Green
function g(x, y) for the operator L the unique nonnegative function such
that

YyeQ (-, y)e H(Q\B,(y)nHy' (Q) Vre 10, dist(y, 0)[
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and satisfying

J, a0 g Doy dx=p(y)  VoeCF@).  (16)

LemMa L.1.  Assume (1.1), (1.3), and suppose a,(x) are so smooth that
for ine Hy™(R2) the weak solution @ to the Dirichlet problem

Lo=n

oe HY(Q) is in H}" for some p > n.! (1.7)
0

Then
glx, y)=8(x, y).

Proof. Let ¢ be the solution of (1.7). Then [, a,(x) @, (X)¥ . (x) dx=
jgn(x)llzx'j(x)dx for any Y eH)(RQ) and also, by density, for all
yeH"(Q) (1/p+1/p'=1, p'<n/n—1). On the other hand by [GW,
Theorem 1.1, (1.7)] we know that §(-,y) is in Hy*(Q) for any
se[1,n/n—1[. Hence

[ 45000, (x) & (x, ) dx=] n(x)g(x, y)dx.

Q Q

By definition (1.6) the solution @ € Hy”(R2) (p>n) of (1.7) satisfies
J, 21000, 2,5, y) dr=0(»)

and then

J, 1) &, y) dx = (). (18)
By the [LSW] definition of g(x, y) using Lo =5 we also have
J, 1) g ) de=w(y). (19)
Finally, by (1.8) and (1.9),
J 10 gy de=[ nx g pydy  Vne Hy (@)
and this in turn implies g(x, y)=g(x, y).

La,(x)e C2) will suffice.
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We now quote an estimate from [GW] which is useful in the next
section.

LemMa 1.2 [GW, Theorem 3.3]). Suppose Q satisfies a uniform exterior
sphere condition. Assume (1.3) are satisfied and furthermore suppose a; are
Dini-continuous. Then

g dx, YI<Klx—y'"" Vx yeg, (1.10)

where K is a positive constant depending only on n, v, Q and the modulus of
continuity of the coefficients.

Observe that in the above lemma we denoted by g the Green function
using Lemma 1. Lemma 1.2 enables us to prove

LEMMAa 1.3, Consider the very weak solution u to the Dirichlet problem
Sfor Lu={f, where we suppose the assumption of Lemma 1.2 to be satisfied by
Q and a; and [ is any L'(Q) function. Then

u(x) =J g« (x, ¥) f(y)dy.
Q
Proof. Let ¢ e Cy(£2) and consider

0
(5], ex 1 f0 o)

i

Ox;

i

'JQ (L gt ) f(y) dy> % 4

i

0
(] stmnEas)a

J f(y)(f g (x, y)(/)(XMX) dy
Q Q

il

-], ( J, 8t 1) dy) o(x) dx

= ([, um 0 S0) D00 ) Vo (),

In the above calculation we exchanged twice the order of integrations.
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This is possible because both g(x, y) f(y)e..(x) and g, (x, y) f(¥)@(x)
are in L'(2 x Q). Indeed, using (1.5)

Hﬂm lg(x, ¥) f(1) @ (X)) dy dx

< Cmax g, (x) Hg . Lf)] Ix—yI> "dydx < + 0.

x

Similarly, using (1.10)

”Qm lgx (%, ) f(¥)o(y)l dy dx

<Cmaxlo() [[ 1/ 1x=y1' " dydy< +o0.

We conclude this section with a simple result:

LemMa 1.4. () S(2)< H Q). In particular S(2) and L"* (1 >n—?2)
are also contained in H™ '(Q).

Proof. Let pe CP(Q), fe 5(Q).
(Khon<C 1 (] Mool fx=yi' = dy) e
=c [ moi ([ e =yt )
Q [o
S C Vol o) MM 200

where we set 1,(f)(x)=[q |f(x)| |x—p|' " dx.
But

=] [ ([, o tr—yit—va)
([ eniz—ntra) ]
S IREIIRE
([ et st ) x| dz]m.

2 We thank Prof. C. Simader for pointing out the proof of the lemma.
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Using well-known properties of the Riesz kernels (see, e.g, [LA,

p.45 (1.1.3)]) we estimate the inner integral by a multiple of |x—z|* "
obtaining

1/2
uLLﬂHMm<6{i;fun(LLﬂxnu—av'uu)wJ (L)

By the assumption fe § the inner integral is uniformly bounded in © and
the conclusion follows. The quantity on the right-hand side of (1.11) 1s the
energy of the measure | f(x)| (see, e.g., [LA, p. 77 {1.4.1}]).

2. REGULARITY RESULTS

In this section we consider the very weak solution (see {1.4)) to the
Dirichlet problem

(2.1)

Here and in the following L is defined by (1.2) and (1.1), (1.3) are satisfied.
f belongs to some L"*(Q), 0< i <n.

THEOREM 2.1. Let A€ J0,n—2[, fe L"*(Q). Then the solution u to (2.1)
is in the weak L7"(Q) space, where l/p,=1-=2/(n—A). In particular
ue L7(Q) for all p<p;.

Proof. We have

OIS | ge DO dy<C [ 17 =y " dy

and the conclusion follows by known properties of the Newtonian potential
(see, e.g., [A] or [CF]).

THEOREM 2.2. Let A=n—2. Then the solution u to (2.1) is locally in
BMO(Q), ie, V' €Q, d:=dist(, 0Q), there is a positive constant
C=C(n, v, d) such that for any B.(x), with xe Q' and O <r < d/2

)[ fu(x) —upg | dx<C.
Br(.’()
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Proof. Let B= B,(x,) one of the balls in the conclusion of the theorem.
Set

J1 = e Sai= (1= x5, where  B* = B,,(x,).

Then we have u=u, +u,, where uy(x)= (g g(x, y) fi(y) dy and u,(x)=
fa &(x, p) f2(») dy are the very weak solutions of

Lu=f, and Lu,=f,

respectively.
Uy, =0 Uy, =0

We now estimate the BMO norm of 4, and u,.
As for u; we have

f ) —udx<2imla<2C] 1fON] 1x-y? " dedy

<Crn L' [fON dy < Cll fll Lin-xg)s

where we used estimate (1.5).
The estimate for u, is slightly more delicate.

f lus(x) =, dx

dx

= J[B “m' g(x, ) f(y)dy —3(8 jmr 8(z ») /() dy dz

= 3[3

<l . /()] dy dx

=[. Vo, dedy=| k] o

where we set 2,={y:|xo—y|<d} N (2\B*)and Q= {y:|xq—y|>d} N
(Q\ B*). To estimate the first integral we use the fact that, when restricted
to B, g(-, y) is a weak solution to the equation Lz=0, and then we can
apply De Giorgi-Nash’s theorem to obtain

5

dx

[ etmn—f eana] s
K\ B* B

g ) ~1 glz y)dz

gx )~ { alz y)dz

dx

g(x, y) —3[8 gz, y)dz

<C(n,v) (:FB“O)

Ix0-1/2

1/2
£(x, ) dx) 27/l — )"
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Now, using Harnack’s inequality together with estimate (1.5), we get

][ lg(xa)’)—jf gz, y) dz| dx < C(n, v)r* |xo—y|°> "~
B B

Then, for the first integral, we have

J, o,

<Cr [ 1S o=y dy

24

dx dy

g0 )~ sz )z

and, setting Q,, 1= {yeQ,: 2% r <|xo—y[<2**'r, ke N},

[ 17N xe=p12 "y

Q4
+ o
=T WOy <O 1 s
k=1 d.k

To bound the second term we observe that for any xeB {x—y|>=
[xg—y|—r>df2.
Hence, once more using (1.5),

Lo (] [se 0~ fo st 0 e

dx> dy

<Cd™ | 1SNy <C ISl

and this completes the proof.

We now turn to the study of the regularity properties of the solution u
if fis in § and in its subspaces S and L"*(Q), A >n— 2. Let us remark that,
because of Lemma 1.4, |Vu| e L*(2) and the very weak solution is in fact
the weak (variational) solution to the Dirichlet problem (2.1)

THEOREM 2.3. Let f€ S. Then the solution u to (2.1) is bounded in Q.
Proof. We have

W) <[ g D SONdy<C [ 1A x =y " dy

<Csup [ I Ix—y1* " dy.
e
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THEOREM 2.4. Let f€ S. Then the solution u to (2.1) is continuous in Q.

THEOREM 2.5. Let fe L' (n—2 < A<n). Then the solution u to (2.1) is
locally Holder-continuous in Q.

Proof of Theorems 2.4,2.5. The proof very closely follows the proof of
Theorem 3.1 in [CFG] and Theorem 3.1 in [D].

In both the cases, obviously, we must substitute f in place of Vu in the
equations considered.

We conclude this section with some results on the regularity of the
gradient of the solution u to (2.1).

THEOREM 2.6. Suppose Q satisfies a uniformly exterior sphere condition.
Assume (1.3) are satisfied and a; are Dini-continuous in Q. Let fe L
iemn—2,n—1[.

Then the gradient of the solution u to (2.1) is in the weak L"* space where
pi=(n—24)/(n—1-1).

Proof. We have, by Lemmas 1.2 and 1.3,

sl <[ lguln SN dy <K [ 17 L=yl dy

and the right-hand side is in the weak L”* space of the conclusion by a
theorem of Adams (see [A] or [CF)].

THEOREM 2.7. Suppose Q2 satisfies a uniform exterior sphere condition.
Assume (1.3) are satisfied with a; Holder-continuous. Let fe L'~ Then
the gradient of the solution u to (2.1} is locally in BMO (see Theorem 2.2.
above).

Indeed, take f; and f, as in Theorem 2.2, By the linearity and Lemma 1.3
we have

= W)+ (02)5= | 2L Ayt [ g 9) faly) d.

Now the proof goes on in much the same way as Theorem 2.2 using the
bound for the gradient of the Green function given by Lemma 1.2 and the
Holder estimate in [GW] Theorem 3.5].

Similarly we have

THEOREM 2.8. Under the same assumptions on Q and a;; of the previous
theorem, if feL** n—1<l<n, we may conclude that \Vu| is locally
in C**(Q).
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